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A result of Madivanane on "quasianticommuting" complex square matrices, which are roots of 
the identity matrix, is generalized to linear operators on infinite-dimensional complex vector 
spaces. A constant which appears in the result is shown to be nonzero by giving a simple formula 
for its absolute value. Also, a simple formula for the constant itself is given, which is valid for some 
cases. 

I. INTRODUCTION 

It was shown by Madivanane l that an n X n complex 
matrix T, which is defined in terms of two n X n complex 
matrices A andB having certain properties, has the property 
Tn = eI. The two principal objectives of this paper are to 
show (I) that T, A, and B need not be n X n matrices and (2) 
that e#O. In addition, lei will be evaluated. 

The generalization can be formulated either in terms of 
associative algebras, or in terms of linear operators on arbi
trary (possibly infinite-dimensional) complex vector spaces. 
The latter course will be followed here. 

II. A SEQUENCE OF "GAUSS· TYPE" SUMS 

It will be shown that certain "Gauss-type" sums are not 
equal to zero. In addition, the absolute values of the "Gauss
type" sums will be evaluated. 

Definition J: Let n be a positive integer, let w be any 
primitive nth root of 1, and let@ be any primitive 2nth root of 
1. Then 

{ 

n-I 
j~O W - j(j - 1)12, 

S = 
ifn is odd, 

n n-l 

'" --I .£.. w , 
j=O 

ifn is even . 

The dependence of Sn on w or @ will be suppressed. Thus, 

2 3 
1 1-@ l-w 

6 

1 +2aJ-2aJ2-ii'? 

4 
_2aJ3 

Lemma J: Let n be a positive odd integer ;.03, and let w 
be any primitive nth root of 1. Then 

(n-I)/2 
(I) Sn = IT (I - W2k-I)#0, 

k=1 

(2) ISnl =In. 
Proof: (1) This is a simple consequence of p. 86 of Ref. 2. 

To prove (2), we have 

Sn = (1 - w)(1 - ( 3
) ... (1 _ wn - 2). 

Define 

tn = (I - ( 2)(1 _ ( 4) ••• (1 _ wn -I). 

By p. 87 of Ref. 2, 
n-I 

Sntn = IT (1 - wj
) = n. 

j=1 

Since 

Sn =(I-w- I )(I-w-3 ) ... (I-w-n+2) 

=(I_wn-I)(I_wn-3) ... (I_w2) 

• 
Lemma 2: Let n be a positive even integer, let @ be any 

primitive 2nth root of 1, and let @ be any primitive 8nth root 
of 1 such that @4 = ii'J. Then 

(I) Sn = ±@-nJn#o, 

(2) ISnl =In. 
Proof: Clearly it suffices to prove that Sn = ± @- nJn. 

(a) To prove that Sn = ! 1:;:0 1 @I, let m = n12. Then 
2n-1 n-I n-I L @I= L @(n+J1

2
= L @n2+2nj+1 

j=n j=O j=O 

n-I n-I 
= L (@2nr+j@l= L @1=Sn' 

j=O j=O 

(b) To prove that Sn = ± @- nJn if @ = exp(1'7Tiln), 
rE {l,2, ... ,2n - 1), r and n are relatively prime, and @ 
= exp(1'7Ti/4n), let @ be any primitive 2nth root of 1. There is 

a positive integer r E { 1,2, ... ,n - I} such that r and n are 
relatively prime, and@ = exp(1'7Tiln). By part (a), 

iS
n 

= 2'i I exp (l1'7Ti) . 
j=O n 

In the notation of Ref. 3, the last sum is ¢ (r,2n), so 
iSn = ¢ (r,2n). By p. 178 of Ref. 3, 

¢ (r,2n) = ¢ (1,2rn)/¢ (2n,r), 

if ¢ (2n,r)#0. By p. 187 of Ref. 3. 

¢ (2n,r) = ± i' - 1)2/4,Jr ( # 0), 

and by p. 177 of Ref. 3, 

¢ (1,2m) = (1 + iW2m . 

Therefore 

iSn = ¢ (r,2n) = ± (1 + I) i- (,_1)2/4 fiii . 
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Now let w = exp(1'1Tiln) (so w4 = @), and m = n12. Since 
,s=:1 (mod 16), 

W,7n = e"tri/4 = efT
i/4 = (l/v'2)(1 + i) 

W(,7 + , - 2)m = e(" + ,:z - 2,)triI8 = e(,:z - 2, + l)fTi/8 

Therefore 

8n = ± W,7nw - (,7 +' - 2)m..[ii 

= ± W(,7 -,+ 2)m..[ii. 

Since r=1 (mod 8), 

r7 
- r = r(r - 1)(r4 + r + 1)=0 (mod 8). 

Define 

t = i (r7 - r), (J) = @2. 

Then 

so 

Therefore 

8n = ± W(,7 -,+2)m..[ii = ± w2m..[ii = ± wn..[ii. 

(c) To prove that Sn = ± W - n..[ii for any fourth root w 
of @, let Wo = exp(Nriln), so by part (b), Sn = ± Wo - n..[ii. 
Since w = ± wo, or w = ± ,-Wo, 

wn = ±won, 

so 

• 
III. TWO SEQUENCES OF COMPLEX NUMBERS 

Definition 2: Let n be a positive integer, let (J) be a primi
tive nth root of 1, and let@ be a primitive 2nth root of 1. Then 

{

nif {J)k(k + 1)12, if n is odd, 
k=O 

rn = n-I 

II @k2, if n is even. 
k=O 

The dependence of r n on (J) or @ is suppressed. Thus, 

n 1234 56 8 9 
rn 1 @ (J) @6 = _@2 1 @7 = _ @ @12 = _@4 {J)3. 

The following result is elementary. 
Lemma 3: Let n be a positive integer, let (J) be a primitive 

nth root of 1, and let @ be a primitive 2nth root of 1. Then, 

ifn is odd, 

ifn is even. 

Remark 1: Let n be a positive odd integer, and let (J) be a 
primitive nth root of 1. 

(i) If nand 3 are relatively prime, then rn = 1. 
(ii) If n=O (mod 3), and m = n/3, then rn = {J)m. 
Proof: (i) Since n is odd, nand 3 are relatively prime, and 

n(n2 - 1)16 is an integer, it follows that (n2 - 1)/6 is an in
teger. By Lemma 3, 

rn = {J)n(n2 - 1)/6 = ({J)n)(n2 - 1)/6 = 1. 

(ii) Define q = (3m 2 
- 1)/2, so 

n(n2 - 1)16 = m + qn. 

By Lemma 3, 

rn = {J)m + qn = {J)m({J)n)q = (J)m. • 
Definition 3: Let n be a positive integer, let (J) be a primi

tive nth root of 1, and let @ be a primitive 2nth root of 1 such 
that @2 = (J). Then 

Cn = rn(Sn)n. 

Thus, 

n 123 45 6 

Cn 1 2 6 + 3{J) 16m 25(1 + 2m2 + 2m3) - 216m2 . 

Lemma 4: 

(i) Cn #0, n = 1,2,3,4, .... 
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(ii) ICn I = nnl2, n = 1,2,3,4, .... 

(iii) Cn = {J)n(n - 2)(4.n - 1)124nn12, if n is even. 

Proof: (ii) By Definition 3, ICn I = Irn IISn In. By Defini
tion 2, Irn I = I, so ICn IISn In. By Lemmas 1 and 2, ISn I 
=..[ii, so ICn I = (..[ii)n. 

(i) By part (ii), Cn #0. 
(iii) If n is even, then by Lemmas 3 and 2, 

C = @n(n - 1)(2n - 1)/6W - n
2 nn/2 

n 

= @n(n - 2)(4n - 1)/12nn/2 

[since n(n - 2)(4n - 1)===0 (mod 24)]. • 
IV. TWO SEQUENCES OF COMPLEX POLYNOMIALS 

Definition 4: Let n be a positive integer, let (J) be any 
primitive nth root of 1, and let@ be any primitive 2nth root of 
1. Then 

_ { ~~~ (J) - }(j - 1 )/2Z}, if n is odd, 

Pn(z) - n-I 

L @-1 z}, ifn is even. 
}=o 

The dependence of Pn or (J) or @ is suppressed. Thus, 

n Pn(z) 

1 

2 1-@z 
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3 1 +z+ah2 

4 1 - Ci'?z - r - Ci?z3 

5 1 + z + 0)4r + 0)2z3 + 0)4z4 

6 1 - (ijsz - (ij2r + (ij3z3 _ (ij2z4 _ (ijsr. 

Lemma 5: 

(i) P,,(l) = SrI ;60, 

(ii) e" = y" [P,,(l)]", 

n = 1,2,3,4, ... . 

n = 1,2,3,4, ... . 

Lemma 6: Let n be an odd positive integer :> 3, let 
k E {O, 1,2, ... ,n - 1 J, and let 0) be the primitive nth root of 1, 
which is used in the definition of P,.(z). Then 

P,. (O)k) = O)k(k + 1)12P,. (1) 

=O)k(k +1)l2S". 

Proof" The assertion is trivial if k = 0. Assume k:> 1. By 
Definition 4, 

so 

,.-1 

P,.(O)k) = L 0)-jU- 2k - I)I2, 
j=O 

,.-1 
0)-k(k+I)/2P,,(O)k)= L 0)-(1I2)U-k)U-k-l) 

j=O 

k 
= L 0)-/(1-1)12. 

1= -k 

From 

0)(112)(" + 1)(,. + 1- I) = 0)(112)[,,2 + (2/- I)" + 1(/- 1)1 

it follows that 

= (0)")(" + 2/ - 1)120)/(/- 1)/2 

= 0)1(/-1)/2, 

-I -I L 0) -/(/- 1)12 = L 0) - (112)(,. + 1)(,. + 1- I) 

I=-k I=-k 

Therefore 

,.-1 
_ ~ -j(j-I)/2 
- k; 0) . 

j=,.-k 

,.-k-I -I 
0) - k(k + 1)I2P,. (O)k) = L 0) -/(/- 1)12 + L 0) -/(/-1)12 

1=0 1= -k 

,.-k-I ,.-1 
= L 0)-j(j-I)/2+ L 0)-j(j-1)I2 

j=O j=,.-k 

,.-1 

= L 0)-j(j-I)/2=P,,(1) 
j=O 

=S,.. • 
Lemma 7: Let n be a positive even integer, let 

k E {O, 1,2, ... ,n - 1l, let (ij be the primitive 2nth root of 1 
used in the definition of P,.(z), and let 0) = (ij2. Then 

P,.(O)k) = (ijk2P,.(I) 

_ - k2S -0) ,.' 

Proof" The assertion is trivial if k = 0. Assume k:> 1. By 
Definition 4, 
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so 

,,-1 

p,,(O)k) = L (ij - f + 2k), 
)=0 

,,-1 
(ij - k2p" (O)k) = L (ij - (I - 2kJ+ k') 

)=0 
,,-1 ,,-k-I 

= L (ij-IJ-k)' = L (ij_1
2 

j=O 1= -k 

Define m = n12. From 

it follows that 
-I -I ,.-1 L (ij-I'= L (ij-(n+I)'= L (ij-I. 

1= -k 1= -k j=n-k 

Therefore 
n-k-I -I 

(ij-k'p,,(O)k) = L (ij-I' + L (ij-I' 
1=0 I=-k 

n-k-I ,.-1 
= L (ij-I + L (ij-I 

j=O j=,,-k 

n-I 

= L (ij-I = Pn(l) = Sn' • 
)=0 

Lemma 8: Let n be a positive integer: if n is odd, let 0) be 
the primitive nth root of 1 used in the definition of P" (z); and 
if n is even, let (ij be the primitive 2nth root of 1 used in the 
definition of Pn(z), and 0) = (ij2. Then 

,,-1 

e,. = II P,.(O)k). 
k=O 

Proof" (1) Case n odd. The assertion is trivial if n = 1. 
Assume n:>3. By Lemma 5, Definition 2, and Lemma 6, 

,,-1 ,.-1 

e,. = y,. [P,.(l))" = II O)k(k + 1)12p,.(l) = IT P,.(O)k). 
k=O k=O 

(2) Case n even. By Lemma 5, Definition 2, and Lemma 
7, 

,.-1 ,.-1 

e,. = y" [p,,(l)]n = IT (ijk2 P,.(l) = II P,.(O)k). • k=O k=O 

Definition 5: Let n be a positive integer; if n is odd, let 0) 

be the primitive nth root of 1, which is used in the definition 
of P" (z); and if n is even, let (ij be the primitive 2nth root of 1 
that is used in the definition of P,. (z), and 0) = (ij2. Then 

,,-1 

Q,.(z) = II Pn(O)kZ). 

Thus, 

n 
1 

2 
3 
4 

k=O 

Q,,(z) 
1 

l+r 
1 + (4 + 30)jz3 + Z6 

1 + (1 + 8aJ)z4 - (1 - 80))z8 + Z12. 

Lemma 9: Let n, 0), (ij, and Q" (z) be as in Definition 5. 
Then (1) Q,,(I) = e,,; (2) Qn(O)z) = Q,,(z) for allz E C; (3) Qn(z) 

is a polynomial in z", i.e., there is a finite sequence {aj J ~ - 1 

C Csuch that 
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n-I 

Qn (Z) = L aj~j. 
j=O 

Proof (1) By Definition 5 and Lemma 8, 
n-I 

Qn(l) = II Pn(al) = en' 
k=O 

(2) By Definition 5, 
n 

Qn (cuz) = II Pn (cukz). 
k=1 

Since cun = 1, 
n-I 

Qn (cuz) = II Pn (cukz) = Qn (z). 
k=O 

(3) Let (a l J~(n -I) C C be such that 
n(n-I) 

Qn(z) = L alzl. 
1=0 

From the preceding equation and 
n(n-I) 

Qn(z) = Qn(cuz) = L culalzl, 
1=0 

it follows that 

a l = culal' 1= 0,1,2, ... ,n(n - 1). 

Therefore al = 0 unless CUi = 1. • 
V. NOTATION 

The following notation will be used in the next two sec
tions (VI and VII). 

(1) X is an arbitrary complex vector space of dimension 

(2) H (X) is the complex vector space of all linear opera-
tors onX. 

(3) Ie H (x) is the identity operator. 
(4) GL(X) = (S e H (x): S is bijective J. 
(5) n is a positive integer. 
(6) cu is a primitive nth root of 1. 
(7) A, Be H(X) are such that (i) A n = B n = I [so A, 

Be GL(X)] and (ii)AB = cuBA. 
n-I 

(8)T= L An-j-IBj. 
j=O 

(9) (ij is a primitive 2nth root of 1 such that (ij2 = cu. 
A 

(to) Be GL(X) is defined by 

A {A -IB, ifn is odd, 
B = (ijA -IB, ifn is even. 

Thus, 

Proof (1) By Lemma to and Identity 4, 

n 1 2 3 4 

VI. ELEMENTARY IDENTITIES 

Following are some elementary identities: 

(1) A jB k = cujkB kA j, j,k = 1,2,3, ... , 
(2) BA -j = cujA -jB, j= 1,2,3, ... , 
(3) A -jBA j = cu -j B, j = 1,2,3, ... , 
(4) A -j(n - I)BA j(n - I) = cujB, j = 1,2,3, ... , 
(5) (A -IB)j = cuj(j-I)/2A -jB j, j= 1,2,3, ... . 

It is easily shown that 

(6) Bn=I [soBeGL(X)], 
A A 

(7) AB = cuBA. 

Consequently the identities (1 )-( 5) remain true when B is 
replaced by B. 

Lemma 10: T = An - IPn (B), if the cu or (ij used in defin
ing Pn (z) is the same as in this section. 

Proof (1) We prove for the case when n is odd. By identi
ty 5, 

n-l n-l 

T= L An-j-IBj=A n- 1 LA -jBj 
j=O j=O 

n-I 
=An-I L cu- jU - I)/2(A -IB)j 

j=O 
n-l A A 

=A n- I L cu-ftj-I)/2 Bj=An- IPn(B). 
j=O 

(2) We prove for the case when n is even. As in part (1), 
n-I 

T=A n- 1 L cu-j(j-I)/2(A- IB)j 
j=O 
n-I 

=A n- I L cu- jU -1)I2(ij-j((ijA -IB)j 
j=O 
n-l A A 

=A n- I L (ij-IBj=An-IPn(B). 
j=O 

VII. THE THEOREM 

Theorem: 

(1) Tn = en I, 

where en is given by Definition 3. 

(2) en =1=0. 

(3) len I = nn12. 

(4) en = cun(n - 2)(4n - 1)I24nn12, if n is even. 

• 

A A A. A A 

Tn = [A n-IPn(B)]" =A n-IPn(B)A n-IPn(B) .•. A n-IPn(B)A n-Ipn(B) 

2'" 2 A A A = Pn [A - (n - I) BA (n - I) ] "'Pn [A - 2(n - I) BA 2(n - I)] Pn [A - (n - I)BA n - I] Pn (B) 

= Pn (cun - I B )"'Pn (cu2B)Pn (cuB)Pn (B) = Qn (B). 

By Lemma 9, and Identity 6, 
A 

Tn = Qn(B) = Qn(I) = Qn(l)1 = enI. 
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(2), (3), (4) These assertions come from Lemma 4. • 
VIII. A FINAL REMARK 

Remark 2: LetXbe an arbitrary complex vector space, let n be a positive integer, let A and B be linear operators on X such 
that A "= B" =1, and let T= l.j';;ol A "-i-IB i. ThenAT= TB. 
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Nontrivial zeros of weight 1 3j and 6j coefficients: Relation to Diophantine 
equations of equal sums of like powers 
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The nontrivial zeros of weight 1 3j and 6j coefficients given previously are shown to be the set of all 
such zeros. The relation of these zeros to the solutions of well-known Diophantine equations is 
also discussed. 

I. INTRODUCTION 

Nontrivial zeros of the 3j and 6j coefficients of weight 1 
were given earlier by one of us. I These zeros originate from 
coefficients in which only two terms occur in the alternating 
sum expressions for the coefficients. They are called "linear 
zeros" in Ref. 1. The present terminology "weight 1" refers 
to this same class of coefficients and is based on the property 
that at least one 1 appears in the Regge2 array notation and, 
respectively, in the Bargmann3 array notation for these coef
ficients. This notation is used in Ref. 4 in the discussion of 
the symmetries of these coefficients and is given by 

el j2 j3 ) 
m l m2 m3 

j2+ m2 LHm
• = jl-ml j2 -m2 

j,+m, ] 
j3 - m3 , (1) 

{
a b 

d c 

'2 + j3 - jl j3+jl-j2 jl +j2 -j3 

(

d+l-b 

e} = a +I-c 
1 d+e-c 

a+e-b 

c+l-a 
b+l-d 
b+e-a 
c+e-d 

c+d-e) 
a+b-e 
b+d-I . (2) 

a+c-I 

The term "weight" is suggested by the properties of the 
Wigner and Racah operators associated with these coeffi
cients.4

•
5 A weight 1 coefficient is thus one in which a quan

tum number is chosen to be one number off a "stretched" 
coefficient; for example,j3 =jl +j2 -1 (or m l =jl - 1) in 
the 3j symbol or e = a + b - 1 in the 6j symbol (or any sym
metry equivalent of these). A stretched or boundary coeffi
cient (for example, e = a + b ) is a weight 0 coefficient and 
consists of "one term." These coefficients possess no nontri
vial zeros. By definition, a nontrivial zero of the 3j coefficient 
(resp. of the 6j coefficient) is a set of quantum numbers 
UI,j2,j3,m l,m2,m3) [resp. (a,b,c,d,e,f)) such that all the do-

I 

mains of definition are satisfied and for which the coefficient 
has value zero. (The domains of definition of the quantum 
numbers are well known and consist of the integer and half
integer rules, the triangle rules for the angUlar momenta, and 
the projection rules for the m labels.) 

The purpose of the present paper is twofold: (i) we relate 
the determination of the nontrivial zeros of weight 1 3j and 6j 
coefficients to the solution of classic Diophantine equations; 
and (ii) we prove that the enumeration of zeros given in Ref. 1 
is complete, that is, that all such zeros of weight 1 3j and 6j 
coefficients are obtained by the method described there. 

II. ZEROS OF WEIGHT 1 COEFFICIENTS IN TERMS OF 
STANDARD DIOPHANTINE EQUATIONS 

The condition (necessary and sufficient) for a nontrivial 
zero of a weight 1 3j or 6j coefficient can be derived directly 
from the explicit alternating sum expression for the respec
tive coefficient as described in detail in Ref. 1. Because of the 
symmetries of these coefficients, the conditions for a zero 
can be stated in various equivalent ways. One such statement 
is the following. 

The nontrivial zeros of weight 1 3j coefficients are given 
by 

(
(x + u)/2 
(x - u)/2 

(y + v)l2 (x + y + u + v - 2)/2) 
(y - v)l2 ( - x - y + u + v)/2 

x + u - 1 y + V-I] 
x y =0, 
u v 

(3a) 

for every set (x, y,u,v) of positive integers that satisfy the rela
tion 

(x + u)(y - v) = (x - u)(y + v). (3b) 

The nontrivial zeros of weight 1 6j coefficients are given 
by 

{
(x + u + v - 1)12 

(x + w)l2 

(y+u+w-I)/2 
(y+v)l2 

~+y+v+w-~n}= u x+u-I 

(

I x 

~+y+u-I~ v x+v-I 
y+~-I)=O' 
y+v-I 

(4a) 

for every set (x, y,u,v,w) of positive integers that satisfy the 
relation 

xy(x + y + u + v + w) = uvw. (4b) 

w x+w-I y+w-I 
I 
We have introduced the (x, y,u,v,w) variables into the 3j and 
6j coefficients in Eqs. (3) and (4) for two reasons: (i) this sim
plifies the entries in the Regge and Bargmann arrays; and, 
more importantly, (ii) it reduces all domain requirements on 
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the entries to the condition that the variables (x, ... ,w) be non
negative integers, in general, and positive integers for the 
problem at hand. The physical angular momentum quantum 
numbers can be recovered by comparing the entries in the 3j 
symbol in Eq. (3a) [resp. in the 6j symbol in Eq. (4a)) with 
those in the 3j symbol in Eq. (1) [resp. in the 6j symbol in Eq. 
(2)]. 

Next, we transform conditions (3b) [resp. (4b)] for a zero 
of a 3j coefficient [resp. 6j coefficient] to a standard-type 
Diophantine equation. For this, we use the identities 

4AB= (A +B)2 - (A _B)2, (Sa) 

24ABC=(A +B+ C)3+(A -B- C)3 

+(-A+B-C)3+(-A-B+C)3. (5b) 

In Eq. (3b), we apply identity (Sa) to each side of the 
relation, rearrange terms, and obtain 

X2+ y2= U 2+ V 2, (6a) 

where 

X=x+y+u-~ y=x-y-u-~ 

U=x+y-u+~ V=x-y+u+~ 

with inverse 

x=(X+ y+ U+ V)/4, y=(X- Y+ u- V)/4, 

(6b) 

(6c) 
u = (X - Y - U + V)/4, v = ( - X - Y + U + V)/4. 

In Eq. (4b), we first define the variable z by 

z=x+y+u+v+~ m 
apply identity (5b) toxyz = uvw, eliminate z from the result
ing expression, and obtain 

X3+y3+Z3=U3+V3+W3, (8a) 

X+y+Z=U+V+~ (~ 

where 

X = 2x + u + v + w, U = u + v - w, 

y = 2y + u + v + w, V = u - v + w, (9a) 

Z=u -v-w, W=2x+ 2y+u +v+ w. 

The variables (x, y,z,u,v,w) may be obtained from 
(X,Y,Z,U, V, W) by 

x=(W- Y)/2, u=(U+ V)/2, 

y = (W - X )12, v = (U - Z )/2, 

z = (X + Y)/2, w = (V - Z )12. 

(9b) 

Since these relations and X + Y + Z = U + V + W imply 
z = x + y + u + v + w, the "inverse relations" (9b) give val
ues of(x, ... ,w) uniqUely, although their expression in terms of 
(X, ... ,W) is not unique. 

We see from the transformation (6b) [resp. (9a)] that ev
ery integral solution (x, y,u,v) [resp. (x, y,u,v,w)] of 
(x + u)(y - v) = (x - u)(y + v) [resp. of xy(x + y + u 
+ v + w) = uvw] is also a solution of X 2 + y2 = U 2 + V 2 

[resp. X 3 + y3 + Z3 = U 3 + V 3 + W 3, X + Y + Z = U 
+ V + W], but the converse need not be true for every solu
tion. We tum next to the discussion of the solutions of these 
equations and the relations between them. 
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III. THE ZEROS OF WEIGHT 1 3j COEFFICIENTS 

The complete result for the nontrivial zeros of weight 1 
3j coefficients is given by the following theorem. 

Theorem 1: All nontrivial zeros of weight 1 3j coeffi-
cients, that is, all zeros of 

[ 

1. x+u-1 
u+v-1 x 

x+y-l u 

y + V-I] 
y =0 
v 

(lOa) 

are given by 

x=ap, y=P8, u=ay, v=y8, (lOb) 

where a, p, y, and 8 assume all positive integral values. 
Proof The set of all solutions of the Diophantine equa

tionX 2 + y2 = U 2 + V 2 wasgivenin 1906byP. Pasternak 
in a form suitable for the present discussion [see Dickson 6 for 
this result (p. 252) and related references]. It is, however, 
easy to obtain the proof of Theorem I by using Eq. (3b) di
rectly. Accordingly, we first give this proof and then show 
how the same result can be obtained from Pasternak's solu
tion. 

We verify directly that the (x, y,u,v) defined by Eq. (lOb) 
satisfy (x + u)(y - v) = (x - u)(y + v). Thus, we may com
plete the proofby showing that every positive solution of this 
Diophantine equation may be put in the form given by Eq. 
(lOb). Letp denote the greatest common divisor of the posi
tive integers x + u and y + v, so that x + u = ap and 
y + v = t>p, where a and t> are relatively prime positive inte
gers. It follows from Eq. (3b) that a( y - v) = 8(x - u), and, 
since a and t> are relatively prime, we find x - u = aq and 
y - v = 8q for some integer q with Iql <p. Defining P and r 
by P = (p + q)/2, y = (p - q)/2, we thus obtain x = ap, 
y = pt>, u = ay, and v = y8. Since x and yare positive inte
gers and a,t> are relatively prime, it follows thatpis a positive 
integer; hence, p and q have the same parity. Thus, r is also 
an integer, which is positive, since the property 
x + u > x - u for all positive integers u implies that p > q. 
Thus, every positive integer solution (x, y,u,v) ofEq. (3b) can 
be written in the form (lOb). This completes the direct proof 
of the theorem. 

A proof based on Pasternak's result may be given as 
follows: Pasternak proved that all solutions of the Diophan
tine equation X 2 + y2 = U 2 + V 2 are given by 

X = kr + Is, Y = Ir - ks, 

U = kr - Is, V = /r + ks, 

where k, I, r, s are integers. Substitution of these relations 
into Eqs. (6c) yields 

x = r(k + /)/2, y = r(k -1)/2, 

u = s(ic + 1)12, v = s(k - 1)/2. 

Thus, the set of all positive integral solutions of 
(x + u)(y - v) = (x - u)(y + v) is obtained from the subset 
of all solutions of X2+ y2= U 2+ V 2bychoosingk,/,r,s 
to be positive integers with k> I and (i) either k + I odd and 
r ,sboth even, or (ii) k + I even. This gives exactly the solution 
(lOb). • 

Remarks: (a) The solution (10) for the nontrivial zeros of 
weight 1 3j coefficients was given in Ref. 1. Here we have 
shown, in addition, that this solution gives all such zeros. 
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(b) It is interesting that the zeros of weight 1 3j coeffi
cients occur for ml/jl = m2/j2' [This is Eq. (3b) written in 
terms of the angular momentum quantum numbers.] Classi
cally, this condition occurs when the angular momenta J I 
and J 2 have the same projection on the "z axis" (belong to the 
same cone). 

IV. THE ZEROS OF WEIGHT 1 6jCOEFFICIENTS 

We require several preliminary results before giving the 
zeros of the weight 1 6j coefficients. For this we introduce the 
following notations: Consider the 3 X 3 array (within the 
box) of positive integers k,I, ... ,t given by 

kim x 
n p q y 

r s t z. 

u v w 

(11) 

The integers x,y,z at the right end of a row are defined to be 
the product of the entries in the corresponding row (x = kim, 
etc.); similarly, u,v,w are defined to be the product of the 
entries in the corresponding column. We next defined the set 
K6 by 

{

set of all 6-tuples (x, y,z,u,v,w) obtained 
K6 = by letting k,I, ... ,t in the array (11) 

assume all positive integral values. 
(12) 

We also denote the set of all 6-tuples with positive integral 
entries by N~ . Clearly, K6 CN6+ . 

We can now prove the following theorem. 
Theorem 2: The set of all positive solutions of the Dio

phantine equation xyz = uvw is given by K6. 
Proot Each element (x, y,z,u,v,w) in K6 clearly satisfies 

xyz = uvw. Thus, the principal part of the proof is in show
ing that every 6-tuple (x, y,z,u,v,w) in N~ that satisfies xyz 
= uvw belongs to K6; that is, in showing the existence of 
positive integers k,I, ... ,t in the array (11) that yield each solu
tion of the Diophantine equation. 

Let (x, y,z,u,v,w) denote a positive solution of the Dio
phantine equation xyz = uvw and define N = xyz. Suppose 
(induction hypothesis) that for each n = 1,2, ... ,N - 1, we 
have proved that each positive solution ofn = x'y'z' = u'v'w' 
is obtained from an array of the form (11). We now extend 
this result to n = N. 

Suppose at least one of the integers x, y, z has a common 
divisor with at least one of the integers u,v,w. Without loss of 
generality, we can assume these tobex and u, so that x = ax' 
and u = au' for some positive integer a> 1. Then, since 
xyz = uvw, we find thatx'yz = u'vw = n <N - 1. Hence, by 
the induction hypothesis, each positive solution of this latter 
Diophantine equation may be obtained from an array (11), 
say, with entries k ',I', ... ,t'. The array with entriesak ',I', ... ,t' 
then yields the solution (x, y, ... ,w). If each of the integers 
x, y,z is relatively prime to each of the integers u,v,w, this 
argument does not apply. In this case, we suppose that at 
least one of the integers x, y,z has a common divisor with at 
least one of the integers uv,uw,vw. Without loss of generality, 
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we can assume these to be x and uv, so that x = a{:Jx', 
u = au', v = {:Jv' for some positive integers a > 1 and {:J> 1. 
The existence of the two divisors, a of u and {:J of v, is a 
consequence of the assumption that x and u, as well as x and 
v, are relatively prime. Thus, we find that x'yz 
= u'v'w = n <N - 1. Hence, by the induction hypothesis, 

each positive solution of this latter Diophantine equation 
may be obtained from an array (11), say, with entries 
k ',I ', ... ,t'. The array with entriesak ',{:JI ',m', ... ,t , then yields 
the soluiion (x, y, ... ,w). If each of the integers x, y,z is rela
tively prime to each of the integers uv,uw,vw, the argument 
up to this point does not apply. In this case, it follows from 
yz = uvw/x and the assumption that x does not divide 
uv,uw,vw that there exist positive integers a,{:J,r each greater 
than 1, such that u = au', v = {:Jv', w = yw', and x = a{:Jr. 
Thus,yz = u'v'w' = n <N - 1. Hence, by the induction hy
pothesis, each positive solution to this latter Diophantine 
equation may be obtained from an array (11) with entries 
1,1,1,n',p', ... ,t'. The array with entries a,{:J,r,n', ... ,t' then 
yields the solution (x, y, ... ,w). This last step completes the 
induction loop; that is, the induction hypothesis and the 
property xyz = uvw = N imply the validity of the hypothesis 
at level N. Since we easily verify that every positive solution 
of xyz = uvw can be obtained from an array (11) for small N, 
say, N = 1,2, ... ,7, the theorem is proved. • 

An immediate consequence of Theorem 2 and Eqs. (4), 
which define a nontrivial zero, is the following theorem. 

Theorem 3: All nontrivial zeros of weight 1 6j coeffi
cients, that is, all nontrivial zeros of 

x 
x+u-l 
x+v-l 
x+w-l 

y+~ -1)=0 
y+v-l 
y+w-l 

(13a) 

are given by the points (x, y,z,u,v,w) in K6 that obey the con
dition 

z = x + y + u + v + w. (13b) 

Remarks: (a) The nontrivial zeros of weight 1 6j coeffi
cients given in Theorem 3 were obtained in Ref. 1. Here we 
have shown that this solution gives all such zeros. 

(b) The solution for the nontrivial zeros of weight 1 6j 
coefficients given in Theorem 3 is not fully explicit, since the 
subset of points in K6 that satisfy the auxiliary condition 
(13b) has not been determined. 

We next consider the relationship of the nontrivial zeros 
given in Theorem 3 to the solution of the pair of Diophantine 
equations 

X 3 + y 3 +z 3 = U 3 + V 3 + W 3
, 

X+Y+Z=U+V+W. 

(14a) 

(14b) 

From Eqs. (9b) we find that each solution of Eqs. (14a) and 
(14b) with 

X,Y, ... ,Wofthe same parity 

and such that 

(14c) 

(14d) 

yields a positive solution (x, y, ... ,w) of xyz = uvw, 
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z = x + y + u + v + w. (It is no restriction to assume that 
X> Y>Z and U> V> W.) Moreover, the set of all solutions of 
Eqs. (14) yields the set of all zeros (x, y, ... ,w) of weight 1 6j 
coefficients. 

It appears that the general solution of the pair of Dio
phantine equations (14a) and (14b) is not known. A two-pa
rameter set of solutions was given in 1915-16 by Gerardin 
(see Dickson,6 pp. 565 and 713), but the survey paper on 
"Equal sums of like powers" by Lander et al.7 does not in
clude Eqs. (14a) and (14b) among their list of solved prob
lems. The special parametric solution by Gerardin is, how
ever, very useful for the present problem, as we next discuss. 

Gerardin's solution (with an appropriate renaming of 
variables) is 

X = 2p2 - lOpq + 12i, U = 2pq, 

Y = p2 _ 5pq + 6q2, V = pq, (15a) 

Z = - 2p2 + 9pq - 6q2, W=p2 _ 9pq + 12q2, 

wherep and q are arbitrary integers. Conditions (14c) and 
(14d) are satisfied for all 

p even, q>p. (15b) 

An array (11) corresponding to the solution (15a) may be 
verified to be 

q 3q-2p 

pl2 1 

3 (2q -p)/2 

u v 

1 

q-p 

3q-p 

w 

x 
y 

z (16) 

Thus, for all p even and all q > p, the point (x, y, ... ,w) ob
tained from this array is a zero of a weight 1 6j coefficient. 
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v. CONCLUSIONS 

We have shown that the nontrivial zeros of weight 1 3j 
and 6j coefficients given in Ref. 1 are all such zeros. We have 
also related the Diophantine equations that occur in the di
rect formulation of the conditions for nontrivial zeros [Eqs. 
(3) and (4)] to well-known Diophantine equations considered 
in the literature on number theory. For the zeros of weight 1 
3j coefficients, we have been able to give a complete solution; 
for weight 1 6j coefficients, the solution is not fully explicit, 
although complete. A parametric family of zeros of weight 1 
6j coefficients has been given explicitly by using results from 
the literature on number theory. 
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Using the Mackey theory of induced representations, a systematic study of the locally operating 
multiplier realizations of a connected Lie group G that acts transitively on a space-time manifold 
is presented. We obtain a mathematical characterization of the locally operating multiplier 
realizations and a reduction of the problem of multiplier locally operating realizations to linear 
ones via a splitting group G for G. In this way the locally operating multiplier realizations are 
obtained by induction from finite-dimensional linear representations of a well-determined 
subgroup of G. Some examples, such as the two-dimensional Euclidean group, the Galilei group, 
and the one-dimensional Newton-Hooke group, are given. 

I. INTRODUCTION 

In a recent paper 1 the appropriate mathematical frame
work for the study oflinear locally operating representations 
of transitive transformations Lie groups has been estab
lished, a concept whose relevance had been pointed out by 
Hoogland2 some years ago, based on some previous com
ments of Bargmann and Wigner. 3 The character of rays rath
er than vectors of the mathematical objects describing the 
pure states of a quantum system4.S suggests the convenience 
of studying the projective representations corresponding to 
such locally operating representations of transitive transfor
mation groups. This is the problem we have dealt with in a 
recent paper,6 where we investigated the possibility of find
ing one group G such that any locally operating (multiplier) 
realization of G can be lifted to a linear representation of G. 
It is to be remarked that we physicists are used to handling 
vectors instead of rays and consequently linear operators in 
place of projective ones.4.S This explains the interest of the 
so-called multiplier (or up to a factor) representations in 
physics. They are not homomorphisms because of the pres
ence of a factor system Cd of G. The point is that not every 
factor system of the group G can arise in a locally operating 
realization as was analyzed in Ref. 7, and the knowledge of 
such factor systems is a necessary step for the determination 
of a "minimal" splitting group for local realizations, also 
called a local splitting group.6 We follow the method pro
posed by Schur8 which has been used more recently in Refs. 
9-12 and in Ref. 6 when only locally operating realizations 
are considered. The concept of equivalence deserves a deeper 
analysis and it will be studied in this paper according to the 
method pointed out. 

The organization of this paper is as follows: In Sec. II we 
recall the main definitions about locally operating realiza
tions and the way of dealing with the linear case13 to which 
the general case can be reduced, as Sec. III proves. In Sec. III 
we also analyze the way of lifting locally operating realiza
tions of G to linear ones of a splitting group G; the study of 
the local or gauge equivalence is carried out in Sec. IV. Sec-

olIn part from his Ph. D. thesis, Universidad de Valladolid, 1983. 
blPresent address: CRM, Universite de Montreal, Case Postale 6128 Sue

eursale "A," Montreal, Province of Quebec, H3C 3J7, Canada. 

tion V is devoted to giving an explicit way of building up a 
complete set of representatives of the gauge equivalence 
classes and in Sec. VI we present some particular examples 
for illustrating how the theory we have developed works. 

II. LOCALLY OPERATING REALIZATIONS OF 
TRANSFORMATION GROUPS 

Let G be a connected Lie group acting transitively on a 
differentiable manifold X. The isotopy group r of a fixed 
point Xo is closed and the homogeneous space G I r can be 
endowed 14 with a differentiable structure in such a way that 
the projection 1T:G_G Iris differentiable and there are local 
differentiable sections s:G Ir _G for 'fT, i.e., 'fT 0 s = idGlr . 

When endowed with this differentiable structure, G Iris dif
feomorphic to X and will be identified to it. 

The concepts of projective and multiplier representa
tions of G that we are going to use are those of a previous 
paper12 plus some additional topological requirements:lin
ear and projective representations are continuous but multi
plier representations are only Borel maps. This is so because 
Borel multiplier representations are related to continuous 
projective representations as indicated in Ref. 6. 

Definition 1: A locally operating realization (or locally 
operating multiplier representation) of G is a Borel multi
plier representation of G, U, in which the representation 
space is made up by vector-valued functions,f:X_Cn

, and 
the representation of G is given by 

[U(g)f](gx) =A (g,x)f(x), 

where A is a matrix-valued Borel function, 
A:G XX-GL(n,q, satisfying 

A (g2,glX)A (gl,x) = Cd(g2,g1)A (g2Kl,x)· 

The function Cd:G X G_ T is the factor system of the repre
sentation U,Cd E Z 2(G,T), and A is called a gauge matrix. 

The operators U (g) of the representation are local opera
tors because the support of U (glfis contained in the image by 
g of the support off. As far as equiValence is concerned, such 
a local character must be preserved and this leads to a modi
fication of the usual concept of equivalence, which will be 
called local equivalence or gauge equivalence. We recall that 
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for multiplier representations the relevant concept is that of 
pseudoequivalence. '2 

Definition 2: Two locally operating realizations of G, U 
and U', both operating on the space of vector-valued func
tions, are called gauge pseudoequivalent if there are a Borel 
function A:G-T and a linear operator 7" in the representa
tion space which acts locally [ie., (7"/) (x) = S (x)/(x), withS a 
nonsingular matrix] and such that U'(g) = A (g)7"U (g)7"-', 
'tI g E G. The corresponding gauge matrices will be related by 
A '(g,x) = A (glS (gxlA (g,xlS -'(x). 

The particular case of linear representations, in which 
w = I and A in Definition 2 does not appear, has recently 
been considered ',13 and it was shown that any locally operat
ing linear representation of G is gauge equivalent to the rep
resentation of G induced by the representation 
air) =A (r,xo) of r. On the other hand, the problem of the 
determination of the projective and multiplier representa
tions of a group is solved by looking for a "splitting" 
groupll,'2 G, ie., a group G (which is not uniquely defined) 
such that any projective (or multiplier) representation of G 
can be lifted to a linear representation of G. When only local 
realizations of G are considered, only some factor systems 
can arise and the corresponding splitting and representation 
groups can eventually be chosen to be of lower dimension.6 

The point is that the correspondence between equivalence 
classes of projective representations of G and linear repre
sentations of G is not one-to-one and in the case of locally 
operating representations the difference is more relevant and 
will be studied next. 

III. LIFTING LOCALLY OPERATING REALIZATIONS 
OFG 

Let (G,p) be a local splitting group for G, ie.,p:G-G is 
an epimorphism and G is such that any projective represen
tation of G defined by a locally operating (multiplier) realiza
tion of G can be lifted to a linear representation of G mapping 
Ker p in the circle group T. If the action of G on X is defined 
via the projection p, the isotopy group r = p -'(r) is the 
middle group of an extension of r by Ker p. Weare going to 
prove that the lifting to G of any locally operating realization 
of G is a locally operating linear representation of G and 
therefore when G is a Lie group the theory developed in Ref. 
I can be carried out for finding the locally operating realiza
tions ofG. 

Definition 3: Let d be the kernel of the morphism 
p:G-G. A linear represenation R of G is said to be d -split if 
R (d)C T. These representations define by quotient projec
tive representations of G. 

Proposition 1: For each normalized Borel section 
p:G-G, and for each d -split locally operating linear repre
sentation R of G there is a locally operating (multiplier) real
ization U of G given by U (g) = (R 0 P JIg), 'tI g E G. The corre
sponding factor system of U will be RoW, with W the factor 

-P 
system of the topological extension l-d-G+±G-I, de

p 

fined by the Borel section p. 
Proof: According to the definition of U, we have 

(U(glf)(gx) = [(R 0 p)(glf](gx) 

= (R (P(g)lf)(P(g)x) = A (P(g),xlf(x), 
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and if we denote by A (g,x) the matrix A (p(g),x) we see that 

A (g,,g~lA (g2,xlA -'(g,g2,x) =A ((W(g,,g2),1),x) 

and the identification wIg ,,g2) 1 = A (( W (g ,,g2)' 1 ),x) follows 
because of the relation 

[R (W(g,,g2),1lf]((W(g,,g2),1)x) 

= [R ((W(g,,g2),I)lf](x) 

=A ((W(g,,g2),1),xlf(x) 

and because R is an d -split realization when 
R ((W(g,,g2),I)) E T. 

If we would take different normalized Borel sections of 
G into G the locally operating realizations of G obtained by 
means an d -split locally operating linear representation of 
G would be similar and they would give the same projective 
representation of G. 

The converse of Proposition 1 is the following one. 
Proposition 2: For each locally operating (multiplier) re

alization U and G there is another similar one which can be 
lifted to an d -split locally operating linear representation of 
G. 

Proof: Let R be a linear representation of G lifting U and 
p a Borel section, p:G-G. Then U' = R 0 P is a multiplier 
representation of G similar to U. 

Therefore there exists a function A:G_T such that 
U'(g) =A (g)U(g) and then U' is also a local realization ofG 
with a gauge matrix A '(g,x). Now, if g = ap(g) E G, with 
a Ed, then R being an d -split representation 

[R (glf](gx) = R ((a,l)lA '(g,xlf(x) 

and it is enough to define the gauge matrix function A (g,x) 
= R ((a, l)lA '(g,x), which is a linear gauge matrix function of 
G, i.e., its factor system is trivial. 

The above propositions, whose results were announced 
in a previous paper, '3 give us the main lines for obtaining the 
locally operating realization of G by means of the d -split 
locally operating linear representations of G, which can be 
obtained inducing from some linear representations of r to 
be characterized in the next proposition. 

Proposition 3: The linear representations of r inducing 
d -split representations of G are those representations map
ping dCrin T. 

Proof; Let (j be a representation of I' inducing an d
split locally operating linear representation R of G. The 
gauge matrix will be A (g,x) = U(S-I(gX)gS(x)), with s 
being a normalized Borel section s:G If -G. Then A (a,x) 
= U(S-I(X) as(x)) = i7(a), because G is a central extension 

and dCI'. Consequently [R (alf](x) = i7(alf(x) and thenec
essary and sufficient condition for R to be d -split is 
i7(d)CT. 

Proposition 3 means that the interesting representations 
of r (i.e., those inducing d -split representations of G) are 
precisely the d -split representations of r, according to our 
Definition 3. 

IV. GAUGE EQUIVALENCE 

It is well known that inequivalent linear representations 
of G can give rise to equivalent projective representations of 
G and therefore the relevant concept is that of pseudoequiva
lence of representations of G. If the local character is also to 
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be taken into account we are led to the following definition. 
Definition 4: Two locally operating linear representa

tions of a, R, and R I are said to be gauge pseudoequivalent if 
there is an operator r on the support space of the functions of 
X into en that acts locally and there is a homomorphism 
X:a-T, such that 

R '(g) = X (g)rR (g)r- 1, Vg e a. 
The gauge matrices associated to R and R I are related 

by 

A '(g,x) = X (g)S (gxlA (g,x)S -1(X), 

Vgea, VxeX, 

where S is the nonsingular matrix valued function, 
S:X-+GL(nC) defining the local operator r by 
(rf)(x) = S (xlf(x), Vx eX. 

With this definition and a straightforward generaliza
tion of the results of Ref. 12 we can state the following 
theorem. 

Theorem 1: If (a,p) is a local splitting group for G, for 
each normalized Borel sectionp:G-a, we can define a one
to-one correspondence between the gauge equivalence 
classes of the locally operating (multiplier) realizations of G 
and the gauge pseudoequivalence classes of the d -split lo
cally operating linear representations of a. 

As a consequence of this theorem, if we take different 
(normalized) Borel sections, sand s I, of X into a, with a fixed 
finite-dimensional linear representation (j of l' and a (nor
malized) Borel section p:G-a, we will obtain gauge pseu
doequivalent locally operating (mUltiplier) realizations of G. 

On the other hand, if we take two different normalized 
Borel sections of G into a, p and pi, and with a fixed d -split 
locally operating linear representation R of a, the realiza
tions R 0 P and R 0 pi of G are gauge pseudoequivalent. 

The fundamental property concerning gauge pseudoe
quivalence of representations of a When inducing from re
presentations of l' is given by the following theorem. 

Theorem 2: Two d -split pseudoequivalent finite-di
mensionallinear representations of l' induce gauge pseudoe
quivalent d -split locally operating linear representations of 
a if and only if the homomorphism defining the pseudoequi
valence of the linear representations of F can be extended to 
a homomorphism of a on T. 

Proof: The condition is necessary. In fact, if R and R I are 
gauge pseudoequivalent, there exists X e Hom( a, T) and an 
invertible local operator r such that R '(g) = A. (g) r 
XR (g)r- 1. The gauge matrices of both representations will be 
related byA '(g,x) = X (g)S(gx)A (g,x)S -1(x)withSbeingthe 
matrix function defining the local operator r. If we look at 
the restrictions of the gauge matrices to l' X {xo J we find that 
these linear representations of rinducingR and R I are pseu
doequivalent; the homomorphism of l' on T realizing the 
equivalence is X 11", which can obviously be extended to the 
homomorphism X of a on T. 

Conversely, let (j and (j' be two pseudoequivalent finite
dimensional d -split linear representations of r. There exist 
a matrix Vand a homomorphism A of l' on T such that 

(jl(r) =A (r)Vc7(rW- 1
, Vrer. 

Let X e Hom(a,T) to be such that X 11" = A. If Rand R I are 
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the d -split locally operating linear representations of a in
duced by (j and (j', respectively, we have that 

(R '(glf)(gx) 

= A '(g,xlf(x) = (j1(S-I(gX)gS(X)}f(x) 

= A (S-I(gX)gS(X)) V-ars-1(gx)gs(x)) V -1(x), 

and, since XII' = A, we find 

(R '(glf)(gx) 

= X (S-I(gX)gS(X)) V<1(S-I(gX)gS(X)) V -1(x) 

= X (S-I(gX))X (g)X (S(x)) 

X V-ars- 1(gx)gs(x))V-1(x). 

Now we can define the local operator r by 
(rf)(x) = X (S-I(X)) Vf(x) and this operator and the homomor
phism X give the gauge pseudoequivalence of Rand R I. 

The result of this theorem suggests the following defini
tion. 

Definition 5: Two d -split finite-dimensional linear re
presentations of l' are called superequivalent if they are 
pseudoequivalent and this equivalence can be realized by 
means of a homomorphism ofF on T that can be extended to 
a homomorphism of a on T. 

The superequivalence of the linear representations of l' 
is an equivalence relation that splits each pseudoequivalence 
class of d -split linear representations of Finto subclasses of 
superequivalent representations. 

A complete set of superequivalence classes of .!if -split 
finite-dimensional linear representations of l' with represen
tatives (j' = X(j is obtained when X runs through all the 
equivalence classes of one-dimensional representations of l' 
modulo the representations that can be extended to one-di
mensional representations of a, and (j runs all the pseudoe
quivalence classes of finite-dimensional d -split linear repre
sentations of r. 

V. THE EXPLICIT CONSTRUCTION OF THE GAUGE 
EQUIVALENCE CLASSES 

The method for the construction of a complete set of 
gauge pseudoequivalence classes of locally operating repre
sentations of a is based on the earlier properties and it is 
summarized as follows. 

Theorem 3: We obtain a complete set of gauge pseudoe
quivalence classes of .!if -split locally operating linear repre
sentations of a induced by finite-dimensional .!if -split linear 
representations of F with representatives with gauge matri
ces given by 

A (g,x) = U(S-I(gX)gS(X)), 

when (j is a representative running through the superequiva
lence classes of .!if -split representations of 1', and s is a nor
malized Borel section of a /1' on a. 

As we also know the method for building up the repre
sentatives of all the superequivalence classes of the represen
tations of r, it is straightforward to prove that their gauge 
matrices have the form 

A (g,x) = X (11gS(X)))U(S-I(gX)gS(X)), 

where X runs through the set of equivalence classes of one-
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dimensional representations of F modulo those that can be 
extended to G and iT the pseudoequivalence classes of .!If
split representations of F. 

In relation to the gauge pseudoequivalence classes of 
locally operating (multiplier) realizations of G, if we fix a 
normalized Borel sectionp:G_G, we obtain a representative 
U of each gauge pseudoequivalence class by U = R 0 p, 
when R runs the set of gauge pseudoequivalence classes of 
.!If -split locally operating linear representations of G. 

The gauge matrices of the (multiplier) realizations of G 
will be 

A (g,x) = A ~(g),x) 
= 1 (~(g)S(x)))U(S-I(gxlo(g)S(x)) 

and the associated factor system is 

a>(g1,g2)1 =1 ((Wp (gI,g2)' 1))u((Wp (gI,g2)' 1)). 

(1) 

It is worthwhile to note that for any We H 2(G,.!If) and 
any arbitrary Borel section s:X = G / r -G we can find6 a lift 
WeZ~(G,.!If) such that WI.s(x)xr = 1. Actually, if W' is a 
liftofWandp.:G-Tisdefinedbyp.(g) = W'(s(gxo),rfg))with 
g = s(gxo)rfg), one easily checks that W = W'6p. satisfies 
WI.s(x)xr = 1 and Wlrxr = W'lrxr· 

Let us choose s(x) = (1,s(x)), with s a normalized Borel 
section of G / ron G; ifwe make use of the earlier properties, 
then the gauge matrices appearing in formula (1) take the 
form 

A (g,x) = 1 ((W(g,s(x)),I))U((W(g,s(x)),I)) 

xl ((1,rfgs(x))))U((I,rfgs(x)))), 

where 

a>(g,s(x)) =1 ((W(g,s(x)),I))O((W(g,s(x)),I)) 

(2) 

is the factor system of G associated to the corresponding 
local (multiplier) realization. 

The gauge matrices given by (2) are Xo centered accord
ing to Hoogland's definition2 [i.e., A (g,xo) = A (rfg),xo)]. 

The following theorem summarizes all our results. 
Theorem 4: Let Gbe a splitting group for G (p:G-G), W 

the factor system associated to the normalized Borel section 
p:G-G, s a normalized Borel section s:G / r -G, and iT a 
representative of a class of superequivalence of finite-dimen
sional .!If -split linear representations of F. Then we obtain a 
complete set of the gauge pseudoequivalence classes oflocal
ly operating (multiplier) realizations of G, with representa
tives whose associated gauge matrices are Xo centered, by 
means of 

A (g,x) = U((I,s(gx))-lp(g)(I,s(x))) 

= u( ( W (g,s(x)), 1 ))u( (1, r(gs(x)))), 

when iT runs through all the superequivalence classes of fin
ite-dimensional .!If -split linear representations of F. The fac
tor system of the induced (locally operating) multiplier real
izations of G is iT 0 W. 

An alternative form for Theorem 4 according to Defini
tion 5 is the following. 

Theorem 4a: Under the hypotheses of Theorem 4, a 
complete set of gauge pseudoequivalence classes of locally 
operating (multiplier) realizations of G is obtained with re-
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presentatives whose associated gauge matrices have the fol
lowing expression: 

~ 

A (g,x) =1 ((W(g,s(x)),I))U((W(g,s(x)),I)) 

xl (( l,rfgs(x))))U(( l,rfgs(x)))), (3) 

when 1 and iT are representatives of every equivalence class 
of one-dimensional representations of F on T modulo those 
that can be extended to G and of pseudoequivalence classes 
of finite-dimensional .!If -split linear representations of F, re
spectively. 

We also note that the locally operating representations 
and realizations are not irreducible, in general, even if the 
linear representations of the corresponding isotopy group 
inducing them were irreducible. We also remark that in cer
tain cases (Mackey'S theorylS or Kirillov's theoryl6) we can 
obtain by induction irreducible canonical (not local) repre
sentations or realizations of Lie groups and this can be useful 
in the problem of finding irreducible subspaces under the 
local realizations. One way to solve this problem17 is to com
pare the local realizations with the irreducible canonical re
alizations and in this way one can obtain the conditions that 
the functions of the locally operating realization must satisfy 
in order to belong to an irreducible subspace. 

Finally, we want to remark that when the groups G and 
r are connected and simply connected Lie groups, the ear
lier results are simplified and our results coincide with those 
of Hoogland. 2 In this case the factor systems of r are to be 
equivalent to the trivial factor system and only the factor 
systems of G whose restrictions to r are equivalent to the 
trivial one could be associated to a (multiplier) locally oper
ating realizations of G (see Ref. 7) We have that 
H2(G,T) = Rm ,withm eNandHfoc(G,T) = Rn ,n eN,and 
n <m. A local splitting group G is a central extension of G by 
an [the dual of Hfoc(G,T) = Rn is Rn (see Ref. 6)] and 
r = Rn ® r. It follows from the structure of the direct pro
duct of F that its linear representations are tensorial pro
ducts of one of an and another of r. Consequently, the 
classes of one-dimensional representations ofF on Tmodulo 
extendible to G become the classes of one-dimensional repre
sentations of ron T modulo those extensible to G. Thus, the 
classes of pseudoequivalence of finite-dimensional linear re
presentations of F agree with the equivalence classes of lin
ear representations of r. Therefore, if we take the formula 
(3), we have 

A (g,x) = S(W(g,s(x)))A (r(g,s(x)))o1r(g,s(x))), 

where S is a representative of every class of one-dimensional 
representations ofRn

, A is that of every class of one-dimen
sional representations of r modulo those extendable to G 
and u that of every equivalence class of finite-dimensional 
linear representations of r. 

We note that S (W(g,s(x))) is a factor system of G whose 
restriction to r x ris trivial, and if we choose We Z 2(G,an 

) 

such that WI.s(x)xr = 1 then thefactorsystemis(G Xr)tri
vial,2 i.e., S IG xr = 1. 

VI. EXAMPLES 
A. The Euclidean group E(2) 

The locally operating multiplier realizations of this 
group have been studied by Hoogland 18 in order to prove the 
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relevance of the locally operating realizations and the gauge 
equivalence, but the method used by him is different from 
ours. The natural action of E (2) on R2 given by 

(XI) (Xi) (XI cos t/J -X2 sin t/J + al) 
(a,t/J ):\x2 - x~ = XI sin t/J + X2 cos t/J + a2 

is transitive, with a = t~) E R2 and t/J E [0,217"). The compo

sition law of this group is (a',t/J') (a,t/J) = (a' + a4>' ,t/J' + t/J), 
where 

4> (al cos t/J - a2 sin t/J) 
a = a l sin t/J + a2 cos t/J . 

The isotopy group is SO(2) and its second cohomology 
group is trivial. On the other side, H 2(E(2).T)::::=R. The 
classes of extensions of E (2) are denoted by [8], with /3 E R, 
and their Lie algebras are given by the following nonvanish
ing commutation relations4

: 

[J,PI] = P2, [J,P2] = - PI' [PI,PJ = - {3I, 

a cocycle lifting [8] being 

wp((a',t/J '),(a,t/J)) = exp{ - ilj3(a' I\a~'hl. 

The second cohomology group of SO(2) being trivial, then 
Hroc(E(2),T) =H2(E(2),T)(seeRef.6).Ifweconsidertheho
momorphic section s:H2(E(2),T)-+Z2(E(2),T) given by 
s([8]) ((a',t/J'), (a,t/J)) = exp{ - ilj3(a' I\at/J'hl, the identity 
isomorphism onH 2 (E (2),T I and the usual topology on R, the 
maps Wid,s ((a',t/J'),(a,t/J)):H 2(E(2),TI-T, defined as 

Wid,s((a',t/J'),(a,t/J))[{3] = exp{ - ilj3(a' l\a4>'hl, 
----- --are continuous and Wid,s E Z2 (E(2), H 2(E(2). T)) defines a 

central extension of E(2) by gZ(E(2),T), which is a local) 
representation group for E (2). The elements of (E (2),T , 
denoted bl, a, are defined by a([8]) = ela/J. This group 
!P(E (2,T)) is a Lie group and the local representation group 
is a Lie group, denoted E (2), with the following composition 
law: 

(a',a',t/J')(a,a,t/J) 

= (a' + a -:- !(a' l\a4>'h,a' + a4>',t/J' + t/J). 

(For more details, see Ref. 6.) 

The canonical epimorphismp:E (2)-+E (2) is defined by 

p(a,a,t/J) = (O,a,t/J) and p-I(SO(2)) = SO (2); this group is 
isomorphic to the direct product group R ® SO(2). Ifwe con
sider the action of E (2) on R2 via the epimorphism p, the 

isotopy subgroup ofR2 is SO (2). 

1. The locally operating realization of £(2) 

The one-dimensional unitary representations of SO(2), 
to be denoted U p,n with {3 E R and nEZ, are given by 

ifJa inif> up,n(a,O,t/J) = e e . 

The one-dimensional representations of E (2) are those of 
E (2)1E '(2)::::=SO(2), where E '(2) is the derived subgroup of 
E (2). They are characterized by an integer number n and will 
be denoted by An: 

An (a,a,t/J ) = einif>, n E Z. 

Therefore, the one-dimensional representations of SO(2) 
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that can be extended to E (2) are UO,n, i.e., up,n with {3 = O. 

Then, the classes of one-dimensional representations of SO 
(2) modulo those admitting an extension to E(2), are only 
characterized by {3 E R. We can take as a representative of 
each class the representation U P.O' 

As the irreducible representations of SO(2) are all the 
up,n we see that all of them are pseudoequivalent and deter
mine just one class of pseudoequivalence; we can consider as 
a representative the representation uo,o = 1(,8 = n = 0). 

Ifwe take the section so:E (2)1 SO(2) - E (2) associated 
to the section so:E (2)/SO(2)-+E (2), we get 

So(x) = (O,so(x)) = (O,x,O), 

and when we compute the term so- 1(gx)gSO(X), with 
g = (a,a,t/J ), we obtain that it is equal to (a - !(a 1\ xif> h,O,t/J ). 
The gauge pseudoequivalence classes of locally operating 
linear representations of E (2) induced by uo,o are character
ized by a real number {3, and a representative is given by 

(Rp(g)f)(gx) = exp{i{3 [a - !(a 1\ xif>h] }fIx), 

with g = (a,a,t/J ). 
The corresponding expression for a representative of 

each gauge pseudoequivalence class of (multiplier) realiza
tions of E(2) is 

[Up(glf](gx) = exp{ - ilj3(al\xif>h}f(x), 

where g = pig) = (a,t/J ). 
The infinitesimal generators of Rp and Up will 

be given by PI = - i Bx + ljJy; P2 = - i By -ljJx; 
J= -i(xBy -yBx))= -{3. 

2. The iffeducible realizations of £(2) 

As a first step we are going to obtain the irreducible 
linear representations of E (2). This group is a semidirect pro
duct E(2) = Yl':)SO(2), with!T2 = (R0YI)~, where 
yl and Y2 denote the translation one-parameter subgroups 
of translations along spatial directions. The representations 
of Y2 are obtained by making use of Mackey's theorylS of 
the induced representations for semidirect product groups. 
Nevertheless, as the!T2 is a nilpotent group we will follow 
Kirillov's theory 16 for these groups. We recall that the group 
!T2 is isomorphic to the oscillator group, which has been 
studied by Streater. 19 

First of all, we analyze the orbits under !T 2 in the coad
joint representation. These are of two types: 

A: The orbit is a point (O,pi ,p~); 
B: The orbit of the point (,8,0,0) with{3 =rf0 is the full set 

{(,8,pi ,pm· _ 
The isotopy group of the orbits of type A is Y 2 and that 

of type B is the subgroup generated by I. We will study the 
orbits of type B because we are; interested in the realizations 
with nontrivial factor systems. If we choose the point (,8,0,0), 
the maximal subalgebra of!T2 whose derived subalgebra is 
annihilated by {3 will be two-dimensional and it can be gener
ated either by { Pit/} or {P2,! }. We choose the subgroup K 
generated by {P2,! 1, but the choice of {PI'!} would give 
equivalent representations. The character of the subgroup K 
is 
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The more interesting representations of Y 2 are those 
induced by XP with support space the functions fIx) in 
,2"'2(R). The left cosets are { (a',a; ,a2) 
X (a,0,a2) = (a' + a,a; ,a2 + a2), 't/ a,a21 and we choose as 
a representative the element (0,x,0)==x and the section 
s:Y 21K~Y2 defined by S(x) = (0,x,0); then, every element 
g = (a,a l,a2) of Y 2 is decomposed, in a unique way, as 
g = (a,a l,a2) = (0,a l ,0)(a,0,a2) = S(al)rw). A straightfor
ward calculation leads to 

S-I(gX)gS(X) = (a + a;zX,0,a2)' 

Then, the irreducible representations of Y 2 characterized 
by /3 E R* are given by 

(Dp(a,al,a2)f)((a,al,a2)x) 

= Xp(a + a;zX,0,a2)f(x) = eifJ(a + a,x!f(x). 

~ The Hermitian generatojS of the representation are then 
PI = - idldx,P2 = -/3x,I= -/3. 

The action of the subgroup SO(2) on the space of the 
representation classes of Y 2 is given by 

t/J:Dp(a,al,a2~D $ (a,a l,a2) = Dp(t/J -I(a,a Joa2)t/J), 

where Dp is a representative of each class, and 

t/J -I(a,a l,a2)t/J = (0,0,0, - t/J )(a,a l,a2,0)(0,0,0,t/J) 

= (a' - H at -! a~ )cos t/J sin t/J 

- ala2 sin2 t/J,a l cos t/J + a2 sin t/J, 

- al sin t/J + a2 cos t/J ). 

There is an operator W(t/J) that realizes the equivalence 
between Dp and D $, i.e., D i ~(a,al,a2) = W(t/J) 
XDp(a,a Joa2)W- I(t/J), and bothDp andD$ are in the same 
orbit. The little group of each orbit is SO(2), the isotopy 
group G p of the class of the representation Dp of Y 2 is E (2), 
and the induction from Gp to E (2) is unnecessary. The irre
ducible linear representations of E (2) are 

&t P,n(a,a l,a2,t/J) = ein~Dp(a,al,a2)W(t/J). 
The operator W(t/J), unique up to a factor, is 

·2 "2 
W(t/J) = e(il2PlIP, + P2 + C)~, 

with C an arbitrary constant. Nevertheless as the representa
tionDpisirreducible, W(t/J ')W(t/J land W(t/J' + t/J ) must differ 
in a complex number, and W(t/J ) defines a multiplier realiza
tion of SO(2). All these realizations are equivalent to linear 
ones and we can make a choice W'(t/J )ofW(t/J ),suchthat W'is 
a linear representation ofSO(2); this condition limit\ the p~s
sible values of the parameter C. The expression P t + P ~ 
= - d 21 dx2 + /3 2X2 is proportional to the Hamiltonian of a 

2armopic oscillator with angular frequency lIJo = /3li1m, 
pt + P~ = (2mlfr)Ho and therefore exp{ (il2f3) 

• 110 

X(Pt + P~)21T1 = -1 and consequently CI/3 = 2m + 1, 
with m E Z. The irreducible linear representations of E (2) we 
obtain are 

&t p,n,m (a,a l ,a2,t/J ) 
. +2 ~2 

= ein~Dp(a,al,a2)e(il2P)(P, +P2)~e(i/2)(2m + I)~. 

As this depends only on n + m we can write &t p,n (with a 
slight change in notation) for the representation &t p.n,m as 
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. ·2 +2 
&t p,n(a,a l,a2,t/J) = Dp(a,al,a2)eW2P )(P , + P2)~ e(i/2)(2n + I)~. 

The operator J that generates rotations is 

J = - (l/2f3)(Pt + P~) - !(2n + 1). 

It is to be remarked that Crf = P t + P ~ - 2I J is a Casimir 
operator, whose values in an irreducible representation &t P." 

are Crf = (2n + 1)/3. All the irreducible representations of 
E (2) are obtained by this method20 and will be characterized 
by the value of the Casimir operators I and Crf. 

The linear representations &t p,n and &t p.n' are equiva
lent, and the pseudoequivalence classes are then parame
tri~ed by /3 E R*. The multiplier canonical realization 0Jt p,n 
of E (2) associated to &t p,n is given by 

0Jt p,n (a l,a2,t/J ) = &t p,n (O,a l ,a2t/J ) 

Xe(i/2)(2n + I)~ 

and it is pseudoequivalent to 0Jt p.n' for any n' E Z. 

3. Relation between the locally operating and canonical 
realizations 

We note that the parametrization of E (2) in the case of 
locally operating realizations is different from that of ca
nonical realizations. But this is not a problem because this 
discrepancy is due to a different choice for the section 
p:E (2)~E (2) and a change ofthis section implies the pseu
doequivalence of the corresponding realizations. 

The locally operating realizations of E (2) obtained are 
not irreducible and we must select irreducible support sub
spaces in the realizations Up. We will see what irreducible 
canonical realizations 0Jt p',n are contained in a locally oper
ating realization Up, As the irreducible canonical represen
tations are labeled by the values of the Casimir operators Crf 
and I, in the locally operating realization Up only can appear 
the canonical realizations 0Jt p,n and every 0Jt p,.. will appear 
in the subspace of L 2(R) defined by the solutions of the differ
ential equation 

(~f)(x,y) =/3(2n + 1)f(x,y), 

where ~ is obtained when P I ,P2,l, and J are substituted in 
the expression of 1ff by PI ,P2'/, and J, respectively. After a 
straightforward calculation we find the equation 

{( - i ax -lj3yf + ( - i ay + lj3X)2 V(x,y) = /3 (2n + 1 )f(x,y). 
(4) 

ThefunctionsF(t ) supporting irreducible canonical real
izations 0Jt P." which can be written as a "linear combina
tion" offunctionsf(x,y) belonging to a subspace irreducible 
under the locally operating realization Up, are defined by 
F (t ) = f f dx dy K (x,y;t )f(x,y). 

Hoogland 18 has given the integration kernel for the "lin
ear combination" in the opposite direction. He also proved 
that the irreducible locally operating subrepresentations 
UP," for different n's were gauge inequivalent because there 
is not any local operator realizing the equivalence of the sub
spaces of the functionsf(x,y) solutions ofEq. (4) for different 
values ofn. 

Remarks: The physical interest of the two-dimensional 
Euclidean group comes because this group is a subgroup of 
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the symmetry group of a charged particle in a uniform elec
tromagnetic field both in the relativistic and the nonrelativis
tic case. If we do not consider the discrete symmetries (inver
sions), the symmetry group of the electromagnetic field B is a 
direct product of the two-dimensional Euclidean group in a 
plane orthogonal to B and the (1 + 1) Galilei (or Poincare) 
group in a line parallel to B (see Ref. 21). 

If we only consider the two-dimensional Euclidean 
group and redefining ,B = qlBI, ~ = 2mE, with q the 
charge, and m the mass of the particle, we obtain the relation 

E = p2/2m + (qlm)IBIJ, 

with p2 = P ~ + p ~. Since ~ = (2n + 1)/3, we find the quan
tization condition 

E = (n + !)(qlm)lBI. 

The particle energy can only take some discrete values. 
This spectrum coincides with the Landau's levels (see, e.g., 
Ref. 22, p. 496). These Landau levels belong to different 
physical states; their corresponding representations are 
pseudoequivalent in the usual way, but not gauge pseudoe
quivalent. We remark that the change n by - n is related 
with a charge conjugation, q going to - q. For more details 
see Hoogland's papers. 1S.21 Hoogland gets the same results 
as we do. However, in our method the discrete values of ~ 
(or E ) appear in a natural way when studying the canonical 
realizations of E (2) by means of the linear representations of 
the local splitting group E (2), while Hoogland obtains the 
discrete spectrum as a product of the search for the transfor
mation connecting the irreducible canonical realizations 
with the irreducible locally operating ones. 

B. The Galilel group 

As a further example we will study the Galilei group G. 
It is the group of transformations of the four-dimensional 
Newtonian space-time 

(b,a,v,R )(:)_(RX :+~ + a). 
withg = (b,a,v,R ) denoting a generic element ofG. The com
position law of this group is 

g'g = (b ',a',v',R ')(b,a,v,R ) 

= (b' +b,a' +R 'a+ v'b,v' +R 'v,R'R). 

The action of G on the space-time manifold (R4) is transitive; 
if we choose the point x = (0,0) ofR4 the isotopy group of this 
point is r = Y0S0(3), where Y is the subgroup generated 
by the boosts and SO(3) is the group of rotations of the three
dimensional space. The subgroup r is called the homogen
eous Galilei group.23 The homogeneous space G Iris identi
fied with the space-time manifold. We choose the 
normalized Borel section so:G I r -G, defined by 
so(t,x) = (t,x,O,I). Every element of G is factorized in a 
unique way as g = (b,a,v,R ) = (b,a,O,I) (O,O,v,R ) = so(gxo) 
Xy(g). 

The second cohomology group of G is 
H2(G,T) = R®Z2. The cohomology classes are labeled by 
[M,/], with MER and IE Z2. A lifting of the class [M,/] is 
given by24-26 
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(i)M,/((b ',a',v',R '), (b,a,v,R )) 

= (i)~SO(3)I(R ',R )exp{iMHbv,2 + v'·R 'a)}, 

where (i)~SO(311 is a factor system of SOt 3) lifting the class [I] of 
H 2(SO(3),T), defined by 

(i)I{SO{3)(R',R) = 1, 

(i)_I{SO(311(R ',R) = u(R ')u(R )u- 1(R'R), 

with u any normalized Borel section, u:SO(3)-SU(2). 
The second cohomology group of r is H2(r,T) = Z2. 

FurthermoreH~oc(G,T) = H 2(G,T)andthelocalrepresenta
tion group for G will coincide with the representation group. 

Next, we are going to build up the representation group 
forG (see Ref. 6). Themappings:H 2(G, T)-Z 2(G,T), defined 
by 

s([M,1 ])((b ',a',v',R '),(b,a,v,R)) 

= (i)/{SO{3 11(R ',R )exp{iM(!bv,2 + v'·R 'a)}, 

is a homomorphism. When considering the identity as the 
automorphis~f H2(G,T) the mapping 
Wid,s E Z 2(G,H 2(G,T)), given by 

Wid,s((b ',a',v',R '),(b,a,v,R ))[M,/] 

= (i)/{SO(3))(R ',R )exp{iM(!bv,2 + v'·R 'a)}, 

defines a central extension of G by 1f!{G:t), such that its 
middle group G is a (local) representation group for G. The 
group G is also an II-dimensional Lie group, whose compo
sition law is 

g'g = (0',a',b ',a',v',R ')(0,a,b,a,v,R) 

= (0' + 0 + !bV,2 + v'·R 'a,a'aWs0(3)(R',R), 

b' +b,a' +R 'a + v'b,v' +R 'v,R 'R), 

where WSO(3)(R ',R) is the nontrivial lifting of H2(SO(3), 
H2(SO(3),T)) given by 

WS0(3)(R ' R ) = ' 1 (i) -1 ,- , 
{ 

l ·f (SO(3))(R ' R ) - 1 

, -1, if (i)_I{SO(3))(R ',R) = -1. 

The subgroup {(O,a,O,O,O,R)} is topologically isomor
phic to SU(2), the universal covering of SO(3); denoting by 
R • theelementsofSU(2) andR ·a,R ·v, ... the transformed of 
a,v, ... by R • via the epimorphism SU(2)-SO(3), the new 
composition law for G is 
g'g=(8',b ',a',v',R '·)(8,b,a,v,R·) 

= (8' + 8 + !bV'2 + v'·R '·a,b' + b,a' + R '·a + v't, 

v' + R '·v',R '.). 
The canonical epimorphism p:G-G is defined by 

p((8,b,a,v,R·)) = (b,a,v,R) and thereforep-l(r) 
= F= R®(Y0SU(2)). The section ofG IF on Gassociated 

to so:G I r _G is 80(X) = (O,s~(x)), where s~ is a reminder that 
we are making reference to SU(2) instead ofSO(3). By means 
of straightforward calculation we obtain 

80- l(gX)gSO(x) = (8 + !v2t + vR ·x,O,O,v,R .). 

Now, we will discuss locally operating realizations of G. 
The one-dimensional representations of rare 
A.I-' (8,0,0, v,R .) = ei@l-', with Jl E H, and those of G are 
AE (8,b,a,v,R .) = eibE

, withE E R. Consequentlytherepre
sentations of r that can be extended to G are those labeled by 
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p, = 0, thatis,Ao(@,O,O,v,R *) = 1. The equivalence classes of 
one-dimensional representations of r modulo those that can 
be extended to G are labeled by p, E R. A representative of 
every class will be Ap ' with p, running through the set of the 
real numbers. 

On the other hand, the classes of pseudoequivalence of 
(finite-dimensional) linear representations of r are only 
characterized by the labels of the classes of equivalence of 
(finite-dimensional) linear representations of r because the 
direct product structure r = R ® r of r. 

A particularly interesting representation from the phys
ical viewpoint arises from a four-dimensional faithful repre
sentation of r, which we denote!!P 1/2' given explicitly by 

( 
D1/2(R *) 0) 

!!P 1/2(V,R *) = !a-vDI/2(R *) D1/2(R *) , 

where D 1/2(R *) is the usual spin one-half representation of 
SU(2). The representations of r obtained by direct product 
of anyone-dimensional representation of lR and !!P 1/2 of r 
are pseudoequivalent; and a representative in this class, to be 
denoted 0"0.1/2' is given by 0"0.1/2 = 1 ®!!P 1/2' 

For one-dimensional representations of r, as we have 
seen before, there is one pseudoequivalence class, and we can 
take as representativeAo(@,O,O,v,R) = 1. 

The gauge pseudoequivalence classes of representations 
of G induced by the (classes of) representations Ao and 0"0,1/2 
will be denoted by (p,) and (p,,!), respectively, with p, E lit. 
Representatives of each of them are 

(Rp (g}f)(gx) = exp [ ip,(@ + !v2t + v·R *x) ]f(x), 

(Rp, 1/2 (gV)(gx) 

= exp[ip,(@+ !v2t + v·R *x)]!!P 1/2(V,R *V(x), 

respectively, withg = (@,b,a,v,R *) E G. Such (classes of) re
presentations are d -split. The gauge pseudoequivalence 
classes of the locally operating multiplier realizations of G 
obtained from the gauge pseudoequivalence classes of the 
locally operating linear representations of G will be denoted 
f.u] and f.u,!], respectively. Representatives of them take the 
following explicit expressions: 

(Up (gV)(gx) = exp{ ip,(!v2t + v·Rx) V(x), (5) 

(Up,1/2 (gV)(gx) = exp{ ip,(!v2t + v·Rx) 1!!P 1/2(V,R V(x). 
(6) 

The canonical realizations of the Galilei group have 
been studied earlier.23,26,27 The irreducible canonical realiza
tions of G with a physical interest are characterized by 
[m,U,s], with m, U E lIt and s an integer or a half-odd num
ber. 

The explicit form of these realizations is 

(~m,U,s(g)F)(p) = exp{i[(p2/2m + U)b - p·a] I 
XDs(R )F(R -I(p - mv)), (7) 

with Ds(R ) an irreducible realization of SO(3). The param
eters m i= ° and s can be interpreted as the mass and the spin, 
respectively, of the elementary particle described by this re
alization, and U can be associated with the internal energy.23 
The case m = ° has no meaningful physical interpreta
tion.28,29 

2103 J. Math. Phys., Vol. 26, No.9, September 1985 

The locally operating realization can be related with the 
canonical ones by means of a Fourier transform. We will 
denote/(k), where k = (E,p), the Fourier transform off(x), 

I(k) = f(E,p) = (2~)21. d 3X dt ei(Et - pox) f(t,x). 

These functions/(k ) are transformed under the action of Gas 

(~(glf)(k) = e'lEb -poa)!!p(v,R If(k '), (8) 

where k' = (E' ,p'), with E' = E + ~V2 - p·v and 
p' = R - I(p - p,v). It is easy to see that if p, i= ° then 
2p,E - p2 = 2p,E' - p'2 = P is a constant. As !!P(v;R) 
= !!P (v; 1)!!P )(O;R), we can define the function I(k) by 

I(E,p) =!!P( - p/p"I)/(E,p)forevery/(k )(seeRef. 26), and 
the action of G over these new functions becomes 

(~(glf)(E,p) = ei(Eb-poa)!!P(O,R If(E',p') 

and !!P 1/2ISO(3)-:::dJ1/2 $ D 1/2. 
A comparison between (7) and (8) allows identification 

of p, with m, the mass of the system, and p = 2mE - p2 with 
the internal energy. Since realizations with different U's are 
pseudoequivalent we can take U = 0. 

The relation 2mE - p2 = P gives us a necessary condi
tion for irreducibility of the locally operating realization, 
namely the functionf(E,p) vanishes when 2mE - p2 is not a 
constant value U. When taking U = ° we obtain 

(2mE - p2lf(E,p) = ° 
and for the locally operating realizations this condition be
comes a Schrodinger equation 

i aJ(t,x) = - (V2/2mV(t,x). (9) 

When we consider the realization given by (5) the stan
dard SchrOdinger equation appears and the realization is un
itary with the usual inner product. Moreover, in the case 
corresponding to !!P 1/2(V,R ), expression (6), it leads to the 
Levy-Leblond equation for particles with mass m and spin 
one-half (see Refs. 26 and 30). These functionsf(t,x) verifying 
Eq. (9) support an irreducible locally operating realization, 
and the equation may be rewritten as 

i atu(t,x) + i(a-V)w(t,x) = 0, 

i(a-V)u(t,x) + 2mw(t,x) = 0, 

with 

f(t,x) = (U(t,X)), 
w(t,x) 

where u and ware spinors. This representation is unitary 
with respect to the inner product 

if'l> = ( d 3x u'+(t,x)u(t,x). 
JR> 

More details about the Levy-Leblond equation and the 
corresponding locally operating realization can be found in 
Refs. 26 and 30. 

Notice that in this case of the Galilei group the fact that 
the gauge pseudoequivalence coincides with the standard 
pseudoequivalence is related to the semidirect product struc
ture of the Galilei group as G = R40(r0S0(3)). 

Another interesting point to be mentioned is that even if 
the linear representations of r are not unitary, the induced 
realizations of G are unitary. 
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C. The Newton-Hooke group 

Besides the Galilei and Poincare groups, there are other 
interesting kinematical groups as the Newton-Hooke 
groups. We consider, by simplicity, the one-dimensional 
(I + 1) case associated to an oscillating universe. 

The oscillating Newton-Hooke (1 + 1) group is a three
dimensional connected Lie group, whose Lie algebra is char
acterized by the non vanishing commutators 

[P,H] = - (lIr)K, [K,H] = P. 

The composition law is 

h'h = (b ',a',v',)(b,a,v) 

= (b' + b,a'cos(b h) + V'7' sin(b h) + a, 

v' cos(b h) - (ah) sin(b h) + v). 

Note that the set {(b,a,O)} of the space-time translation does 
not close a subgroup. 

The action of this group on the space-time manifold 
(~R2) is transitive and is defined by 

(b,a,v)/ t)_..J t + b ). 
\x \x + V7' sin(t h) + a cos(t h) 

The isotopy group of the point Xo = (0,0) is r = {(O,O,v)} , 
the subgroup of the boosts. The quotient space H Ir is dif
feomorphic to X(~R2). We choose the normalized Borel 
crosssectionso:H Ir -+H definedbyso(t,x) = (t,x,O),andev
ery element h E H is decomposed in a unique way as a pro
duct 

h = (b,a,v) = (b,a,O)(O,O,v) = so(hxo)r(h ). 

1. The local representation group for H 

The second cohomology group of H is H 2(H, T) = R. 
The cohomology classes are labeled by [m], with mER 
([P,K] = - mIl. A lifting of the class [m] is given by31 

(l)m(h ',h) = exp{im[ ~ (V'2 - ~ 0'2)7' cos ! sin! 

( 
, b a'. b) " . 2 b ]} + a v cos -; - -; sm-; - v a sm -; . 

Since the isotopy subgroup is r ~R, then 
H2(r,T) = (1), and hence H~oc(H,T) = H2(H,T) = K. 
Thus, the local representation group for H coincides with the 
representation group. By a straightforward calculation we 
obtain that the local representation group iI for H is a cen
tral extension of H by H 2'f'ii.TT with composition law 

h'h = (a',b ',a',v')(a,b,a,v) 

( 
, 1 ( ,2 1 '2) t. t = a + a + - v - - a 7' cos - sm-

2 2 7' 7' 

( 
, b a'. b) ". 2 b + a v cos- - - sm- - va sm-, 

7' 7' 7' 7' 

b' + b, a' cos~ + v'7'sin~ + a, 
7' 7' 

, b a'. b ) v cos---sm-+v . 
7' 7' 7' 

The group iI can be decomposed as a semidirect product 
iI = (Y0r)0~ with Y = Y ® R, or iI = (Y 
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0Y)0~, with Y = R® r, whereYistheone-parameter 
subgroup of the spatial translations and ~ is the one-param
eter subgroup of the time translations. 

The canonical projection is p:-+iI,p(a,b,a,v) = (b,a,v), 
and thenp-l(r) = {(a,O,O,v)} = Y. Notethatthe action of 
iI on X is transitive and the isotopy group is, evidently, Y, 
then iI IY is diffeomorphic to X. A normalized Borel cross 
section so:iI IY -+iI is so(t,x) = (O,t,x,O) and then 
h = (a,b,a,v) = (O,b,a,O)(a,O,O,v) = so(hxo)Y(h), Vh E iI, 
where Xo = (0,0) and y:-+iI-+Y is a Borel map. 

By a straightforward calculation we obtain 

so- l(hx)hso(x) = (a + W(h,so(x)),O,O,v cos!. -!!..- Sin!'), 
7' 7' 7' 

where so(x) = (t,x,O) and 

W(h,so(x)) = W((b,a,v),(t,x,O)) 

1(212) t.t =2 v - r a 7'cos;sm; 

+ ( t a. t) . 2t x v cos- - - sm- - va sm -. 
7' 7' 7' 7' 

2. Locally operating realization of H 

(10) 

(11) 

The irreducible linear representations of 
Y = R ® r( r ~R) are one dimensional, and they can be 
expressed by 

0' TJ,/3 :(a,O,O,v)---+ei(TJa -/Jv), with 'T],p E R. 

The linear representations of Y labeled by different pairs of 
real numbers ('T],p) are not equivalent but they are pseudoe
quivalent and there is a unique class of pseudo equivalence of 
irreducible linear representations of Y. As a representative 
of this class we take 0'0,0' i.e., the trivial representation 
0'0,0 (a,O,O,v) = 1. The one-dimensional representations of iI 
are A.I' [(a,a,b,v)] = ei!J,b, with f.L E lR. Thus, the equivalence 
classes of the one-dimensional representations of Y modulo 
"to be extendable to iI" are labeled by the pair of real 
numbers ['T],p]. As a representative of a generic class ['T],p] we 
can take 

ATJ,p[(a,O,O,v)] = exp{i('T]a -pv)}. 

For that, in every class [8,'T]] of gauge pseudoequivalence of 
locally operating linear representations of iI, we can take the 
representative 

(RTJ,/3(h }f)(hx) 

= ATJ,/3(W(h,so(X)) + a,O,O,v cos!. -!!..- sin!.)r(X), 
7' 7' 7' 

with A'I,/3 a representative of every class of one-dimensional 
representations of Y modulo "to be extendable to iI." 

Finally, the explicit form of a representative of the gauge 
pseudoequivalence class ['T],p] of locally operating (multi
plier) realizations of His 

(U'l,/3(h }f)(hx) = expf;[ 'T]W(h,so(x)) 

-p(vco~- ~ sin;)]}f(x). (12) 

The Hermitian operators p,k,iI J corresponding to the 
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realization associated to R'1JJ and U'1JJ are given by 

A • t a ( 1] . t {3. t) P= -I cos- x + -XSlD---SlD- , 
'i 'i 'i 'i 'i 

KA • • t a ( t {3 t) = l'i SlD- x + 1]x cos- - cos-, 
'i 'i 'i 

if = ia" j = 1]. 

3. The canonical realizations of H 

We can consider the factorization of ii as ii = (.Y0r) 
0~, and we will make use of Mackey's theory16 for the 
obtention of the linear representations of ii. . 

The irreducible linear representations of.Y are one di
mensional because .Y is Abelian, and as .Y is a direct pro
duct .Y = JR ® Y, these representations are 
AJt,p(a,O.!.a,O) = expfi{Jta - pa)}, with f-t,p E R. The pairs 
(Jt,p) E Y characterize the representations. 

The orbits of.Y under r, via the action of r into .Y 
v:{Jt,p)--+(p"p + f-tv), are of two types: type I, (Jt,p), with a fixed 
f-t#0; this orbit is homeomorphic to JR; and type II, (O,p), 
each orbit has only one point. 

We will only consider the orbits of type I because the 
representations with physical meaning are related to 
them.32,33 The representations obtained from these orbits are 
labeled by f-t E R*, with support space the functions F:R-+C, 
such that SRF*(P)F(P)dp < + 00, where dp is the invariant 
measure on these orbits. 

If we select the pOint (Jt,0) in the corresponding orbit 
({Jt,p)), the isotopy group of this point is {(O,O,O,O) J, then the 
little group of this orbit is trivial. Ifwe choose a cross section 
of.Y into r,{Jt,p)-(O,O,O,p/f-t), we have 

(O,O,O,p/f-t)-l(a,O,a,v)(O,O,O,p/f-t) = (a - pa/f-t,O,a,O). 

The representations of .Y0r, up to equivalence, are 
(DJt (a,a,v)F)(p) = eilpa - pal F(P - f-tv). The equivalence 
classes of these representations are labeled by rJt] with 
f-tER*. 

As the subgroup .Y0r is not Abelian, the set ~ 
is made up by all the equivalence classes of the representa
tions of Y0r, that isjW"? = {rJt],f-t E JR* J. The action 
ofthe subgroup ~ on Y 0 is 

b:DJt (a,a,v)-+DJt (b -l(a,a,v)b ) = D! (a,~ 

withDJt a representative of the class rJt] E Y0r. Then 

[ D ! (a,a,v)F ] (P) 

[D (( 1 ( 2 1 2) . b b = Jt a + 2 v - 2 a 'i SlD -:;:- cos -:;:-

• 2 b b . b 
- av SlD -,a cos- + V'i SlD-, 

'i 'i 'i 

vcos! -; sin!))F](p) 

= eXP{;[f-t(a + ~ (v2 
- ~ a2

)rsin! cos! 

- av sin
2 

! ) - p( a cos! + vrsin ! ) ]} 

XF(P-f-t(vcos! -; Sin!)). 
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It is easy to check that the representations DJt and D! 
are equivalent, i.e., 

D!-' (a,a,v) = W(b )DJt(a,a,v)W- 1(b), 'fib E Y, 

with W(b) = e'lbl2Jt)(P' + IlN)K' + C), where C E R gives a 

phase. Then DJt and D! are equivalent and are in the same 
class rJt]. Thus, the orbit of the class rJt] under the action of 
the subgroup Y is rJt] itself. The little group of each orbit rJt] 
isY. 

Finally, the irreducible linear representations of ii are 

(~Jt,c,E(a,b,a,v)F) = exp[i{Jta - pa)]exp(iEb) 

xexp[i(b /2jL)(P 2 + (lIr)K2 + C)] 

XF(P - f-tv). (13) 

Because eiEb acts as a phase factor we can incorporate it into 
the factor C. Thus, ~ Jt,C,E and ~ ,.,c,o are pseudoequivalent 
and the multiplier realizations of H, %' Jt,C,E and %' Jt,C,O' are 
also pseudoequivalent. The explicit form of %' Jt,c is 

(%' Jt,'6 (b,a,v)F)(p) = exp( - ipa) 

Xexp[i(b/2jL)(p2 + (lIr)K2 - 'G')] 

XF(p-f-tv), 

with 'G' = - C. 
A realization of the Hermitian infinitesimal operators 

P.k.iI J associated to the realizations ~ Jt, '6 or %' Jt, '6 is 

A A. A 1 ( f-t2 d 2 ) P=p, K=lf-td/dp, H=- p2_ r-2 - 'G' , 
A 2jL dp (14) 
I=f-t. 

Note that land 'G' = p 2 + (lIr)K2 - 2IHareCasimiroper
ators. Making use of the expressions (14) we can write the 
representation %' Jt,'6 (see Ref. 13) as follows: 

(%' Jt,'6 (b,a,v)F)(p) = exp( - ipa) 

Xexp [(i/2jL)(P2 - (Jt2/r)(d 2/dp2) 

- 'G')b ]F(P - f-tv). (15) 
As the irreducible canonical realizations %' Jt,'6 are la

beled by the eigenvalues of the Casimir operators I and 'G', 
then in the locally operating realization U'1JJ' the realiza
tions U,., '6 can only appear if f-t = 1], and every one of these 
will be in the subspace of 2"2(R) defined by the solutions of 
the differential equation (~ f)(t,x) = 'G' f(t,x), with 'G' a real 
number and ~ obtained when in the expression of the Casi
mir operator 'G' , P ,K,H, and I are changed to P .k.iI, and j, 
respectively. 

Explicitly, this equation is 

i aJ(t,x) = L~ (- 1 ax )2 + ~ ~X2 

{3 {32 'G' } --X+--- f(t,x). 
r 21]r 21] 

(16) 

As all realizations with different 'G"s are pseudoequiva
lent, we can give it the value zero. From a physical viewpoint 
the real number 'G' is related with the internal energy of the 
corresponding particle, and with a change of the origin of 
energy we can make it zero. The parameters f-t and 1] can be 
also identified with the particle mass and then 
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Il = 'TJ = m E R*. Finally, we can show that the functions 
supporting the irreducible canonical realization ~ /L,'iff can 
be written as a "linear combination" of the functionsf(t,x) 
belonging to a subspace irreducible under the locally operat
ing realization U/L,{3' that is 

FIp) = f f-+ 0000 dt dx K (t,x;plf(t,x). 

Hoogland lS has obtained the integration kernel of the 
transformation F(t )-f(t,x) in the opposite direction. 

Ifin Eq. (16) we take,8 = ° and ~ = 0, we will obtain 

This equation is the one-dimensional Schrodinger equation 
for a free particle of mass m in a Newton-Hooke universe. 2,34 

If,8 =1= 0, the corresponding equation describes a particle 
with mass m in a Newton-Hooke universe acted on by an 
external force field I.P). 

When we consider the two-dimensional reducible matri
cial representation of r 

a(o,O,v) = ( _ ! : ~), 
we obtain the following locally operating realization of H: 

[Um ,{3(h If] [h (t,x)] 

= exp H m W(h,so(x)) -,8 (v co~ - ; sin;)]} 

x ( _ !(v cos(t /T) ~ (a/T) sin(t /T)) ~) f(t,x). 

When,8 = ° the two-component functionsf(t,x) verify a 
Dirac-like equation,2,34 and if,8 =1=0 the terms related with 
the external forced field appear. 

These equations have been obtained by Dubois34 using 
other's arguments also based on the Newton-Hooke group. 
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Holstein and Primakoff derived long ago the boson realization of a su(2) Lie algebra for an 
arbitrary irreducible representation (irrep) of the SU(2) group. The corresponding result for 
sU(1,1)e;sp(2) is also well known. This raises the question of whether it is possible to obtain in an 
explicit, analytic, and closed form, and for any integer d, the boson realization of a sp(2d) Lie 
algebra for an arbitrary irrep of the Sp(2d ) group, which is a problem of considerable physical 
interest. The case d = 2 already illustrates the problem in its full generality and thus in this paper 
we concentrate on sp(4). The Dyson realization is well known, and the passage to bosons satisfying 
the appropriate Hermiticity conditions can be done by a similarity transformation through an 
operator K. What we want, though, is an explicit boson realization for sp(2d ) similar to the one 
that exists for sp(2). In Sec. VI we show how we can get it for sp(4) if the operator K is known. 
Unfortunately while the matrix form of K 2 can be explicitly derived from definite recursion 
relations, the same cannot be said of K as it involves, in general, the solution of algebraic equations 
of high degree. Thus the conclusion, corroborated also by a classical analysis where K does not 
appear, is that an explicit, analytic, and closed boson realization of sp(4), and thus also of sp(2d ), is 
only possible for particular irreps of the corresponding groups. 

I. INTRODUCTION AND SUMMARY 

Already in 1940 Holstein and Primakoffl had obtained a 
realization of the su(2) Lie algebra in terms of boson creation 
and annihilation operators for a given value of the Casimir 
operator, i.e., for a definite irreducible representation (irrep) 
of the SU(2) group. It is easy to extend this realization to the 
su(1,1)a!sp(2) Lie algebra for a definite irrep of the Sp(2) 
group.2.3 This simple result immediately suggests the follow
ing question: Is it possible to obtain in an explicit analytic 
and closed form the boson realization of a sp(2d ) Lie algebra 
for a given irrep of the Sp(2d ) group when d is an arbitrary 
integer? We will be dealing in this article with the noncom
pact version of the symplectic Lie group, which is usually 
referred to in the literature as Sp(2d,R ) or Sp(d,R ). 

the Sp(2d ) group? To briefly review the extensive work in this 
field it is convenient first to express the generators of the 
sp(2d) Lie algebra in terms ofthe creation "'is and annihila
tion Sis operators of a system of n particles, which are asso
ciated with the index s = 1,2, ... ,n in a d-dimensional har
monic oscillator for which the component index is 
i = 1,2, ... ,d. The generators ofsp(2d) are then10.13 

The answer to this question is of physical interest. For 
d = 2 Mlodinow and Papanicolau4 have shown that it is rel
evant for a class of generalized helium Hamiltonians while 
recently Hecht has applied it to the proton-neutron quasi
spin group. For d = 3 Rosensteel and Rowe5 have indicated 
its importance for the microscopic analysis of collective mo
tions in nuclei and an extensive literature exists in this 
field,c>-ll either working directly with Sp(6) or its comple
mentary group12 O(n). Other applications are in progress, 
though the present authors do not have yet information on 
published material related to them. 

Where do we stand at present in connection with the 
boson realization of a sp(2d ) Lie algebra for a given irrep of 

a) Member of El Colegio Nacional and Instituto de Investigaciones Nu
cleares. 

b) Maitre de Recherches F. N. R. S. 

n 

Bij = L "'is "'}S' (1.1a) 
s= 1 

1 n n n 
Cij = "2 S.?l ("'is 5}S + 5}S "'is) = S.?l "'is 5}S + "2 ~ij' 

(1.1b) 
n 

Bij = L Sis 5}S' (1.1c) 
s= 1 

where in (1.1b) we used the commutation rule [5}o"'is] 
= ~ij8st' As is customary14 one can divide the set (1.1) into 
raising, weight, and lowering generators, given by 

Bt. ij' Cij with i<j, (1.2a) 

Cii> i= 1,2, ... ,d, (1.2b) 

Bij; Cij with i>j. (1.2c) 

The lowest weight (l.w.) state denoted by the ket Il.w.) satis
fies then the equations 

Bijll.w.) = 0, 

Cijll.w.) = 0, for i>j, 

Cil Il.w.) = (w; + n/2)1l.w.), 

(1.3a) 

(1.3b) 

(1.3c) 

where we note that in (1.3c) the Wi are the integer eigenvalues 
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of the number operators 1::= l'TJis Sis' i = 1,2, ... ,d, which, 
furthermore, from (1.3b) satisfy the inequality 14 
0<((.11 <(i)2···<((.Id' The eigenvalues of ell characterize then 
the irrep of Sp(2d ) and they can be put in the order 

[((.II + nI2,((.12 + nI2, ... ,((.Id + nI2]. (1.4) 
The question raised in the previous paragraph refers 

now to our knowledge of the boson realizations of the sp(2d) 
Lie algebras associated with the irrep (1.4) of the Sp(2d) 
group. When the number of particles n goes to infinity the 
boson realization of the Lie algebra sp(6):>u(3) was obtained 
by Rosensteel and Rowe, IS while a discussion for the chain 
sp(6):>sp(2)xo(3) was given by Castaiios and Frank. 16 It is 
easy to generalize these results from d = 3 to arbitrary d. 

For the much more difficult case when n is finite the 
problem was first attacked for the irrep (1.4) in which all the 
((.I; are equal, i.e., ((.I; = ((.I, i = 1,2, ... ,d. For d = 2 a boson 
realization is already available in a paper of Mlodinow and 
Papanicolau,4 though a more explicit procedure was carried 
out by Moshinsky and Seligman, 17 who also outlined an ap
proach for a general d. Deenen and Quesne13 gave a full and 
explicit discussion of the boson realization of the sp(2d ) Lie 
algebra when the irrep is given by (1.4) with ((.1/ = ((.I, 

i = 1,2, ... ,d, which is sometimes referred to in the litera
turell as the case of "closed shells" to which it corresponds 
whend = 3. 

What happens, though, for the general irrep (1.4) when 
not all of the ((.I; are equal? This could be called II the case of 
"open shells," and is a problem that has interested a number 
of researchers in the last few years. 

Deenen and Quesnel8 found a realization in what is 
known as the Dyson formulation. As previously they had 
established the relation between the Dyson and Holstein
Primakofformulations in the case of "closed shells,,,13 they 
proceeded, using the language of coherent states, to outline 
the derivation of the boson realization of the sp(2d) Lie alge
bra for the case of "open shells.,,19 A simplified version of 
their approach was given by Moshinsky.2° 

Independently, Rowe, Rosensteel, and their collabora
tors21.22 established the connection, in the case of "open 
shells," between the Dyson and Holstein-Primakoff boson 
realizations of sp(6), where the former seemed known to 
them since some time ago. Their analysis can be extended to 
arbitrary d. 

It would seem then that the question raised in the first 
paragraph of this article has been completely answered. This 
turns out not to be the case because we ask about an explicit, 
analytic, and closed form for the boson realization of the 
sp(2d ) Lie algebra for the general irrep ( 1.4) such as exists, for 
example, for sp(2) (see Refs. 2 and 3). 

Thus in the present paper we analyze how far we can go 
in the pursuit of an explicit, analytic, and closed form for the 
boson realization when d = 2, Le., the sp(4) Lie algebra. This 
problem is also of interest for the following reasons. 

(1) The sp(4) algebra is of physical interest.4 

(2) The sp(4) case, for which d = 2, corresponds to the 
lowest value of d in which we can have "open shells," i.e., 
((.II #:((.12' 

(3) The sp(4) algebra has a u(2) subalgebra and thus the 
whole analysis can be made using the familiar results of the 

2108 J. Math. Phys., Vol. 26, No.9, September 1985 

su(2) Racah algebra, rather th~ those of su(d ) for the general 
case. 

We proceed now to summarize the contents of the pa
per. In Sec. II we express the generator B t, e, B of sp(2) 
[given by (1.1) where i = j = 1 and thus can be suppressed] in 
terms of boson operators b t and b, which are Hermitian 
conjugate and satisfy [b,b t] = I. For this expression we use 

. the general approach developed in recent publications, 19-2 I 
and it will illustrate in an elementary fashion the procedure 
that one can follow for sp(2d ) and, in particular, for sp(4). We 
note, though, that while the method expresses the generators 
B t, e, B ofsp(2) as explicit, analytic, and closed functions of 
b t and b, this will not be true in general, as discussed in the 
following sections for the case sp(4), and thus also for sp(2d ). 

In Sec. III we consider the ten generators of sp( 4), nine of 
them in a vector notation, Le., B;, J;, B;, i = 1,2,3, plus the 
number operator JY', and construct a set of nonorthonormal 
basis states characterized by the irreps of the chain 
Sp(4)::> U(2). 

In Sec. IV we give the Dyson realization of the sp(4) Lie 
algebra in terms of creation P / and annihilation P; opera
tors, plus the s; associated with an independent su(2) Lie 
algebra, where i = 1,2,3. These operators have the commu
tation rules associated with a direct sum of a three-dimen
sional Weyl Lie algebra and a unitary unimodular Lie alge
bra, i.e., w(3) Ell su(2). It is important to note that P / is not 
the Hermitian conjugate of P; . 

In Sec. VweconsidertheoperatorsbT,b/,S/, i= 1,2,3, 
in which the b; is the Hermitian conjugate of b; and S; is 
Hermitian. We relate these operators to the P / , P; , s; of the 
previous section through a similarity transformation involv
ing an operator K which is Hermitian and invariant under 
u(2). Expressing the generators ofsp(4) in terms of b j, b;, S;o 
and K we obtain an operator equation that allows us to deter
mineK2 in an appropriate boson basis!9-21 In Appendix A 
we give an explicit algorithm for determining the matrix ele
ments of K2. Note that now b;, b;, S;o i = 1,2,3, are bona 
fide generators of the Lie algebra w(3) Ell su(2). 

In Sec. VI we show how we can get the B T, J;o B;o and 
JY' as functions of the operators b j, b;, S; if we know K as an 
Hermitian operator function of the latter that is invariant 
under the U(2) group. The operator K can be determined if 
its matrix form is known explicitly with respect to an appro
priate boson basis. Unfortunately to go from the matrix of K 2 
to that of K we need to solve, in general, algebraic equations 
of high degree. Thus we can only get the operator K explicit
ly for low eigenvalues of the S 2 associated with the operator 
S/ which we call the spin. We discuss the cases of spin O,!, 1 
(where we note that 0 corresponds to "closed shells") and 
give the explicit, analytic, and closed expressions for theB j, 
J/J B; and JY' for s = 0 and !. 

In Sec. VII we discuss the corresponding classical prob
lem and show again that it does not seem feasible to obtain an 
explicit, analytic, and closed expression of the generators 
sp(4), in terms of those ofw(3) Ell su(2). In here all the genera
tors are not operators but classical observables. 

Finally in Sec. VIII we conclude that while recent de
velopments in the field provide an algorithm for the calcula
tion of the matrix elements of the generators of sp(2d ) in the 
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sp(2d):> u(d) basis of states, 19-21 as discussed in Appendix B 
for d = 2, they cannot give us, in general, an explicit, analyt
ic, and closed operator or functional relation between the 
generators of sp(2d) and those of the Holstein-Primakoff 
version of w[(d 12)(d + 1)] ED su(d), when we have an arbi
trary irrep (1.4) of Sp(2d ). 

As indicated above, in the present paper we give an 
explicit procedure for the determination of the matrix form 
of the operator K 2, through the use of appropriate recursion 
relations. We later realized that it is possible to get an explicit 
and closed form of the K 2 as a kernel with respect to appro
priate coherent states. Thus we added to the title of this pa
per the words "I. The matrix formulation," and in a sequel 
we shall discuss the generating kernel formulation for the 
boson realization of sp(4), and give an independent proce
dure for deriving from it the matrix elements of K2. 

II. THE BOSON REALIZATION OF sp(2) 

As we mentioned in the Introduction, the boson realiza
tion of the sp(2) Lie algebra for a given irrep of the Sp(2) 
group is both well known and simple.2,3 The reason that we 
rederive it in this section is that we shall proceed to do it by 
exactly the same steps that one can use for sp(2d ). 

As indicated in (1.1) and (1.2) the raising, weight, and 
lowering generators of sp(2) can be denoted by B t, C, B, in 
which B t is the Hermitian conjugate of Band C is Hermi
tian. Besides, from (1.1) and the commutation rules [s.,1](] 
= {).( we conclude that B t, C, B satisfy the commutation 

relations3 

[C,Bt] = 2B t , 

[C,B] = - 2B, 

[B,Bt] =4C. 

The Casimir operator,3 can be defined as 

G=HBtB-C(C-2)], 

as from (2.1) it commutes with B t, C, B. 

(2.1a) 

(2.1b) 

(2.1c) 

(2.2) 

From (1.3) we conclude that the lowest weight state for a 
basis ofa given irrep of the Sp(2) group, which we will now 
denote by the ketlw), is then characterized by 

B Iw) = 0, 

C Iw) = (w + n/2)jw). 

(2.3a) 

(2.3b) 

The full non-normalized basis for the irrep is then given by 
the states3 

Iv,w) = (B ttlw), v = 0,1,2, ... , 10,w) ==Iw), (2.4) 

and from (2.2) and (2.3) is characterized by the eigenvalue 

- !(w + n/2)(w + n/2 - 2) (2.5) 

of the Casimir operator G. 
Our purpose now is to express B t, C, B, for a given 

value of the Casimir operator G of (2.2), i.e., a definite w, in 
terms of Hermitian conjugate operators of creation b t and 
annihilation b that satisfy the commutation rule 

[b,b t] = 1. (2.6) 

To implement our objective we start by noting that B t, 
C, B are given by (Ll), in which ij = 1 anq thus can be 
suppressed. As then B t, C, B are given in terms of 1]., s., 
2109 J. Math. Phys., Vol. 26, No.9, September 1985 

s = 1,2, ... ,n, we first consider the effect of the latter opera
tors on the states Ivw), which are the bases for an irrep of 
Sp(2). As [1].,(B tn = 0 and the commutator [s.,(B tn 
= alB ttl a1]., we immediately obtain that 

1].lvw) = (Bt)"1].lw), 

s. Ivw) = a (B tt Iw) + (B t)"s. Iw). 
~. 

(2.7a) 

(2.7b) 
\ 

Applying these results twice and summing with respect to s 
we then have 

B tl vw) = B t(B t)"lw), 

a(Btt 
C Ivw) = 2Bt --Iw) + (BttC Iw) 

aBt 

(2.8a) 

= 2B t alB t)" Iw) + (w + ~) (B ttlw) (2.8b) 
aBt 2 ' 

B Ivw) = 4Bt ~(Btt Iw) + 4 a(Bt)" C Iw) + (Bt)"B Iw) 
aBt2 aBt 

= 4B t ~(B t)" Iw) + 4 (w +~) alB tt Iw), 
nn 2 n t ~~ 

where for the result on the right-hand side of(2.8b) and (2.8c) 
we used (2.3). 

From Eqs. (2.8) we see that the effect of the generators 
ofsp(2) on the states Ivw) of(2.4) can be expressed in terms of 
an operator B t that acts multiplicatively on (B tt and of a 
differential operator a laB t acting also on (B tt. To express 
B t, C, B in terms of these new operators it is then convenient 
to introduce the definitions 

p + =Bt, (2.9a) 

a 
p== aBt' (2.9b) 

for which obviously 

[P/3 +] = 1. (2.10) 

The operators P + /3 have, from (2.10), the commuta
tion rules associated with a one-dimensional Weyl algebra 
w( 1) though clearly P + is not the Hermitian conjugate of p. 

From (2.8) we can now express the generators of sp(2) as 

Bt =P +, (2. 11 a) 

C = 2f3 + P + (w + n/2), (2.11b) 

B = 4{3 + p2 + 4{3(w + n/2), (2.11c) 

and from (2.10) we immediately check that the commutation 
rules (2.1) are satisfied and that the Casimir operator (2.2) 
takes the value (2.5). The expressions (2.11) are known as the 
Dyson3

,20 realization associated with the Barut-Girardello 
representation3 of the sp(2) Lie algebra when its irrep is char
acterized by (w + n/2). 

The Holstein-Primakoff realization would be in terms 
of operators b t and b satisfying 

[b,b t ] = 1, (2.12) 

but in which b t is the Hermitian conjugate of b, and so they 
are actually the generators of w( 1). How can we get this real
ization from the knowledge of (2.11)? It seems natural to 
assume that b t,b andp + /3 are related by a similarity trans-
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formation with some operator K, i.e., 

b t = K -I{J + K, b = K -I{JK, (2.13) 

as in this way (2.12) follows immediately from (2.10). Fur
thermore we can impose the additional condition 19,20,2 I that 
K should be Hermitian and an invariant ofU(l) subgroup of 
Sp(2), whose generator in the boson representation is the 
number operator N = b tb, i.e., 

Kt=K, 

[N,K] =0. 

From (2.11), (2. 14b) we have then 

Bt =KbtK- I, 

C = 2N + (j) + n/2, 

B = K [4b tb 2 + 4b ((j) + n/2)]K -I. 

(2. 14a) 

(2. 14b) 

(2.15a) 

(2.15b) 

(2.15c) 

As (1.1) indicates that B t is the Hermitian conjugate of B we 
have from (2. 14a) and (2.15a) that 

B=K-lbK, (2.16) 

and from this expression and (2.15c) we obtain the relation 

bK 2 = K2[4b tb 2 + 4b((j) + n/2)]. (2.17) 

We now wish to obtain explicitly from (2.17) the opera
tor form of K. For this purpose we note that a complete 
normalized set of states associated with the Holstein-Prima
koffboson operators b t, b is given by 

Iv) = [vI] -1I2(b t)VIO), (2.18) 

which we denote by the round bracket Iv) to distinguish 
them from the angular one I v(j) associated with an irrep 
((j) + n/2) of Sp(2). We then take matrix elements of the 
right- and left-hand sides of (2.17) with respect to these states 
to obtain 

(v - lib Iv)(vIK 2Iv) 

= (v - 11K2lv - l)(v - 114b tb 2 + 4b ((j) + n/2)1v), 
(2.19) 

as from (2. 14b), K and thusK 2 are diagonal in v. 
As the matrix elements of b t, b in the basis I v) are trivial 

we immediately obtain the recursion relation 

(vIK2Iv) = (v - 11K2lv - 1)4(v - 1 + (j) + n/2). (2.20) 

As we can assume without loss of generality that 
(0IK210) = 1, we obtain from (2.20) that 

(vIK2Iv) = 2V[(2v- 2 + 2w + n)!!] [2w + n - 2)!!]-1, 
(2.21) 

which implies that 

(vIKlv) 

= r/2[(2v - 2 + 2w + n)!!] 1/2[(2w + n - 2)!!] -1/2. 
(2.22) 

Turning now our attention to Eq. (2.15a) we see that its 
matrix form with respect to the states Iv) is 

(v+ 1lBtlv) = (v+ 1IKbtK-llv) 

2110 

=(v+ 11Klv+ l)(v+ 1Ib t lv)(vIK- l lv) 

= 21/2(2v + 2w + n)I/2(v + lib tlv) 

= (v + 112b tiN + (j) + n/2)1/2Iv), (2.23) 
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where we have made use of (2.22). 
As the Iv), v = 0,1,2, ... , are a complete set of states, we 

conclude from (2.23) that 

B t = 2b tiN + li) + n/2)1/2, (2.24a) 

while its Hermitian conjugate is 

B = 2(N + li) + n/2)1/2b, 

and from (2.15b) 

C = 2N + (j) + n/2, 

(2.24b) 

(2.24c) 

where N = b tb. The expressions (2.24) give an explicit, ana
lytic, and closed realization of the generators B t, C, and B of 
the Lie algebra sp(2) in terms of the bosons b t,b that are 
~enerators of a w( 1) Lie algebra. 

It can be immediately checked that B t, C, and B satisfy 
the commutation rules (2.1) and that the Casimir operator 
(2.2) takes the value (2.5). For this we only need to note that 
for an arbitrary functionf(N) we have 

f(N)b t = b V(N + 1), 

f(N)b = bf(N - 1), 

(2.25a) 

(2.25b) 

which is derived when we calculate the matrix elements of 
the left- and right-hand side of (2.25) with respect to the 
states Iv) of(2.18). 

As a last point we note that with the help of (2.24c) we 
can invert (2.24a) and (2.24b) to get 

b t = Bt(2C + 2w + n)-1/2, 

b = (2C + 2w + n)-1/2B, 

(2.26a) 

(2.26b) 

thus obtaining the boson operators in terms of the generators 
B t, C, B in an explicit, analytic, and closed form. From (1.1) 
we see that these boson operators will be functions of the 
creation and annihilation operators TJ., 5., s = 1,2, ... ,n, of 
the n particles in a space of one dimension. 

We now tum our attention to the sp(4) Lie algebra to see 
whether it is possible there for an arbitrary irrep (1.4) for 
d = 2, to arrive at expressions equivalent to (2.24). 

III. GENERATORS OF sp(4) AND THE BASIS STATES 

For sp(4) the generators are given by (1.1) when d = 2, 
but rather than write them as B L, CjjJ BjjJ ij = 1,2, it is 
convenient to express nine of the ten generators in vector 
form through the definitions 

B t = - MB t I - B 12)' 

BI = (i/2)(Btl +Bi2)' 

B! =Bt2' 

J I = !(CI2 + C21 ), 

J2 = - (i/2)(CI2 - C21 ), 

J3 = !(CII - C22), 

BI = - !tBII - Bd, 

B2 = - (i/2)(BII + B 22), 

(3.1a) 

(3.1b) 

(3.1c) 

(3.1d) 

(3.1e) 

(3.lt) 

(3.1g) 

(3.1h) 

B3=BI2' (3.ti) 

while the last generator is the scalar number operator de
fined by 

f = !(~II + C22). (3.1j) 
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From the definitions (1.1) for d = 2 and the commuta
tion relations [ Sjt''TJis] = 6/5st it follows that the operators 
defined in (3.1) satisfy the following commutation relations: 

[ B j,B J] = 0, (3.2a) 

[ BoBj] = 0, (3.2b) 

[B;,BJ] = - 2iEijk Jk + 26ijff, 

[J;,BJ] = iEijkBt, 

[J;,Bj] = iEijkBk, 

[J;~] = iEijk Jk, 

[ff,Bi] =Bi, 

[ff,B;] = -B;, 

[ff,J;] = 0, 

(3.2c) 

(3.2d) 

(3.2e) 

(3.2t) 

(3.2g) 

(3.2h) 

(3.2i) 

where from now on i, j, k take the values 1,2,3, Eijk is the 
antisymmetric tensor, and repeated indices are summed 
from 1 to 3. Note that the J;, i = 1,2,3, are the generators of 
the su(2) subalgebra of sp(4) with the standard properties of 
angular momentum, while, with respect to theJ;, theB T, Bo 
i = 1,2,3, behave as ordinary three-dimensional vectors. 

The set of ten generators of sp(4) can be divided into 
three subsets of raising, weight, and lowering type, which are 
separated below by semicolons: 

Bj,J+; ff,Jo; B;,J_, i= 1,2,3, 

where 

(3.3) 

(3.4) 

The lowest weight state, which we designate as lcus), can 
now be characterized by 

B; lcus) = 0, i = 1,2,3, 

J_lcus) =0, 

fflcus) = (cu + nI2)lcus), 

Jolcus) = - slcus). 

(3.Sa) 

(3.Sb) 

(3.Sc) 

(3.Sd) 

From the expression (3. If, j) for ff, Jo we see that we 
can also take as weight generators C II and C22 of (1.1), which 
from (1.3c) have the eigenvalues 

ClI lcus) = (CUI + nI2)lcus), 

C22 1cus) = (cu2 + nI2)1cus), 

(3.6a) 

(3.6b) 

so that from (3. It), (3.1j), (3.Sc), and (3.Sd), we obtain 

CUI = cu - s, (3.7a) 

CU2 = cu + s. (3.7b) 

As CUI' CU2 are integers, we have that both cu,s are either inte
gers or half-integers. 

A complete set of basis states for the irrep 

[CUI + n12,cu2 + n12] (3.8) 
of Sp(4), which corresponds to (2.4) for Sp(2), is obtained by 
applying polynomials in the raising generators B r, B i, B !, 
J + to lcus). Using the commutation relations (3.2) we can put 
powers of the J + on the right of polynomials P (B n and use 
these powers to define lowest weight states of arbitrary pro
jection of the angular momentum, i.e., 

[ 
(s _ u)'2S + U] 1/2 

lcusu) = . ( - J )' + Ulcus) 
(15)!(s + u)! + , 

(3.9a) 
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lcus - s) = lcus), (3.9b) 

where u = - s, - s + 1, ... ,s and lcusu) is an eigenket of ff, 
J 2,Jo with eigenvalues (cu + nI2), sIs + 1), and u. 

The B T, i = 1,2,3, are the components of a vector Bt 
with respect to the Jq , q = ± ,0, and thus polynomials in 
this vector can be characterized by their degree v in its com
ponents, by an irrep I of the SU(2) group whose generators 
are Jq , q = ±,O and by an irrep p, of the 0(2) subgroup 
whose generator is Jo, i.e.,23 

(3.10) 

where '?Y II-' is of the solid harmonic '?Y II-' (r) = ~YII-' (8,r/J ). 
Cleady24 

[Jq,Pvll-' (Bt)] 

= [1(1 + 1)]1/2(/p"lql/"u + q)Pvll-'+q(Bt), (3.11) 

where ( I ) is a Clebsch-Gordan coefficient and thus 
P viI-' (Bt) is a Racah tensor24 of order I and projection p,. 

The basis for the irrep (3.8) ofSp(4) can then be written 
as 

Pvll-' (Bt)lcusu) Plcus), (3.12a) 

where 

v=0,1,2, ... , l=v,v-2, ... ,lorO, 

p, = 1,1- 1, ... , - I, u = s,s - 1, ... , - s, (3.12b) 

and the right-hand side is a shorthand notation we shall em
ploy later. 

The application of Jq to the states (3.11) implies 

JqP lcus) = [Jq,P] lcus) + PJq lcus), (3.13) 

and thus from (3.9) and (3.11) we immediately conclude that 
the kets 

(3.14) 

are an alternative basis to (3.12a) with the advantage that 
they are eigenkets of the Hermitian operatorsff, J2, Jo with 
eigenvalues (v + cu + nI2),j(j + 1), m = j,j - 1, ... , - j. 

Note that while the kets Icuv[/,s]jm) are orthogonal if 
they differ in the eigenvalues v, j, or m, this will not be the 
case for the I which satisfies the conditions 

Ij -sl<l<J + s, 1= v,v - 2, ... ,1 orO. (3.15) 

Thus we have a complete but nonorthonormal basis in which 
the I is a kind of "multiplicity index." 14 

IV. THE DYSON BOSON REALIZATION 

To derive the Dyson form of the boson realization of 
sp(4) we shall proceed in exactly the same form as was done 
for sp(2) between Eqs. (2.7) and (2.11). We first require the 
effect of the creation and annihilation operators appearing in 
(1.1) on the states (3.12). We designate these operators as'TJat' 
Sal' a = 1,2, t = 1,2, ... ,n, as now indices ij,k take the values 
1,2,3 and the s appears in lowest weight state lcus). We then 
have 

'TJatP lcus) = PrJat lcus), (4.1) 

SatP lcus) = [ Sat.P ] lcus) + PSat lcus) 
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(4.2) 

where repeated indices i,j, k will be summed from 1 to 3. 
Applying these results twice and summing over the index t 
from 1 to n, as well as using the definitions (3.1), we obtain 

Bl(P iws») = (Blp)iws), (4.3a) 

J/(p iws») = ( - i€ijkBJ aa:t) iws) + PJiiws), (4.3b) 

Bi(P iws») = ( - B 1 dlp ) iws) 
aBJ aBJ 

+ [ ( 2B J a! J + 2w + n) ::1] iws) 

- [2i€ijk aPt Jk] iws), (4.3c) 
aB j 

ff(P iws») = [(B J ap) + w +.!!..] iws) (4.3d) 
aBt 2 ' 

J 

where again repeated indices i,j, k are summed from 1 to 3. 
As in the discussion following Eq. (2.8) for sp(2), we see 

that the effect of the generators of sp(4) on the states (3.12) 
can be expressed in terms of operators B i, i = 1,2,3, acting 
multiplicatively on P, of differential operators a laB i acting 
also on P and, besides, of operators J/ acting only on the 
intrinsic states iws). To express the generators of sp(4) in 
terms of these operators it is then convenient to introduce 
the definitions 

a 
/3i == aBt ' 

I 

as well as a new vector operator 

(4.4a) 

(4.4b) 

Si' i = 1,2,3, (4.4c) 
acting exclusively on the intrinsic states. These new opera
tors will then satisfy the commutation relations 

[ /3" /3J] = [ /3 / ,/3/ ] = [ /3"Sj] = [ /3 / ,sj] = 0, (4.5a) 

[ /3;/3/ ] = 8ij, (4.5b) 

[Si,sj] =i€ijkSk' (4.5c) 

which are the same as those of a Lie algebra that is the direct 
sum of a Weyl algebra in three dimensions and an indepen
dent two-dimensional unitary unimodular Lie algebra, i.e., 
w(3) E& su(2). 

From (4.3) we can then express the generators ofsp(4) in 
vector notation as follows: 

Bt = (J + , (4.6a) 

J = 1 + s, (4.6b) 

B = - (J+( (J. (J) + (2W + 2w +n)(J- 2i( (JXs), 

ff = W + (w + nI2), 

where 

1= -i((J+X(J), 

W=(J+ .(J. 

(4.6c) 

(4.6d) 

(4.7a) 

(4.7b) 

It is easy to check that if /3 / ,/3i' Si satisfy the commutation 
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rules (4.5) then B 1, J" B i , ff satisfy the commutation rules 
(3.2). 

Equations (4.6) for the generators of sp(4) are equivalent 
to (2.11) for sp(2) and we note again that here /3 i+ is not the 
Hermitian conjugate of /3i so that we require the passage 
from the Dyson to the Holstein-Primakoff realization. 

v. THE HOLSTEIN-PRIMAKOFF BOSON REALIZATION 

The Holstein-Primakoff realization would be i~ terms 
of operators 

b i, bi' S" i = 1,2,3, (5.1) 

satisfying the same commutation rules as in (4.5) but where 
now b i is the Hermitian conjugate of bi and S/ is Hermitian. 

As in (2.13) for the case of sp(2) we assume that the oper
ators (5.1) and (4.4) are related by a similarity transformation 
with an operator K, i.e., 

b i = K -1/3 / K, 

bi = K -1/3iK, 

(5.2a) 

(5.2b) 

Si = K -ls,K, (5.2c) 

as in this way the appropriate commutation rules for b t b 
" i' 

Si follow immediately from (4.5). As ( /3 / )t #/3" while (b nt 

= bi , the K is not unitary but we can assume, without loss of 
generality, that it is Hermitian. We shall furthermore impose 
the additional condition that K should be an invariant l8,19,21 

of the u(2) subalgebra ofsp(4), i.e., 

[K,A'] = [K,Ji ] = O. (5.3) 

Through Eqs. (4.6) and (5.2) we then obtain in vector 
notation 

Bt =KbtK- 1, (5.4a) 

J = L + S, (5.4b) 

B = K [ - bt(b· b) + (2N + 2w + nIb - 2i(bXS)]K-1, 
(5.4c) 

ff = N + (w + nI2), (5.4d) 

where 

L = - i(btXb), (5.5a) 

N = bt • b. (5.5b) 

To obtain (5.4b) and (5.4d) wepassedK,K -I to the left-hand 
side and from (5.3) wroteK -IJK = J, K -lffK =ff. 

From (1.1) and (3.1) we see that Bt is the Hermitian 
conjugate of B and as K is Hermitian we get 

B = K -lbK, (5.6) 

which combined with (5.4c) gives us the equation 

bK 2 = K2[ - bt(b. b) + (2N + 2w + nIb - 2i(bXS)], 

(5.7) 
which is the equivalent for sp(4) of the relation (2.17) for 
sp(2). 

We now wish to see whether from (5.7) we can get the 
operator form of K. This requires, as in the arguments fol
lowing (2.17), a complete set of boson states. As now besides 
the b i, i = 1,2,3, we have the completely independent ele
ments Si of a su(2) Lie algebra, our boson states will be 
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formed by coupling the standard harmonic oscillator states 
in three dimensions23 

AvI Pvl!J (bt)lO), (5.8) 

where Pvll' (bt ) is given by (3.10) with b t replacing B t and23 

AVI = ( - 1)(V-I)l2[ 41r/(v -l)!!(v + I + I)!!] 1/2, (5.9) 

with the orthonormalized states Isu) for an independent su(2) 
Lie algebra, i.e., 

Iv[I,s]jm) 

= L (/JL,sulim) { [Avi Pvll' (b t)IO)] Isu)}. (5.10) 
I',U 

We denote these boson states by round kets to distinguish 
them from the angular kets (3.14) that are basis of the irrep 
(3.8) of sp(4). We furthermore notice that, from construction, 
the states (5.10) are orthonormal in all their quantum 
numbers as the kets (5.10) are eigenkets of the Hermitian 
operators N, L 2, S2, J2, Jo with eigenvalues v, 1(1 + 1), 
sIs + 1),j(j + 1), m. Note that here we interpret Ji as the 
boson operator Ji = Li + So i = 1,2,3, which, from (5.4b), 
equals the generator J i of the su(2) subalgebra of sp(4). 

Our next step would be to take the matrix elements of 
the left- and right-hand sides of(5. 7) with respect to the states 
(5.10). Before proceeding we first rewrite (5.7) in a more con
venient form using the relations 

i(LXb) = Nb - bt(b· b), 

[L 2,b] = - 2i(Lxb) - 2b, 

[J 2,b] = - 2i(JXb) - 2b 

= - 2i(LXb) - 2i(SXb) - 2b, 

to get 

(5. 11 a) 

(5. lIb) 

(S.llc) 

bK 2 =K2{(N + 2w + n -l)b + HL 2,b] - [P,b]}. (5.12) 

We introduce the notation 

(v[l's] jmlK Iv[ls]jm) KI'I(v,j,s), (5.13) 

which from (5.3) are the only matrix elements different from 
zero and in which I',! are restricted by (3.15). Furthermore 
we denote the matrix elements for the corresponding opera
tor K2 appearing in (5.12) as 

(v[l's]jmIK2Iv[ls]jm) = JlI'I(v,j,s). (5.14) 

Taking now the reduced matrix elements of the left- and 
right-hand side of(5.12) with respect to the states (5.10), we 
get the following recursion relation for (5.14): 

L (v - 1 [l's] j '1Ibllv[/s] jjvh'7I1v,j,S) 
7 

= L JlI'7' (v - l,j ',s){(v + 2w + n - 2) 
7' 

+ n/'(/' + 1) -/(1 + 1)] - [j'(j' + 1) - j(j + I)]} 

X (v - 1 [/'s]j , lib II v[ls]j). (5.15) 

From the fact that b t is the Hermitian conjugate of b we 
get that24 

(v - 1[1 's]j '1Ibllv[ls1l1 

= ( - 1y-i'[(2j + 1)/(2j' + 1)] 1/2 

X (v[ls]jllbtllv - 1 [l's]j '), (5.16) 
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while standard Racah algebra24 gives us 

(v[ls ]jll bt II v - 1 [l's]j') 

= ( - 1)<+ I-I' -j[(21 + 1)(2j' + 1)] I/2W(/'lj j;ls) 

X(v/llbtliv - 11') (5.17) 

with Wbeing a Racah coefficient, and the last reduced ma
trix element takes the value23 

(v/llbt llv-lI') 

= [(v+l+ 1)1/(2/+ 1)]1/281',1_1 

+ [(v-/)(/+ 1)/(2/+ 1)]1/28/',/+1' (5.18) 

In Appendix A we discuss the recursion relation (5.15) 
for JlI 'I (v,j,s) and show that for a given spin s they can be 
solved in an analytic fashion though, in general, rather labo
riously. The main problem is how to extract from Jl1'1 (v,j,s) 
the KI'I(v,j,s) that we need to establish in explicit, analytic, 
and closed form, through Bt = Kb tK -I, the generators of 
sp(4) in terms of those ofw(3) ED su(2). In the next section we 
show that this is not possible in general as it requires the 
solution of an algebraic equation of high degree. We can 
though carry it out for low values of the spin as we also show 
in Sec. VI. 

VI. DETERMINATION OF THE MATRIX FORM OF KFOR 
PARTICULAR SPINS AND THE CORRESPONDING 
BOSON REALIZATIONS 

In Appendix A we show how to get, for a given value of 
the spin s, the explicit matrix elements JlI'I(v,j,s) with re
spect to the states (5.10), associated with the operator K 2. For 
fixed v,j we have then the finite real symmetric matrices 

M(v,j,s) = IIJlI'I(v,j,s)II, (6.1) 

where I' ,I are restricted by (3.15). 
The matrix 

K(v,j,s) = IIKI'I(v,j,s)1I (6.2) 

can then be obtained by first diagonalizing M(v,j,s) through 
an orthogonal transformation 

(6.3) 

where D is diagonal with all elements positive and '& is the 
transpose of tJ . We take the square root of this diagonal 
matrix to get 

K = '&DI/2tJ (6.4) 

as then K2 = M. 
Immediately one problem becomes apparent. The ex

plicit form of M for a given spin s can be obtained through 
the procedures of Appendix A. To diagonalize M we require 
the solution of the secular equation 

det(M - A. I) = 0, (6.5) 

which, in general, implies an algebraic equation in A. of large 
degree. Thus the present approach can give us, in general, 
the matrix K only numerically. 

There are, though, values of s such as s = 0,!,1, where 
the secular equation can be solved analytically as, from the 
discussion in Appendix A, it does not exceed the second 
degree. We expect then that for these cases it is possible to get 
a boson realization of sp(4) similar to that given in (2.24) for 
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sp(2). We proceed to show that this is the case for s = O,!, 
while for s = 1 we just discuss the matrix elements 
KI'/(v,j,l), as the realization follows from them in a similar 
fashion as in the case s = O,!. 

Before dealing with the particular cases mentioned, we 
show that besides the relation Bt = Kb1]{-I, we have an al
ternative way of expressing Bt in terms of elements of the 
enveloping algebra of w(3) ED su(2), which is relevant to the 
boson realization. We note that bt is a vector, which, in the 
ket Iv[ls]jm) of (5.10), changes v-v + 1; j_j' = j ± 1, j, 
while K is a scalar that does not affect v,j. As Bt is also a 
vector we have the reduced matrix element relation 

(v+ l[1's]j'IIBtllv[/sUl 

= L (KI'7'(V+ 1,j',s) 
7.7' 

xlv + 1 [/'s]j 'lib til v [Is U)K 7i l(v,j,s)}, (6.6) 

where K1'/(v,j,s) is given by (5.13) while the reduced matrix 
element of b t appears in (5.17) and (5.18). 

The three-dimensional vector Bt can also be expanded 
in terms of three independent vectors with the properties of 
b t, which we could take as 

bt, [L 2,bt ], [J 2,bt ]. (6.7) 

The coefficients in this expansion, which we denote by 
F, G, H, have to be invariants of the u(2) Lie subalgebra of 
sp(4) if we want to satisfy the commutation relations (3.2). 

We thus have 

(6.8) 

An alternative form for Bt can be obtained using the 
relation 

[L 2,bt ] = - 2i(LXbt) - 2bt, 

[J2,bt ] = - 2i(JXbt) - 2bt, 

as well as J = L + S. We can then write 

Bt = by + i(LXbt)g + i(SXbt)h, 

where 

(6.9a) 

(6.9b) 

(6.10) 

/=F-2G-2H, g= -2(G+H), h= -2H. (6.11) 

We now take the reduced matrix element of both sides 
of(6.8) with respect to the states Iv[ls]jm) of(5.1O) and obtain 

(v+ 1 [I's]j'IIBtllv[ls]j) 

= L(v+ 1 [I's]j'lIbt llv[7sUI 
7 

X (F7/ (v,j,s) + [1'(/' + 1) -/(1 + l)]GlI (vjs) 

+ [j'(j' + 1) - j(j + 1) ]H71 (V,j,s)) , (6.12) 

where 

F7/ (v,j,s) = (v [/s]jmIF Iv[ls]jm), (6.13) 

and similarly for GlI (v,j,s) and H7/ (v,j,s), as F, G, and Hare 
invariant with respect to the u(2) subalgebra of sp(4). 

If we equate (6.6) and (6.12) we get a system of linear 
equations in the unknowns F7/ (v,j,s), cry/(v,j,s), H7/(V,j,s), in 
which we consider v,j,s fixed whilej' = j ± 1,j and I' takes 
all values consistent with v + 1,j' through the rules (3.15) 
while the same holds for 1,1 with respect to v,j. 
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Once we have determined the unknowns we can identi
fy them with matrix elements of definite operators that are 
functions of the generators of the sp(4) that are invariant 
under the u(2) Lie subalgebra of sp(4), thus getting in the 
form (6.10) the boson realization for given spin. 

A. B080n realization for s = 0 

When the spin s = 0 we have that J = L and thus the 
states (5.10) can be written as 

Iv[/O]lm) = I vim ). (6.14) 

The matrix elements K1'/(v,j,s) for s = 0 become 

KII(v,I,O) = ...R}(2(v,I,0) ==K (v,/), (6.15) 

and from (AlO) for s = 0 they become 

K(v/) 

= [(V + 1+ 2w + n - 2)!!(v -I + 2w + n - 3)!!] 112 • 

(2w + n - 2)!!(2w + n - 3)!! 

From (6.6) and (6.14) we now have 

(v + 1,1 , II Btll vi ) 

(6.16) 

=K(v+ 1,1'){v+ 1,1'lIbt llv/)K- I (v,l), (6.17) 

and from (6.16) we obtain for the two possibilities I' = I ± 1 
the equations 

(v + 1,1 + 1 II Btll vi ) 

= (v + I + n + 2w)1/2{ v + 1,1 + Il1bt llvl ), (6. 18a) 

(v + 1,1- II1Btllv/) 

= (v- 1+ n + 2w _1)1/2{v+ 1,1- 1 II btll vi ). 
(6.18b) 

Turning now our attention to the expression (6.8) for Bt, 
we note that as S = 0 and J = L we can write it just as 

Bt = btF + [L 2,bt ]G, (6.19) 

from which we get the matrix element 

(v + 1,1 , II Bt II vi ) = (v + 1,1 , IIbtll vi ) 

X (F(v,1) + [1'(/' + 1) 
-/(1 + 1)]G(v,I)), (6.20a) 

where 

F(v,1) = (vlmIFlvlm), (6.20b) 

as it is independent of m, and similarly for G (v,l). 
Substituting I' = I ± 1 in (6.20) and comparing with 

(6.18) we get the equations 

F(v,1) + 2(1 + I)G(v,1) = (v + 1+ 2w + n)1/2, 

F(v,1) - 2IG(v,1) = (v - 1+ 2w + n _ 1)1/2, 

from which 

F(v,1) = (21 + l)-I{/(v + I + 2w + n)1/2 

(6.21a) 

(6.21b) 

+ (I + l)(v - I + 2w + n - 1)1/2), (6.22a) 

G(v,/) = [2(21 + 1)]-I{ (v + 1+ 2w + n)1/2 

- (v - I + 2w + n - I)1/2J. (6.22b) 

From (6.9a) we see that Eq. (6.19) can also be written as 

Bt = bY + i(LXbt)g, (6.23) 
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where 

f=F- 2G, g= - 2G. (6.24) 

We can now replace in (6.22) v,1 by the operators 

N, L =(L2 + 1)1/2 - !, (6.25) 

which give precisely these eigenvalues when acting on ! vim) . 
Thus we obtain 

f(N,L) = {(L - 1)(2L + 1)-I(N +L + 2w + n)I/2 

+ (L + 2)(2L + 1)-I(N - L + 2w + n - 1)1/2), 

(6.26a) 
g(N,L) = (2L + l)-I{(N - L + 2w + n - W12 

- (N +L + 2w + n)I/2), (6.26b) 

where the square roots and reciprocals cause us no trouble as 
they are operators diagonal in the basis ! vim} . 

The expressions (6.23) and (6.26) give us then the boson 
realization of sp(4) for the spin s = 0 when they are supple
mented with 

B = (f - 2g)b - ig(LXb), 

as well as with 

(6.23') 

J=L, 

JY' = N + (w + n/2), 

(6.27a) 

(6.27b) 

where (6.27a) and (6.27b) come from (5.4b) and (5.4d) when 
S = 0, while (6.23') follows from (6.23) by Hermitian conju
gation, where we note that from (6.26)f, g are Hermitian. 

The expressions (6.23) and (6.27) are then the boson re
alization of sp(4) for S = 0 and they correspond to (2.24) for 
sp(2). We would like now to invert them to get bt and b in 
terms ofBt, B, J, andJY', as was done in (2.26) for sp(2). For 
this purpose we need only the equation 

i(JXBt) = bt(L2 - 2)g + i(LXbt)(f - 3g), (6.28) 

where to get the right-hand side we use (6.23) and (6.27a). 
From (6.23) and (6.28) we then obtain 

bt = [Bt(f- 3g) - i(JXBt)g][j2 - 3fg- (J 2 - 2~]-1, 

(6.29) 
wherefandg are given by (6.26) in which, from (6.27a) and 
(6.27b), we replace Nby JY' - (w + n/2) and L by J, where 
now 

(6.30) 

Taking the Hermitian conjugate of (6.29) we finally obtain 

b = [f2 - 3fg - (J 2 
- 2~]-I[(f - g)B + ig(JXB)), 

(6.29') 
and thus we have in (6.29) and (6.29') the boson operators for 
the "closed shell" case corresponding to s = O. 

B. Boson realization for s = I 
When the spin s = ! the states (5.10) take the form 

!v[1!)jm), (6.31) 

where I =j ±!. Thus the matrices M and Kof(6.1) and (6.2) 
for fixed v,j are 2 X 2 and besides they are diagonal, as from 
(3.15) both v - I' and v - I must be even. We have then that 

Kl/(v,j,!) = 1}f2(v,j,!), (6.32) 
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and from (A22) and (A23) for s = ! we have that 
Kj+ 1I2.j+ 1/2 (v,j,!) 

=K+(v,J1 

= [(v+ j + 2w + n - ~)!!(v-j + 2w + n _ ~)!!]1I2, 
(2w + n - 1)!!(2w + n - 4)!! 

Kj_1I2.j_I/2(V,j,!) 

=K_(v,j) 

(6.33a) 

= [(V + j + 2w + n - ~)!!(v - j + 2w + n _ ~)!!] 112 , 

(2w + n - 1)!!(2w + n - 4)!! 
(6.33b) 

where we have made use of in (A22) and (A23) that 
1oo(0,!.!) = 1 and 1 11(l,!,!) = (2w + n - 2). 

From the diagonal character of the matrix K(v,j,!) we 
see that the summation in the reduced matrix elements ofBt 
given by (6.6) disappears and thus we have 

(v + 1[/'!]j 'IIBtllv[/!]J1 

= KI·I·(v + 1,j',!)(v + 1 [I'!]j'lIbtllv[l!] J1 

XK iil(v,j,!). (6.34) 
We note furthermore that from (6.13) FI'I(v,j,!) is also diag
onalintheindices/',/asagain/',l = j ± !andv -I,v -I' are 
even. As this applies also to G and H, we see that the sum in 
the reduced matrix element ofBt given by (6.12) also disap
pears and we have 

(v + 1 [I'!] j 'liB tllv[/!] J1 

= (v + 1 [I'!] j'lIb tllv[l !1Ji 

X {Fl/(v,j,!) + [/'(/' + 1) -/(1 + 1)]GI/(v,j,!) 

+ [j'U' + 1) - j U + 1)]HI/(v,j,m. (6.35) 

Equating (6.34) and (6.35) we see that the reduced ma
trix element of b t will cancel and thus we get 

Fl/(v,j,!) + (I' -I )(1 + I' + I)GI/(v,j,!) 

+ U' - J1U + j' + 1)HI/(v,j,!) 

= KI'I'(v + 1,j',!)K iil(v,j,!). (6.36) 

We note from (3.15) that for I =j +! we have for (/',j ') 
the admissible values 

(/',j') = U + ~,j + 1), U - !,J1, U - !,j - 1), 
(6.37a) 

while for I = j - ! they become 

(/',j')=U+!,j+l), U+!,J1, U-~,j-l). 
(6.37b) 

Substituting these values in (6.36) and using (6.33) as well as 
the notation 

Fl/(v,j,!) = Fj ± 1I2,j ± 1/2 (v,j,!) == F ± (v,J1, (6.38) 

and similar ones for G,H, we obtain two sets of three linear 
equations, one for the unknowns F +,G +,H + and the other 
for F _,G -,H _. Thus we easily determine the six unknowns 
as functions of v,j in a similar fashion as we did in (6.22) for 
s=O. 

We want though to express F ± ,G ± ,H ± not as func
tions of v, j but as operators invariant under the u(2) subalge
bra of sp(4). For this purpose we note that, for fixed v,j, the 
2x2 matrix 
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F(v,j) = 11F1'/(v,j,!)II, 1',1 = j ± !, (6.39) 

becomes 

F(v,jl = [F+b',jJ ~], if v -j -!is even, (6.40a) 

F(v,jl = [~ F _~V,jJ, if v - j - ! is odd. (6.40b) 

Thus if we want to write it in operator form we need projec
tion operators that distinguish between the two cases. Using 
L2, whoseeigenvaluesare/(1 + 1) with I =j ±!, weimmedi
ately notice that the operators 

[ - (2J - 1)14 + L2/(2J + 1)], 

[(2J + 3)/4 - I}/(2J + 1)], 

(6.41a) 

(6.41b) 

where J is given by (6.30), have the appropriate projection 
property as for fixed v,j, (6.41a) has the matrix representa
tion 

[~ ~], if v - j - ! even, 

(6.42a) 

[~ ~], ifv-j-!odd, 

while for (6.41b) we obtain 

[~ ~], if v - j - ! even, 

[~ ~], ifv-j-!odd. 

The operator F can then be written as 

F=F+(N,J) [_ 2J-l +~] 
4 2J+ 1 

(6.42b) 

+F (NJ) [2J+3 -~] (6.43) 
-, 4 2J+l' 

where the F ± (N,J) are obtained when we replace in 
F ± (v,j),v by N = bt • b andj by J of (6.30). A similar result 
holds for the operators G and H also appearing in (6.8). 

Writing now Bt in the form (6.10), wheref,g,h are relat
ed with F,G,H by (6.11) we finally obtain that the former 
have the operator form 
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f= (4.,,-1[(2J + 3)(N -J + 2m + n _ !)1/2 

+ (2J - 3)(N + J + 2m + n _ !)1/2] 

X[ - (2J - 1)14 + L2/(2J + 1)] 

+ [4(J + 1)] -I [(2J + 5)(N -J + 2m + n _ ~)1/2 

+ (2J - I)(N +J + 2m + n + !)1/2] 

X[2J + 3)/4 - L2/(2J + 1)], 

g = (2J)-I[(N - J + 2m + n _ !)1/2 

- (N + J + 2m + n _ !)1/2] 

X [- (2J - 1)14 + L2/(2J + 1)] 

+ [2(J + 1)]-I[(N -J + 2m + n _ ~)1/2 

- (N + J + 2m + n + !)1/2] 
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(6.44a) 

X [(2J + 3)14 - L2/(2J + 1)], 

h=2g. 

(6.44b) 

(6.44c) 

The boson realization ofsP(4) for s = ! is given by the Bt 
of (6. 10), in whichf,g,h have the form (6.44), by the B which 
is the Hermitian conjugate of Bt, by J = L + S, and by 
JV = N + (U + n/2. Thus we have an explicit, analytic, and 
closed realization for one case of "open shells." 

c. The matrix form of K for s = 1 

We saw from (6.6) and (6.12) that a boson realization of 
sp(4) is possible for any spin s for which we know the matrix 
elements K1'/(v,j,s). This was corroborated in the previous 
subsections for s = O,!. For s = 1 the analysis is similar 
though longer and we shall only indicate here how we arrive 
at the matrix elements of K. 

When the spin s = 1, the states (5.10) have 1= j ± l,j, 
and v - I must be even. Thus the matrix M of (6.1), whose 
elements we designate, as in Appendix A, by 

MT'r(v,j,I) = vRi+T'.i+r(v,j,I), 7,7' = 1,0, - 1, 
(6.45) 

vanishes except for Moo(v,j,I) when v - j is even, while for 
v - j odd only the matrix elements with 7,r' = ± 1 remain. 
The set of equations (A 7) lead us then to recursion relations. 
We use one of them to find the element denoted by 1 later on 
in Fig. 2, which is given explicitly by (A 10) when we put in it 
s = 1 and thus for v - j odd we have 

MI._I(v,j,I) 

= 3(2j + I)-I[j(j + l)(v - j + I)(v + j + 2)120j1/2 

X (v + j + 2m + n - 3)!! (v - j + 2m + n - 4)!! 
(2m + n)!! (2m + n - 3)11 

XMI._ d2,I,I), (6.46a) 

where, from another of the recursion relations (A 7) we get 

M 1._d2,I,I)= -4$[3(2m+n-2)]-I. (6.46b) 

For v - j even the recursion relations lead to the explicit 
expression (A13), which for s = 1 gives 

M. (v . 1) = (v - j + 2m + n - 3)II(v + j + 2m + n - 2)!! 
00 ,j, (2m + n - 3)!!(2m + n)!! ' 

(6.47) 
where we took Moo(I,I,I)= 1. 

We use other recursion relations (A7) to find for v - j 
odd the matrix elements 

Mll(v,j,I) = {(V - j + 2m + n - 3) 

+_3_ (v-j+ 1)(j+ 1) M (211)} 
"fiO (2j + 1) I. - I " 

X Moo(v - l,j,I), (6.48) 

M _1._I(v,j,I) = {(v+ j + 2m + n - 2) 

+_3_ (v+j+2V M _ (2,t,I)} 
"fiO (2j + 1) I, I 

XMoo(v - I,j,I), (6.49) 
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and as M I, -I (2, I, 1),Moo(v - l,j,l) are already given above 
we have determined all the matrix elements of M as 
M _ 1,1 (v,j,s) = M I, _ I (v,j,s) because of the symmetric char
acter of M. One easily checks that the M",.,.(v,j, 1) obtained 
above satisfy all of the recursion relations (A 7). 

We turn now our attention to the matrix K of (6.2) 
whose elements we also write in the notation (6.45), i.e., 

K.,...,.(v,j,l) == Kj+ "'J+ .,.(v,j,I). (6.50) 

For v - j even, as M is a diagonal matrix with only 
Moo(v,j,l) nonvanishing, we get 

Koo(v,j, 1) = M ~2(V,j, 1), (6.51) 

with all other elements being zero. For v - j odd we consider 
the 2 X 2 matrix made up of the nonvanishing elements of 
M",.,.(v,j,I), i.e., 

[ 
MI,dv,j,l) MI. - dv,j,l) ] =.a [a r] (6.52) 

M _1.dv,j,l) M -I. _ dv,j,l) r lJ' 

where from (6.46), (6.48), and (6.49) we have 

.a = [(2m + n - 2)(2j + 1)]-IMoo(v- l,j,I), (6.53a) 

a = [(2j + 1)(2m + n - 2)(v - j + 2m + n - 3) 

- 2(v - j + 1)(j + 1)], (6.53b) 

r = - 2[j(j + 1)(v -j + 1)(v + j + 2j]1/2, (6.53c) 

lJ = [(2j + 1)(2m + n - 2)(v + j + 2m + n - 2) 

- 2j(v + j + 2)]. (6.53d) 

The eigenvalues of the matrix (6.52) will be denoted by 

A2± =.a/2{(a+lJ)± [(a_lJ)2+4yjI/2), (6.54) 

while the orthogonal 2 X 2 matrix that diagonalizes it de
pends only on an angle tfJ given by 

cos 2tP = (a -lJ)/[(a _lJ)2 + 4yF/2 

or (6.55) 

sin 2tP = 2r/[(a _lJ)2 + 4Yr 12• 

Thus for v - j odd the 3 X 3 matrix K of (6.4) takes the form 

[

HA+ + ...1._ + (...1.+ - A_)cos 2tP ] 
K= 0 

~(A+ - A_)sin 2tP 

!(A+ - A_)sin 2tP 1 
00, 

o HA+ +...1._ - (...1.+ -A_)cos2tP] 

o 
(6.56) 

while for v - j even, its only non vanishing matrix element is 
given by Koo(v,j,l) of(6.51). 

With the help of these K's the matrix elements in (6.6) 
can be evaluated, and thus from (6.12) we can in turn get the 
matrix elements of the operators F, G, and H in the basis 
(5.10). These matrices can be transformed into operators but 
now they will not only be functions of N ,J,L 2, as in (6.44), but 
will depend also on other invariants of the u(2) Lie subalge
bra of sp(4) that we can form from b T, bi> and Si> as will be 
suggested by the classical analysis presented in the next sec
tion. 

VII. THE CLASSICAL LIMIT 

In the present section we want to consider both the ten 
generators of sp(4) in (3.1) and the nine generators of 
w(3) e su(2) in (5.1), as classical observables. We wish then to 
express the generators of sp(4) as functions of those of 
w(3) e su(2) and of the parameter w in such a way that they 
satisfy the classical counterpart of the commutation rela
tions in (3.2), i.e., when we replace there the commutators by 
Poisson brackets 

[F,G]_i{F,G}. (7.1) 

As in the Introduction, we start by discussing the corre
sponding problem for sp(2), which will not only serve as a 
guideline for the sp(4) case, but will also show us how much 
more complicated is the latter case as compared with the 
former. 

We deal in sp(2) with the observables B t, C, B, which 
from (2.1) satisfy the Poisson bracket relations 
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{C,Bt} = -2iBt, 

{C,B} = 2iB, 

{B,Bt} = - 4iC. 
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(7.2a) 

(7.2b) 

(7.2c) 

j 

Furthermore we would like to express B t, C, B as functions 
of the boson observables b t and b (whose Poisson bracket is 
{b t,b } = 11 as well as a parameterw which characterizes the 
irrep of sp(2). From the relation between standard Poisson 
brackets and those in terms of creation and annihilation ob
servables2s we see that 

(7.3) 

To achieve our purpose we first note that the classical 
counterpart of the relation between C and N = b tb, given in 
(2.24c), is 

c= 2N +w, (7.4) 

as the term n/2 appearing in (2.24c) comes from 
!~:= I 1S.77. - 77.S.), when [S.,77,) = lJ.t , while classically 
this term vanishes. 

Turning now our attention to B t, B, considered as clas
sical observables, we immediately see from (7.3) that 

Bt =/(N)bt, (7.5a) 

B=/(N)b (7.5b) 

will satisfy the Poisson bracket relations (7.2a) and (7.2b) for 
an arbitrary real function/IN). To determine/we could use 
the relation (7.2c) but it is more direct to employ the classical 
Casimir operator-Of-sp(2), which has the form2 

G=1(BtB-C 2
), (7.6) 

as, from (7.2), the Poisson bracket of G with B t, B, and C 
vanishes. The value of this Casimir operator can be ob
tained from (2.5) when we disregard n and 2 as compared 
with w, i.e., 

(7.7) 

Castanos et a/. 2117 



                                                                                                                                    

From (7.SH7.7) we then get 

BtB-C2=Nf2_(2N+0))2= _0)2, (7.8) 

from which we obtain 

fIN) = 2(N + 0))1/2. 

Thus th~ classical realization of sp(2) is given by 

Bt = 2(N + 0))1/2b t, 

C=2N +0), 

B = 2(N + 0))1/2b, 

(7.9) 

(7. lOa) 

(7. lOb) 

(7.lOc) 

as would also follow from (2.24) if we disregard there n/2. 
From (7.10) we see that the Casimir operator (7.6) takes the 
value - 0)2/4 and, from (7.3), the generators ofsp(2) satisfy 
the Poisson bracket relations (7.2). 

We wish now to see how far we can go in extending the 
previous analysis to the generators ofsp(4), i.e., in expressing 
the observables B r, J j , B j, JY" [that satisfy the Poisson brack
ets obtained from (3.2) and (7.1)] in terms ofb i, bj' Sj' Note 
that now the Poisson bracket relation in terms of the latter 
variables becomes2S

•
26 

{F.G} - . (aF aG aF aG) aF aG S 
, -I ab t ab"- ab ob t + as !Ie< Eijk k, 

j j j I j U~j 

(7.11) 

where repeated indices i,j, k are summed from 1 to 3. The 
expression (7.11) corresponds for sp(4) to (7.3) for sp(2). 

To achieve our purpose we first note that from (S.4b) 
and (5.4d) the classical expressions for the generators Jj , JY" 
for the u(2) Lie subalgebra of sp(4) are given by 

J=L+S, 

JY"=N +0), 

where 

L = - i(btXb), 

N=btob. 

(7. 12a) 

(7.12b) 

(7. 12c) 

(7. 12d) 

We turn now our attention to Bt considered as a classi
cal observable. As it is a vector, we can expand it in terms of 
three independent vectors and from (6.10) we choose these to 
be 

bt, i(LXbt), i(SXbt). (7.13) 

We can then write 

Bt =./bt +gi(Lxbt) + ih (SXbt), (7.14) 

where, from the discussion in Sec. VI, we see that we can take 
f, g, and h as real and functions of b t, b, and S that are 
invariant under the u(2) Lie subalgebra of sp(4). From 
(7.12a), (7.12b), and (7.14) we see then immediately that 

as 

{JiJB ]} = EijkBL (7.1Sa) 

{JY",B]} = -iBJ, (7.1Sb) 

{Jj,j} = {L j + SiJf} = 0, 

[JY",j} = [N,j} = 0, 

(7. 16a) 

(7. 16b) 

and similarly for g and h. Taking the conjugate of(7.14) we 
then obtain 

B =./b - ig(LXb) - ih (SXb), (7.17) 
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where (7.14) and (7.17) are for sp(4) what (7.S) was for sp(2). 
Our next task is to try to determine f, g, and h, and, 

following the discussion for sp(2), we would like to use for 
this purpose the Casimir operators of sp(4), which, in the 
classical picture, have the form27 

G2 =JY"2 +J2 
- Bt 0 B, (7.18) 

G4 =JY"2J2 + i./V[J 0 (BtXB)] -1(Bt XB)2 

- (J 0 Bt)(J 0 B), (7.19) 

where the indices 2 and 4 are used to indicate their degrees in 
the generators of sp(4). 

We now need to determine the value of these Casimir 
operators in terms of the O),s that characterize, through (3.7) 
and (3.8), the irrep of sp(4). For this purpose we go back to the 
quantum picture and apply these operators to the lowest 
weight state 100s) of (3.S). As B; 100s) = 0 we have only to 
consider the action of JY"2, J2 on this state and, going back to 
the classical limit where nl2 or 1 can be disregarded as com
pared to s or 0), we get 

G2 =0)2 +~, 

G4 = 0)2S2, 

(7.20a) 

(7.20b) 

which are the equations that for sp(4) correspond to (7.7) for 
sp(2). 

As the value of ~ is also associated with the observable 
S 2 in the enveloping algebra of w(3) al su(2), we can then write 
two algebraic equations for the three unknownsf, g, h in the 
form 

G2 - 0)2 - S2 = 0, (7.21a) 

G4 - 0)2S2 = 0, (7.21b) 

where in G2, G4 we replace J = L + S, JY" = N + 0) and Bt, 
B by (7.14) and (7.17). The coefficients of powers off, g, h in 
these equations are necessarily invariant of the u(2) Lie su
balgebra of sp(4) and in fact only the following six invariants 
appear: 

N, L2, LoS, S2, 

A == (bt 
0 S)(b 0 S), (7.22) 

D == [(bt 
0 bt)(b 0 S)2 + (b 0 b)(bt 

0 S)2]. 

The two algebraic equations given below are then those cor
responding to (7.21a) and (7.21b), i.e., 

f 2N - 2fgL 2 - 2fh (L 0 S) + g2NL 2 + 2ghN(L 0 S) 

+ h 2NS 2 _h 2A - (N 2 + 20JN 

+L 2+2LoS)=O, (7.23a) 

UPN - 2fgL 2 - 2fh (L 0 S) + g2NL 2 + 2ghN(L 0 S) 

+h2(NS2_AJ]2 

- 1{(N2 _L2)[f2 _g2L2 - 2ghLo S - h 2S2j2 

+ h 4A 2 + h 2[f2 - g2L 2 - 2gh LoS - h 2S2]D} 

- (N + 0)){2fhA + gh (D - 2NA) + [h 2(L 0 S) 

- 2fhN + 2ghL 2](S2 + LoS) 

+ (f2 - 2fgN +g2L2)[L 2 + Lo S]} 

- [[f+ (h -g)N]2A 

+ (h - g)2(N2 - L 2)A - [f + (h - g)N](h - g)D } 
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+ {S2(N2 + 2Nw) + (N 2 + 2Nw + ( 2) 

X[L 2 +2(LoS)]} =0. (7.23b) 

These equations play for sp(4) the role that (7.8) played 
for sp(2) and we see how much more complicated is the pres
ent problem. Furthermore they already show us that it will 
not be possible to obtain explicit, analytic, and closed expres
sions forf, g, and h as functions ofthe six u(2) invariants in 
(7.22). This follows from the fact that the quadratic equation 
(7.23a) allows us, for example, to express h in terms off and g 
with one square root. Substituting in the fourth-order equa
tion (7.23b) and squaring to eliminate the square root we get 
an eighth-degree algebraic equation inf and g which cannot 
be solved analytically to give, for example, g as a function of 
f. 

But even if hand g could be given as explicit closed 
functions off, we would still have the problem of determin
ing the latter. We no longer have at our disposal Casimir 
operators, so we would have to use Poisson brackets of the 
generators of sp(4). Rather than employ them directly it is 
more convenient to consider scalar functions ofthem such as 

(J 0 Bt), 

(JoB), 

(7.24a) 

(7.24b) 

whose Poisson bracket is, from (3.2) and (7.1), given by 

{(JoBt),(JoB)} = - [Jo(BtXB)] +2iJ 2ff. (7.25) 

From (7.11), (7.14), and (7.17) we obtain 

(J 0 Bt) =f(bt 
0 S) + i(h -g)[(LXS) 0 btl. 

(J 0 B) =f(b 0 S) - i(h -g)[(LXS) 0 b], 

- i[J 0 (BtXB)] 

= [p - 2fgN +g2L 2 + 2gh (Lo S)] 

(7.26a) 

(7.26b) 

XL 2 + [/2 - 2jhN + h 2(L 0 S) - 2fgN + g2 L 2] 

X (L 0 S) + gh (D - 2NA ) + [ - 2fhN + 2ghL 2 

+ h 2(L 0 S)]S2 + 2fhA, (7.26c) 

and thus, from (7. 12a), (7. 12b), and (7.26), we see that (7.25) 
gives us a partial differential equation involvingf, g, and h, 
which together with the equations (7.23a) and (7.23b) could 
determine these three unknown functions. It is clear, 
though, from the above discussion, that this will not give usf, 
g, and h as explicit, analytic, and closed functions of the six 
u(2) invariants of(7.22), thus corroborating the quantum me
chanical discussion of Sec. VI. 

VUlo CONCLUSION 

The discussion carried out in this paper on the boson 
realization of sp(4) covers two main aspects. In the first one 
we illustrate in a simple fashion how to obtain the Dyson 
boson realization and then we pass it to Holstein-Primakoff 
form through a similarity transformation with an operator 
K, getting the equation (5.7) that K 2 satisfies. In Appendix A 
we show that for definite irreps ofSp(4) the matrix represen
tation of K 2 can be found in an explicit, analytic, and closed 
form. 

The second aspect, discussed in Sec. VI, shows through 
Eqs. (6.6) and (6.12) that an explicit, analytic, and closed 
form for the boson realization of sp( 4) is possible if the matrix 
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expression of K is known. The problem, though, is that to get 
the matrix representation of the operator K from that of K 2 

implies, in general, the solution of algebraic equation of high 
degree which cannot be done analytically. Thus the boson 
realization of sp(4) equivalent to the simple and well-known 
expression for sp(2) rederived in (2.24), is only possible in 
some special cases when K can be obtained analytically as 
illustrated explicitly for s = O,! in Sec. VI. 

A discussion for the classical limit, in which the opera
tor K does not appear, illustrates again through the high
degree algebraic equations associated with the Casimir oper
ators, that a boson realization in an explicit, analytic, and 
closed form is, in general, not feasible. 

The analysis carried out for sp(4) is clearly susceptible 
to generalizationl 9-21 to sp(2d), so the conclusions indicated 
in the previous paragraphs are also applicable to the more 
general case. We note, though, that while the matrix repre
sentation K cannot be obtained from K 2 analytically, there is 
no problem for getting it numerically and thus the proce
dures developed in previous references l

9-21 are applicable to 
the determination of the matrix elements of the generators of 
the Lie algebra sp(2d ) in a basis associated with an irrep of 
the chain of groups Sp(2d ):J U(d). Because of its simplicity 
we illustrate this well-known point in Appendix B for the 
cases d = 1 and 2. 
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APPENDIX A: MATRIX REPRESENTATION OF J<2 

We start by considering in the recursion relation (5.15) 
the notation 

I =j + r, (AI) 

in which r goes from - s to s in steps of 1 but subject to the 
restriction (3.15). We then can write 

JiI'I(V,j,s) == MTr(V,j,s), 

and express (5.15) as 

L RTT(V,j,j ')Mrr(v,j,s) 
T 

(A2) 

= L Ma (v - l,j ',s)TT'r(v,j,j '), (A3) 
T' 

where 

RT,,(v,j,j') = (v - 1[j' + r',s]j 'lib Ilv[j + r,s]JJ, 

(A4a) 

TT'r(v,j,j ') 

= {v + 2w + n - 2 + H (j , + r')(j' + r' + 1) 

- (j + r)(j + r + 1)] 
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- j'(j' + 1) + j(j+ 1)}RT'T(v,j,j'), (A4b) (a) Forj' =j± 1, 
where the reduced matrix elements 01 b III are given by (5.16)
(S.IS). 

R"'T(V,j,j + A) = ~ (v,j)B"'T + b ~ (V,iJt5"'.T- w (AS a) 

T",.Av,j,j + A) = u~ (V,jJt5"'T + z¢ (V,iJt5"'.T_ u, (ASb) The evaluation of the matrices R and T for the three 
casesj' = j ± 1 andj' = j is immediate so we have the fol
lowing. 

wherethecoefficients~, b~, u~, andZ¢, with A = ± 1, are 
given by 

~(v'll 
= _ [(2j + 1" +s +A + 2)(2j + 1" +s +A + 1)(2j + 1" -s +A + 1)(2j + 1" -s +A)(V -A1" -Aj - (A - 1)12)]112 

4(2j + 21" + U + 1)(2j + 21" + 1)(2j + U + 1)(j + (A + 1)/2) , 

(ASc) 

bA. (v ? = _ [(S + A1" + 2)(s + A1" + 1)(s - A1")(S - A1" - l)(v + Aj + A1" + (A + 5)/2) ]112 
'" ,l 4(:q + 21" + 4A + 1)(2j + 21" + U + 1)(2j + U + I)(j + (A + 1)/2) , 

(ASd) 

u~(v'll = [v - Aj + A1" + 2m + n - (A + S)/2]~(v'll, (ASe) 

and 

z¢ (v,ll = [v - 3Aj - A1" + 2m + n - ~(A + 3)] b ~ (v,j). 

(b) Forj' =j, 

R"'T(v,j,ll = a~ (v,lIB"'.T _ I + b ~ (V,l1B"'.T + I' 

T"'T(V,j,l) = u~(v'lIB"'.T_1 + v~(V,f)B"'.T+ I' 

(ASt) 

(A6a) 

(A6b) 

where the coefficients a~, b ~, u~, and v~ are given by 

aO (v') = _ [(2j + 1" + s + 2)(2j + 1" - S + l)(s + 1" + 1)(s - 1")(v + j + 1" + 2)] 112 (A6c) 
'" ,l 4(2j + 21" + 3)(2j + 21" + l)j(j + I) , 

b O (v 11 = [(2j + 1" + s + 1)(2j + 1" - s)(s + 1")(s - 1" + 1)(v -j -1" + 1)] 112, (A6d) 
'" ,}, 4(2j + 21" - 1)(2j + 21" + 1)(j + l)j 

u~(V,ll = (v - j -1" + 2m + n - 3)a~(v,ll, (A6e) 

and 

v~ (v,ll = (v + j + 1" + 2m + n - 2)b ~ (V,l)' (A6t) 

Substituting the matrices Rand T in Eq. (A3) we get three sets of recursion relations for M. These are 

a;J(v J1M"'T(V,j,s) + b ;J(v,l1M", +2.T(V J,s) = M"'T(V - l,j + 1,s)u/(v,j) + M"'.T_2(V - l,j + 1,s)vT+_ 2(v,ll, (A7a) 

a~(v,j)M", + I.T(V,j,s) + b~(V,l1M"'_I.T(V,j,s) = M"'.T_I (v - l,j,s)u~_1 (v,ll + M"'.T+ I (v - l,j,s)v~+ I (v,ll, (A7b) 

and 

a;; (v J1M",Av,j,s) + b ;;(v,l1M"'_2.T(V,j,s) = M"'T(V - l,j - 1,s)uT- (v,l) + M"'.T+2(V - I,j - 1,s)vT-+ 2(v Jl, (A7c) 

where we defineaf =afl,bf =bfl,uf =ufl,andvf =Vfl. 
First of all, we illustrate in Fig. 1 what elements of the matrix M are connected by each set of recursion relations. We use 

the symbols +,0, and - to represent the elements connected by the sets (A7a), (A7b), and (A7c), respectively. 
To solve the recursion relations (A 7) we have to distinguish two different cases: one of them when the spin s of the intrinsic 

state is an integer and the other when s is a half-integer. This is due to the fact that the matrix IIM"'T(V,j,s)1I has elements 
different from zero only when 1" - l' is an even number. 

1. The case of Integer spin 

We shall begin by discussing the procedure to solve the recursion relations for the case when s is an integer. 
We first consider the matrix elementsM"'T when (1",1') = (s, - s) in Eq. (A7a) and (1",1') = ( - s,s) in Eq. (A7c), i.e., 

Ms. _ s(v,j,s) = [u ~ s(v,llla/ (v,l) ] Ms. _ s(v - 1,j + 108), (AS) 

M_s.s(v,j,s) = [Us-(v,llla=s(v,j)]M_s,s(v-l,j-l,s), (A9) 

where ~, u~ are given by Eqs. (ASc) and (ASe). It is easily proved that the matrix M is symmetric so that we can solve the ho
mogeneous recursion relations (AS) and (A9) if we define x = v + j, y = v - j, and W(x, y) == Ms. _ s(v,j,s). The solution is 
given by 
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M (. { (2j - 18 + 1)!!(2j + 18)I!(v - j + s)II(4s -1)!!(v + j + s + I)!! } III 
s, - s V,j,s) = (2j + 1 )(18)!(2j _ 18)!!(2j + 18 - 1 )!!(v - j - s)II(4s + 1)I(v + j - s + I)!! 

(18+1)!l(v-j-s+2aJ+n-3)!l(v+j-s+2aJ+n-2)1I M (18,s). (AW) 
X (2aJ + n _ 3)1l(18 + 2aJ + n _ 2)!! S,-s ,s 

We continue by establishing the recursion relations (A7a) and (A7c) for the matrix elementMs_I,_s+ I' i.e., 

Ms-I,-s+ dv,j,s) = [u~s+ dv,jVas~ dv,j)]Ms_I,_s+ dv - l,j + 1,s), (All) 

Ms_1,_s+ dv,j,s) = [us-_ dv,jVa=s+ dv,j1]Ms_I,_.+ dv - l,j - 1,s), (AI2) 

where ~, and u~ are given by Eqs. (AS c) and (ASe). These homogeneous recursion relations can be solved in a form similar to 
that applied to (AS) and (A9), so that we get 

Ms _ I, - s+ I (v,j,s) 

[ 
(18 + 1)(18 + 2)!(v - j + s - 1)!!(2j - 18 + 3)!!(2j + 18)1l(2j - 1)!!(2j - 2)II(v + j + s)!! ] 112 

= 3(4s - 1)(4s)1l(2j - 18)!!(2j + 18 - 3)U(2j + 1)!l(2j + 2)1l(v - j - s + 1)l!(v + j - s + 2)!! 

X (v-j-s+2aJ+n-2)II(v+j-s+2aJ+n-ljll M (18-1) 
(18 _ 2)!!(2aJ + n _ 3)!!(18 + 2aJ + n _ 2)!l s-I, -s+ I ,s,s. (A13) 

Until now we have found the matrix elementsMs, -s andMs_ I. -s+ I' which are denoted in Fig. 2by 1 and 2 to stress that 
they were first to be evaluated. Before we can solve the inhomogeneous recursion relations associated toMs _ 2, _ s + 2 (v,j,s), we 
need to know Ms, _ s+ 2 (v,j,s) and Ms _ 2. _ s (v,j,s), which we designate by 3 and 3' to indicate that they are the next to be filled. 
These elements are obtained from Eq. (A7b) with the values (1",1') = (s, - s + 1) and (1",1') = (s - 1, - s), i.e., 

Ms, -s+2(V,j,s) = [b~(v + l,j)lvo
_ s+2(v + l,j1]M._ 1, -s+ dv + l,j,s) - [UO_s(v + l,jVv~s+ 2(V + l,j)]Ms, _s(v,j,s) 

(AI4) 

and 

Ms- 2,_s(v J,s) = [VO_ s+ dv,jVb~_ dv,j)]Ms_1,_s+ dv - l,j,s) - [a~_ dv,jVb~_ d v,j1]Ms, _s(v,j,s), (A1S) 

where the terms b~, v~, uo_ s' and a~_1 are given in (A6cHA6f), Ms_ 1, -s+ I is given in Eq. (AI3), andMs, -s in Eq. (AI0). 
Now, the recursion relations for Ms _ 2, _ s+ 2 (v,j,s) are the following: 

M ( .) u~'+2(v,j1 M (1' 1) s-2,-s+2 V,j,s - + ( ~ s-2,-s+2 v- ,j+ ,s 
a._ 2 V,j} 

= v~s(v,jl M (v-l '+ 1 )_ bS~2(v,jl M (v . ) 
+ ( 11 s-2,-s ,j ,s + ( .) .,-.+2 J,s as_ 2 V,h as_ 2 V,j 

and 

( .) us-_ 2 (v,j) M (1' 1) 
Ms- 2,-s+2 V,j,s - _ s-2,-s+2 V - ,J - ,s 

a -s+2(v,J1 

vs- (v,j1 . b =s+ 2 (v,j1 . 
----Ms _s+2(V - I,J - 1,s) - M._ 2,_s(v,j,s). 
a=s+2(v,j1 ' a=s+2(v,jl 

We see that they can be written symbolically in the form 

W(x,y) =/I(x,y)W(x,y - 2) +gl(x,y), 

W(x, y) = nx, y)W(x - 2, y) + g2(X, y), 

where we define x = v + j,y = v - j, and W(x,y) = Ms_ 2,_S+2(V,j,s). These two relations are of the type 

Z,.+I = a,. Z,. +b,., 

whose solution is given by 
n n-ln-l-t 

Z,.+ I = II a"_k Zo + L II a"_kb, + b,.. 
k=O ,=0 k=O 

(AI6a) 

(AI6b) 

(AI7a) 

(AI7b) 

(AlS) 

(AI9) 

Then we can obtain the element Ms _ 2, _. + 2 (v,j,s), which we denote by 4 in Fig. 2. To continue we would like to get 
M. _ 3, _ s + 3 (v,j,s), for this we need to know the matrix elements denoted by S and S' in Fig. 2. The latter can be obtained from 
Eq. (A 7b) in terms of matrix elements already known. Once we have them, we can deduce directly the elements M s, _ s + 4 and 
Ms _ 4, _ s indicated by 6 and 6' as well as Ms _ 3, _ s + 3' denoted by 7, by solving recursion relations of the same type as (A 17). 

The cases we have discussed so far suggest a general algorithm to obtain the remaining elements ofthe matrix IIMT'rll, 
namely the elements outside the secondary diagonal are obtained successively from Eq. (A 7b) in terms of three other elements 
previously known, and the elements in the secondary diagonal are obtained from inhomogeneous relations of the same type as 
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(A 17), in which enter some of the elements outside the secondary diagonal that were determined at a previous stage. 

2. The case of half-Integer spin 
When s is a half-integer we first obtain the matrix element Ms, _ s + I (v,j,s), which appears in Fig. 3 denoted by 1. The 

recursion relations for it have the form 

Ms,_s+dv,j,s) = [u~s+dv,j)las+(v,JI]Ms,_s+dv-1,j+ I,s), 
Ms, _ s + I (v,j,s) = [us- (v,J}/a = s + I (v,J) 1Ms, _ s + I (v - 1,j - 1,s), 

(A20) 

(A2I) 

where ~ and u~ are given by Eqs. (ASc) and (AS e). Their solution is given by 

Ms, _ s+ dv,j,s) 

_ [(2j - 2s + 3)!!(2j + 2s)II(v - j + s - I)I!(v + j + s + 1)"(2J)"(2j - 1)"(2s + 1)(2s + 2)(2s + 2),,]112 
3(2j + 2)"(2j - 2s)"(2s - 1)"(2j + 2s - 1)"(4s)!!(2j + 1)"(4s + l)(v + j - s + 2)"(v - j - s)" 

X (v + j - s + 2al + n - 2)"(v - j - s + 2al + n - 2)1! M 2s 
(2s + 2al + n _ 2)!!(2al + n _ 2)!! s, - s+ d ,s,s). 

(A22) 

The matrix element Ms _ I, _ s (v,j,s), denoted by 2 in Fig. 3, is obtained solving recursion relations similar to those ofEqs. 
(A20) and (A21). Thus we have 

Ms _ I, - s (v,j,s) 

[ 
(2j - 2s + 1)"(2j + 2s)"(v - j + s)"(v + j + s)!!(2s + 1)(2s)(2s)!! ] 112 

= (v - j - s + 1)"(2s - 1)!!(4s - 1)(4s)!!(2j + 1)(2J)(2j - 2s)"(2j + 2s - 3)"(v + j - s + I)!! 
X (v-j-s+ 2al +n - 3)!! (v+j-s+2al +n -1)" M 2s- 1 s . 

(2al + n - 4)!! (2s + 2al + n _ 2)" s - I, -.( , os) 
(A23) 

Next we can extablish, with Eqs. (A7a) and (A7c), the recursion relations for the matrix elementMs _ l , _s+2(V,j,S), which is 
denoted by 3 in Fig. 3, i.e., 

Ms_ I,_s+2(v,j,s) - [u ~S+2(v,J}/as-t:.. dv,JI]Ms-I.-s+2(v - 1,j + I,s) = [v~s(v,j)/as-t:..1 (v,J)]Ms_I,_s(v - 1,j + 1,s), 
(A24) 

Ms_ I, -s+2(V,j,s) - [us-=- dv,J}/a =s+2(v,J)]Ms- I, -s+2(V - 1,j - 1,s) = - [b =s+2(1I,J}/a =s+ 2(v,j)]Ms_ I, _s(v,j,s). 
(A2S) 

These are of the same form as those in (A16). Thus, their solution has the form (A 19). Using Eq. (A 7b), we can evaluate directly 
the matrix elements denoted in Fig. 3 by 4 (Ms _ 2, _ s + I ), 4' (Ms, _ s + 3 ), and S (Ms _ 3, _ s) in terms of matrix elements already 
known. Once we have 4 and 4', by means of recursion relations of type (A 17), we can deduce 6 (Ms _ 2, _ s + 3 ). 

The cases we have discussed so far suggest a general algorithm to obtain the remaining elements of the matrix 11M Tr II 
namely the elements M r , _ r + I are obtained from inhomogeneous relations of the same type as (A 17), in which some of the 
previous matrix elements enter; the elements that differ from M r , _ t + I are obtained successively from Eq. (A6b) in terms of 
other three elements previously known. 

APPENDIX B: MATRIX ELEMENTS OF THE 
GENERATORS OF SP(4) 

Again, as in Sec. II and the beginning of Sec. VII, we 
start by discussing first the case of sp(2). The normalized28 

states that are the basis for an irrep w + nl2 are, from (2.4), 
given by 

Ivw] = [ (2al + n - 2)" ]1I2 Iv,W) 
(2v)!!(2v + 2al + n - 2)" 

T T 
T' t T' 

~ _TI T 

-Til 
(a) (b) 
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T' 

_[ (2al+n-2)!! ]1/2Btvw 
- (2v)!!(2v + 2al + n - 2)" ( ) I ) (Bl) 

so that the matrix elements of B t become 

[v + l,wl B t Iv,w] = [(2v + 2)(2v + 2al + n)] 1/2, (B2) 

while that of B can be obtained by Hermitian conjugation 
and the one of C is trivial. 

On the other hand, if we take 

Bt =KbtK- I (B3) 

T 

t _TO. FIG. 1. We indicate symbolically the 
matrix elements Mrr(vJ,s) that are con
nected by the recursion relations in 
equations (a) (A7a), (b) (A7b), and (c) 
(A7c). We write double symbols when 
the matrix element appears two times in 
the recursion relation. 

(c) 
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T -5+5 -5+3 -5+l 

T' -5+6 -5+4 -5+2 -5 

5 10 6 3 1 
5-1 9 5 2 
5-2 8 4 ?) 

5-3 7 :) 
5-4 / 8' 6' . . g . 

10' 

FIG. 2. We denote the matrix elements M",(vJ,s) for integer s by ordinal 
numbers 1,2, ... to indicate the order in which they are evaluated. 

and we use the basis I v) of (2.18) as well as the expression of 
the matrix element of K given in (2.22), we immediately ob
tain 

(v + 11 Bt Iv) = [(2v + 2)(2v + 2w + n)Jl12, (B4) 

which coincides with (B2) as we expect. 
From the analysis for sp(2) we immediately conclude 

that in the case of sp(4) we get the matrix elements of B t if we 
use 

BT =KbTK- 1 

and the basis of states Iv[lsJim) of (5. 10), i.e., 

(v+ 1[I's]IIIB t ll v [1s1Jl 

= r[KI'7'(V + IJ',s)(v + 1 [7's] 
7,7' 

xlii b t Ilv[7s] 11 K ii1(v,j,s)}, 

(B5) 

(B6) 

where the reduced matrix element of b t given in (5.17), 
(5.18), and K,.,(vJ,s) is discussed in Sec. VI. The matrix ele
ments of B/ are obtained by Hermitian conjugation and 
those of Jj , JY' are trivial. 
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The two-missing label problem for basis vectors of an SO(5) irreducible representation reduced 
according to the principal SO(3) subalgebra is considered. A pair of commuting Hermitian 
operators which are scalars with respect to the SO(3) subalgebra are explicitly constructed within 
the SOtS) enveloping algebra. One label generating operator is offourth order and the other of 
sixth order in the SO(5) basis elements. 

I. INTRODUCTION 

In the reduction of irreducible representations (IRT's) 
of a Lie algebra G into IR's of a subalgebra H, the latter 
usually does not provide enough labels to specify the basis 
states uniquely. By the introduction of extra labels to distin
guish the states unambiguously, in general an orthogonaliza
tion procedure must be carried out. This difficulty is concep
tually resolved by taking as bases the common eigenstates of 
a complete set of commuting Hermitian operators. There
fore, besides the Casimir invariants of the algebra and subal
gebra one has to construct within the enveloping algebra of G 
an appropriate number of commuting missing label opera
tors which are subalgebra scalars, i.e., which commute with 
all elements of H. 

The simplest two-missing label problem is that of 
SU(4)::>SO(4). A pair of independent commuting SO(4) sca
lars has been found by Moshinsky and Nagel. 1 Another in
dependent set of commuting operators has also been con
structed by Quesne2 and Partensky and Maguin. 3 The 
commuting scalars for this problem are of third or fourth 
degree in the basis elements of SU(4). Recently, the two
missing label problem G2 ::> SU(2) X SU(2) has been solved by 
Hughes and Van der Jeugt.4 From their work it becomes 
apparent that in order to construct missing label operators 
one should not necessarily try to express them in terms of a 
class of functionally independent subalgebra scalars. As we 
know from a theorem due to Peccia and SharpS these are in 
number twice the number of missing labels. 

In this paper we study the two-missing label problem 
which is associated to the chain SO(SPSO(3), where SO(3) 
denotes the principal SO(3) subalgebra of SO(5). In a first 
step we have constructed all the linearly independent SO(3) 
scalars up to sixth order in the basis elements in the SO(5) 
enveloping algebra. From these we were able to find a pair of 
commuting operators which are both linear combinations of 
the SO(3) scalars, hence SO(3) scalars themselves. One of the 
operators turns out to be offourth degree in the SO(3) tensor 
components, the other one of sixth degree. 

It should be noted that the internal labeling of SO(5) 
states, which we obtain here, is clearly different from the one 
proposed by Bincer6 on account of the reduction SO(5) 

al Senior Research Associate N.F.W.O., Belgium. 
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::>SO(3)XSO(2), because the SO(3) subalgebra is not princi
pal there. Also, one cannot make use of a procedure of Van 
der Jeuge for obtaining a pair of commuting scalars for 
G::> [SU(2W. 

Finally, if the SO(5) IR's are restricted to the symmetri
cal representations exclusively, the problem reduces into a 
one-missing label problem that has been exhaustively con
sidered by the present authors elsewhere. 8 

II. THE SO(3} SCALARS IN SO(S} 

A basis for the Lie algebra SOt 5) may be chosen to con
sist of the generators (/0' I ± I) of the principal subalgebra 
SO(3) together with a seven-dimensional irreducible tensor 
representation q,.. Ip, = - 3, - 2, ... , + 3) ofSO(3). These sa
tisfy the commutation relations 

[10,1 ± d = ± I ± 1 , [I + Joe d = - 10, (2.1) 

[I ± 1 ,q,..] = + [(3 +Jl)(4 ± Jl)/2j1/2q,.. ± I' 

[lo,q,..] = Jlq,.., (2.2) 

together with the mutual commutation relations of the q,.., 

[qo,q ± I] = ± 1O- 1
/

2q ± 1 ± (61
/
2/10)1 ± I' 

[qo,q±d = 1O- 1/2q±2, 

[qO,q±3] = +1O- 1
/
2q±3, 

[q'f l ,q±2] = +(5- 1
/
2/2)/±Jo 

[q'fJoq3] = +S-1/2q ±2' (2.3) 

[q:P,q±3] = +5- 1
/

2
q±1 ±(31

/
2/1O)/±Jo 

[q'f 1 ,q'f2] = + S-I/2qp, 

[q-I,q+d = 1O- 1
/

2qo + Mo, 

[q-2,q+2] = - 1O- 1
/
2qo - Vo, 

[q-3,q+3] = - 1O- 1
/
2qo + frio. 

It should be noticed from (2.1) and (2.2) that the SO(3) subal
gebra is realized by means of the components of a three
dimensional spherical tensor. Hence, we can immediately 
define SO(3) scalars by coupling the I and q tensors to rank 
zero tensors. We have developed a Pascal program for the 
construction of such scalars as homogeneous linear combi
nations ofSO(5) generator strings. Thereby we have exploit
ed the concept of recursivity which is implemented in the 
Pascal language. Let us describe an SO(3) scalar in the SO(5) 
enveloping algebra by (a,b ), whereaandb denote the degrees 

2124 J. Math. Phys. 26 (9), September 1985 0022-2488/85/092124-03$02.50 @ 1985 American Institute of Physics 2124 



                                                                                                                                    

in the q and I generators, respectively. We define 

(0,2) = (II )0, (2,0) = (qq)O, 

(1,3) = (q((11 )21 )3)0, (2,2) = ((qq)2(1/ )2)0, 

(3,1) = (((qq)2q)II)0, 

(2,4) = ((qq)4(((1/)2/)3/)4)0, 

(3,3) = (((qq)2q)3((1/ )21 )3)0, 

(4,0) = (((qq)2q)3q)0, 

(4,2) = ((((qq)2q)lq)2(1/ )2)0, 

(5,1) = (((((qq)2q)lq)2q)II)0, 

(6,0) = (((((qq)2q)lq)2q)3q)0. 

(2.4) 

These are the elementary SO(3) scalars up to sixth degree in 
the SO(5) generators.9 

In order to express our final result in rational form we 
have redefined the SO(5) Lie algebra (2.1H2.3) such that all 
the structure constants become integers, i.e., we introduce 
the generators 

I ± = +=..[il ± 1 , qo, =.JIOqo q'± 1 =.j3Oq ± 1 , 

(2.5) 

q'± 2 = -J3OOq ± 2' q'± 3 =.J5Oq ± 3' 

Reexpressing the SO(3) scalars (2.4) in terms of the new basis 
elements 10' I±, and q~ (1,u1<3) it suffices to separate an 
overall irrational factor such that the remaining linear com
bination of generator strings contains integer coefficients 
only. Hence, we define rescaled scalars by 

[0,2] = - 2~(0,2), [2.0] = - 300{7(2,0). 

[1,3] = - 60J7(1,3), [2,2] = - 12oJffi(2,2), 

[3,1] = - 12600..[2(3,1), 

[2,4] = - 50400J55(2.4), 

[3,3] = - 100 800J5(3,3), 

[4,0] = - 50400J5(4,0), 

[4,2] = -126~(4,2), 

[5,1] = -2646000v'3Q(5,1), 

[6,0] = - 5 292 ~(6,0). 

(2.6) 

These scalars denoted by [a,b ] are still homogeneous polyno
mials of degree a in the q~ 's and of degree b in the 10' 1 ± 

generators, respectively. All the coefficients are integers and 
the smallest coefficient equals in absolute value unity. 

III. TWO COMMUTING SCALARS X1 AND Xz 

In order to construct besides the SO(3) and SO(5) Casi
mir invariants, two commuting SO(3) scalars, we need to 
consider the commutators of the scalars (2.6), of which we 
are assured that they possess only integer coefficients, too. 
Due to the Poincare-Birkhoff-Witt theorem we can com
pare the the commutator results by bringing the generator 
strings into a predefined standard ordering of the generators. 
We have chosen here the left to right ordering 

q'+ 3q'+ 2q'+ 1 qOq'-1 q'-2q'-- 3 / +L/o, (3.1) 

which is rather convenient for calculational purposes. 

2125 J. Math. Phys., Vol. 26, No.9, September 1985 

A FORTRAN 77 program has been developed which re
places a nonstandard ordered polynomial form by the corre
sponding standard ordered polynomial together with all the 
extra lower-degree polynomial forms, themselves standard 
ordered, incurred by interchanging basis elements and mak
ing use of the commutation relations in terms of the struc
ture constants. This program is a revised and optimalized 
version of a former FORTRAN IV program which we used in 
previous work and which has been used by Hughes and Van 
der Jeugt4 in solving the G2 ::JSU(2)XSU(2) state labeling 
problem. 

In a first step we have established, in the 10' 1 ± ' q~ basis, 
the SO(3) Casimir L 2 and the SO(5) Casimirs 12 and 14 of 
second and fourth degree, respectively. We obtained 

L 2 = [0,2]12, 

12 = ([2,0] + 15[0,2])/2, 

14 = ([ 4,0] - 4[3,1] - 6[2,2] + 2[0,2][2,0] (3.2) 

+24[1,3] -24[0,2][0,2] -384[0,2])/8. 

Again we have in these forms factorized a rational number 
such that the lowest coefficient in absolute value equals 1. In 
the search for two additional SO(3) scalars we could readily 
demonstrate that at least one of them should be of degree 
higher than 4 in the basis elements. Hence, we conjectured 
that one scalar would be of fourth degree, the other of sixth 
degree, and therefore we considered first the commutators of 
fourth-order scalars with the sixth-order scalars constructed 
out of the set (2.6) and brought into standard order. We then 
searched for linear combinations of these commutators in 
which the highest or ninth-degree terms vanished, and then 
adjustments were made to eliminate the lower-degree terms. 
Proceeding this way, our initial hypothesis concerning the 
degree of two commutating scalars fortunately proved to be 
valid. Moreover, we found that the solution is certainly not 
unique. The simplest one contains as a fourth-order scalar 
XI' a linear combination of two homogeneous scalars (2.6) 
only, namely 

XI = 3[2,2] + 4[1,3]. (3.3) 

The second scalar X 2 of sixth degree that commutes with XI 
is then given by 

X 2 = [6,0] + 24[5,1] + 28[3,1]12 + 12[4,2] + a[2,2]12 

- 864[3,3]15 + 2172[3,1]L 2/5 

+ (4a - 1296)[ 1,3]12/3 

+ 576[2,4 ]135 + {3 [2,2]L 2 

+ (411 - 116208/7)[ 1,3]L 2/3, (3.4) 

where a and (3 are free parameters. 

IV. CONCLUSIONS 

Solutions of internal missing label problems generated 
by state reduction according to a canonical chain of algebra 
subalgebra inclusions usually lack physical relevance. The 
reason is that the canonical chains in general do not end up 
with an SO(3) or SU(2) X SU(2) subalgebra, which is maximal 
in the algebra considered. 
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In the present paper we have shown, following the ideas 
already expounded by Hughes and Van der Jeugt4 in their 
solution of the G2 :::>SU(2)XSU(2) missing label problem, 
that also the SO(5):::> SO(3) two-missing label problem can be 
completely solved. 
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Let Land Lo be a simple Lie algebra and its sub-Lie algebra, respectively. Then, a given 
irreducible representation w of L decomposes into a direct sum of irreducible components of Lo, 
which is called the branching rule. The general Dynkin indices introduced earlier satisfy many 
sum rules for the branching rule. These are found to be strong enough to uniquely determine the 
branching rule for many cases we have studied. The sum rules are especially useful for cases of 
exceptional Lie algebras. 

I. INTRODUCTION AND SUMMARY OF MAIN RESULTS 

Let G and L be a compact Lie group and its associated 
Lie algebra, respectively. Any irreducible representation w 
of G (or L ) restricted to its closed subgroup Go (or its sub-Lie 
algebra Lo) will be, in general, reducible and will be decom
posed as a direct sum 

(1.1) 

of irreducible representation components P j 's of Go (or Lo). 
In many problems of physics, it is very important to deter
mine this decomposition, which will be called the branching 
rule (hereafter referred to as BR) for the reduction G l Go (or 
L l Lo). IfG is one of the classical groups U(k}, SU(k), SO(k), 
and Sp(2n), the use of the Schur function method 1.2 provides 
a general framework of obtaining the BR for many sub
groups Go. Indeed, the general BR's are already found in this 
mannerforU(k) l U(k - l}byWeyVforSO(k} l SO(k - I} 
by Boemer,4 for Sp(2k} l Sp(2k - 2} by Miller and Heger
feldt,6 for U(p + q) l U(p)XU(q) and U(pq) l U(p}XU(q) 
by Whippman7 and by Itzykson and Nauenberg,8 for 
SO(2k) l U(k), SO(2k + 1) l U(k), and Sp(2k) l U(k) by 
King,9 and for SO(2 p + 2q) l SO(2 p) X SO(2q) and 
SO(2p + 2q + 2) l SO(2p + I)XSO(2q + 1) by Black and 
Wyboume. 1O More exhaustive references as well as further 
elaborations on this method can be found in articles by King 
and El-Sharkaway11 and by Black, King, and Wyboume. 12 

However, the method described above appears to be
come quite unmanageable and impractical, in general, when 
G is one of the exceptional Lie groups G2, F4, E 6, E7, and Es, 
or when Go contains an exceptional subgroup as its factor. 
For such a case, it is more convenient to deal with the reduc
tion L l Lo of Lie algebras rather than G l Go of Lie groups. 
Hereafter, we restrict ourselves for cases of L being a simple 
Lie algebra and of Lo being reductive, i.e., a direct product of 
a semisimple Lie algebra and an Abelian Lie algebra. There 
are many methods13

-
1S for finding the BR's for such a case. 

Unfortunately, hand calculations based upon these methods 
are still impractical for all but a few low-dimensional repre
sentations. For any simple Lie algebra L of rank less than or 
equal to 8, a large table for the BR's of L into its maximal 
sub-Lie algebras Lo has been tabulated by McKay and Pa
tera. 19 Also, the branching rule for Es l Ds has been comput-

ed by Wyboume20 and by Belanger1 for all irreducible re
presentations of Es with dimensions less than 76 271 625. 

The purpose of this paper is to demonstrate a fact that 
the notion of general indices introduced elsewhere22 [hereaf
ter referred to as (I)] is quite useful to test the validity ofBR's. 
As we shall see shortly, there are many branching index sum 
rules to be satisfied, and these are essentially sufficient to 
uniquely determine the BR's for many cases in a mechanical 
way without investigating structures of Land Lo. 

Let L be a simple Lie algebra, and let {tl'} (/-t = 1,2, ... ) 
be a basis of L with Lie multiplication table 

[tl',tv]=C~vtA> (1.2) 

where C~v is the structure constant of L and the standard 
summation convention on repeated indices is hereafter un
derstood. It is known23 that any simple Lie algebra L with 
rank r has precisely r independent Casimir invariants which 
we call fundamental. Let Jp be the pth-order fundamental 
Casimir invariant of L of form 

(1.3) 

where g,1'2" 'I'p is completely symmetric in p indices 
/-t1,JL2, ... ,/-t p' and satisfies orthogonality conditions22 such as 

gl'
vafJgl'vga{3 = 0, (1.4) 

for the special case of p = 4. Here, gl'v is the Killing form 
except for normalization, i.e., 

(LS) 

for an unspecified nonzero constant C and we lower and 
raise Greek indices /-t,v, ... by gl'v and its inverse gl'v. The 
explicit form of J4 can be found in Ref. 24. As we emphasized 
in (I), Jp is either identically zero, or unique apart from its 
overall normalization constant, except for the case of the Lie 
algebra Dp corresponding to the SO(2p) group where we 
~ave two fundamental pth-order Casimir invariants Jp and 
Jp • Let w be a representation of L. The pth-order Dynkin 
index Dp(w) is now defined by 

Dp(w) = Tr("Vp ), (1.6) 

where the trace refers to the representation w. Note that we 
have changed our notation from D (Pl(w) in (I) to D p (w). If w is 
irreducible, then we have 

(1.7) 
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where d (w) and Jp (w) are the dimension and eigenvalue of Jp 

in the irreducible representation w, respectively. 
Now, consider the branching rule Eq. (1.1) for L l Lo. If 

Lo is also simple, then it has been shown in (I) that we must 
have a branching sum rule 

SpDp(w) = LD~)(pj)' 
j 

(1.S) 

except for special case of L = Dp (p being even and p>4), 
corresponding to the SO(41 ) group (p = 21 being even). Here, 
D ~)( Pi ) is the pth-order index of the sub-Lie algebra Lo in its 
irreducible component P j' and SP is a constant, which may 
depend upon p, L, and Lo but not on w. Therefore, once SP is 
computed for a particular representation Wo of L from Eq. 
(1.S), then we can use Eq. (1.S) to testthe BR for any irreduci
ble representation w. We note that Eq. (1.S) is valid also for 
L = Dq if p=!-q. The Lie algebra Dp (p>4) (p being.,..even) 
possess two fundamental pth-order indices D p (w) and D p (w), 
as we noted in (I) and in Ref. 24. For such a case, Eq. (1.S) 
must be replaced by 

(1.9) 

introducing two unknown constants SP and ~p. However, we 
will not consider such a case hereafter. We simply remark 
here that the sum rule Eq. (1.S) for the special case ofp = 2 
has been originally noted by Dynkin.2S 

Next, let 15 4(W) be another fourth-order index defined by 

154(w) = Tt'(0»)/4 , (1.10a) 

14 =/d 12 - !/2(wo)] , (1.l0b) 

where Wo refers hereafter to the adjoint representation of L. 
When w is irreducible, then 

(1.11) 

Here d (wo) is the dimension of L. Now, we have also the 
following fourth-order sum rule 

(1.12) 

for any simple Lie algebras other than L = D4 correspond~ 
ing to the SOlS) group. Here, 'TI4 is a new unknown constant 
but () is related to S2 by 

in terms of S2 appearing in Eq. (1.S) withp = 2, and Po is the 
adjoint representation of Lo with dimension dol Po). Note 
that 15 ~)( p) for the irreducible representation P of Lo is de
fined similarly to Eq. (1.11) by 

15 10)( ) = D (0)( ) _2_'1'_ _ _ 2 Po 
{ 

D (0)1,,) 1 D (0)( )} 

4 P 2 P do(p) 6 do(Po) , 
(1.14) 

when we define dol p) to be the dimension of p. We can also 
prove the validity of the following fifth-order mixed sum rule 
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'TIsDs(w) + Sz53 do(Po) + 6 d (wo) 
dol Po) d (wo) + 6 

XD3(w)[D2(W) _ J..- D2(WO)] 
d (w) 4 d (wo) 

= L [D~)(Pj) _ J..- D~O)(Po)] D~O)(pj)' (1.15) 
j do(pj) 4 do(Po) 

Since the new constants 'TI4 and 'TIs are independent of the 
generic irreducible representation w, sum rules (1.12) and 
(1.15) can be used to check the BR, once the values of'TI4 and 
'TIs are computed from a particular known BR. Although we 
can find a mixed six-order sum rule, we will discuss it later. 
These mixed index sum rules are analogs of similar sum rules 
for Kronecker products given in (I). 

If Lo is a direct product 

(1.16) 

or two simple Lie algebras LA and L B' we write the branch
ing rule as 

w-::Jp = L ep j = L e (P':)®P't), (1.17) 
j j 

where P': ) and P't) are irreducible representations of LA and 
L B, respectively, with p j = P':) ®p't). First, considering 
L l LA and L l L B, we evidently have 

d(w) = Ld(A)(Pa)d(B)(Pb)' 
j 

S~A)Dp(w) = Ld'(B)(Pb}D~A)(Pa), 
j 

s':)Dp(w) = Ld(A)(Pa}D':)(Pb)' 
j 

In addition, we find the following mixed sum rules: 

'YJIAB)D (w) + d (wo) t- (A)t- (B)15 (w) 
'/4 4 2 + d (w

o
) ~ 2 ~ 2 4 

(USa) 

(USb) 

(USc) 

= LD~A)(Pa}D~)(Pb)' (1.19) 
j 

'YJ(AB)D (w) + d (wo) t- (A)t- (B) 
'IS 5 6 + d (W

O
) ~ 2 ~ 3 

X {D2(W) _ J..- D2(WO)} D3(W) 
d (w) 4 d (wo) 

= LD~)(Pa}Dr)(Pb)' (1.20) 
j 

for new constants 'TI'tB) and 'TI'tB). 
We remark that Eqs. (1.19) and (1.20) are also valid even 

when at least one of LA and LB is simple and the other is an 
Abelian Lie algebra. If L A is an Abelian Lie algebra, then the 
corresponding t:,,) cannot be the Killing metric, but we can 
always find a suitable t:v) such that 

I(A) = ..../A)l'vt(A)t(A) 
2 is" I' v 

is a-Casimir invariant with a property that the inverse matrix 
t:J of tA ) I'V exists. This is because LA is still a reductive Lie 
algebra.26 However, we will not explicitly discuss such a case 
hereafter. 

For special cases, we can say more. For example, E6 has 
no seventh-order fundamental Casimir invariant. Then, this 
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gives the trace identity of the seventh order,27 which implies 
a validity of mixed branching index sum rules of a new type. 
Similarly, Eg has no genuine sixth-order fundamental Casi
mir invariant, leading to complicated new sum rules. These 
will be discussed shortly. 

Let 0 be a fixed irreducible representation of L. If 
Dp(O)#O, then it is convenient to set 

Dp(w) = Qp(w)Dp(O). (1.21) 

We emphasize the fact that Qp(w) is well defined only when 
Jp #0. For cases of L being classical Lie algebras An (n;;;. 1), 
Bn(n;;;.2), Cn(n;;;.2), and Dn(n;;;.3), the explicit formula of 
Qp (w) for any irreducible representation w has been calculat
ed elsewhere2g [hereafter referred to as (II)], where we choose 
o to be the defining representation of L. However, if L is one 
of the exceptional Lie algebras G2, F4, E6 , E 7, and E g, then it 
is very difficult to give the general formula of D p (w) or Qp (w), 
although we can easily evaluate them for a few low-dimen
sional representations (see the Appendix). Regardless, this 
fact causes the branching index sum rules such as Eqs. (1.S) 
and (1.12) to be less useful in practice for exceptional Lie 
algebras. We can circumvent the problem by using the other 
indices 12(w) and 14(w) introduced by Patera et al./9 which 
may be defined as 

12P (w) = ~)M,M)P (p = 0,1,2, ... ). (1.22) 
M 

Here, the summation extends over all weights M of w and 
(M,M) is the standard scalar product in the root space of L. 
An extensive table of d (w), 12(w), and 14(W) has been tabulated 
in Ref. 19 for any simple Lie algebra L with rank less than or 
equal to S. First, it is easy to prove 

D2(W) = r- 1d(wo)/2(w) (1.23) 

for any simple Lie algebra L with rank r. Then Eq. (1.11) 
gives 

D4(W) = [d (WO)]2 12(W) [ 12(W) _..!.. 12(WO)] . (1.24) 
r d (w) 6 d (wo) 

The relation between 14(W) and D4(W) is more complicated, 
but we find 

r(r+ 2) -I (w) - l1D (w) + D (w) (1 25) 
4 - 4 d (woH 2 + d (wo) ] 4' . 

except for the case of L = D4 corresponding to the SOlS) 
group where the relation is slightly more involved. In Eq. 
(1.25), 11 is a constant whose explicit value has been calculat
ed in Ref. 24 for a suitable normalization of D4(W). It is found 
that 11 is nonzero for all classical Lie algebras An(n;;;'3), 
Bn (n;;;.3), Cn (n;;;.3), and Dn (n;;;.5). 

For any exceptional Lie algebras as well asA 1 andA2, we 
know D4(W) = 0 identically.24 Then Eqs. (1.24) and (1.25) im
ply the validity of 

14(W) = (r + 2)d (wo) 12(w) {12(W) _..!.. 12(wo) } (1.26) 
r[2 + d (wo)] d (w) 6 d (wo) 

for these algebras. This relation is also valid for B2( = C2 ) 

(because of 11 = 0) as well as special classes of irreducible 
representations w for the Lie algebra D 4 by reasons explained 
in Ref. 24. We can verify Eq. (1.26) for many w's from the 
table of Ref. 19 for these cases. Hereafter, we restrict our-
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selves to the consideration of L being one of the exceptional 
Lie algebras, unless it is stated otherwise. We now set 

(1.27) 

where ro and do (Po) are the rank and the dimension of the 
simple sub-Lie algebraLo, respectively. Then, first, Eq. (1.S) 
for p = 2 is rewritten as 

- (0) S2/2(W) = '2l2 (Pj) (1.2S) 
j 

for the branching rule equation (1.1). Also, since any excep
tional Lie algebra possesses no third-order and fourth-order 
fundamental Casimir invariants, we have D3(W) 
= D4(W) = 0, which leads to the sum rules 

LD~O)(pj) = 0, 
j 

(1.29) 

_r_ ro + 2 !t2)214(w) = L/~)(pj)' (1.30) 
r + 2 ro j 

do(Po) + 2 _r_ (t2)214(w) +..!.. If)(po) t2/2(W) 
do(Po) r + 2 6 do(Po) 

__ ~ [If)(pj)]2 
£.i (1.31) 
i do(pj) 

We note that Eq. (1.31) is not independent ofEq. (1.30) if Lo is 
one of A I' A 2, B2, G2, F4 , E6, E 7, E g• Together with the dimen
sional sum rule 

d(w) = LdO(Pj)' (1.32) 
j 

these formulas are found to be in general sufficient to deter
mine the branching rule uniquely for many low-dimensional 
representations w. The important exception for this state
ment is cases of representations of E6, which are not self
contragradient. This is because a representation P and its 
contragradient representation p. have exactly the same 
do(p), I~O)(p), and l~)(p) so that these sum rules cannot dis
tinguishpj frompj. Since odd index D3(P) changes its sign 
for p ~ p., the sum rule Eq. (1.29) can reduce the ambiguity 
for the case when Lo contains one of An as its factor. How
ever, we cannot resolve the overall contragradiency of repre
sentations. We can resolve the whole matter by considering 
the Ds(w) sum rule, which we rewrite as 

tsQs(w) = LQ ~o)( Pi)' 
j 

(1.33) 

in terms of Qs(w) defined by Eq. (1.21). As we shall see in Sec. 
III, the validity of Eq. (1.33) can settle the ambiguity of 
choosing Pj or pj, when we note 

Q~O)(p.) = _ Q~O)(p). (1.34) 

Next, let us consider the case Lo = LA XLB as in Eq. 
(1.16). First, Eqs. (US) and (1.19) with D4(W) = 0 lead to 

t~)/2(W) = Ld(B)(Pb)/~)(Pa)' 
j 

t!f)12(w) = Ld(A)(Pa)/!f)(Pb)' 
j 

+
r 2 2 + rA !t~))214(w) = Ld(B)(Pb)/jt)(Pa)' 

r rA i 
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~2 t~)t!f1)/4(W) = L/~)(Pa)/!f1)(Pb)' 
r+ j 

while Eq. (1.20) with D3(W) = 0 may be rewritten as 

1]~B)Ds(w) = LD~)(Pa)D~)(Pb)' 
j 

1]~BA)Ds(w) = LD!f1)(Pb)D~)(Pa). 
j 

Similarly, we find 

Ld(A)(Pa)Q~)(Pb) = t~B)Qs(W), 
j 

L/~A)(Pa)Q~)(Pb) 
j 

(1.36b) 

(1.37) 

(1.38a) 

(1.38b) 

(1.39a) 

= t~)t~) d (wo) {/2(W) _ 2- 12(wO) }Qs(W), 
d (wo) + 10 d (w) 12 d (wo) 

LD~)(Pa)D~)(Pb) = 0, 
j 

LD~)(Pa)D~)(Pb) 
j 

= 2S(B)1](BA) d(B)(PO) + 2 d(wo) D (w) 
2 5 d(B)(PO) d(wo) + 10 s 

(1.39b) 

(1.39c) 

X {D2(W) _ 2- D2(WO)}, (1.39d) 
d (w) 12 d (wo) 

as the fifth- and seventh-order sum rules involving Ds(w) [or 
Qs(w)].From Eqs. (1.39c) and (1.39d), we can also derive a 
calculationally more convenient sum rule: 

LD~)(Pa)/~)(Pb) 
j 

= 2t !f1)1]~A) rB + 2 d (wo) Ds(w) 
dB(po) d(wo) + 10 

X {/2(W) _ 2- 12(wO)}. 
d(w) 12 d(wo) 

(1.3ge) 

We remark that Eqs. (1.39) are also valid for L = Ds corre
sponding to the SOl 10) group. The validity ofthe sum rules 
Eqs. (1.35)-(1.39) turns out to be sufficiently restrictive so as 
to uniquely determine the BR's of many w's of any excep
tional Lie algebras as far as can be checked. Examples will be 
given in Sec. III. 

When Lo is a direct product of three simple Lie algebras, 

Lo = LA XLB XLc , 

with 

w-:Jp = L$Pj = L$(p~)®pl;B)®p~C)), 
j j 

the knowledge of the six-order index D6(W) is convenient. 
For this case, we can prove the sum rule of the form 
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L/~)( Pa)1 ~B)( Pb)1 &C)( Pc) 
j 

= 1]~6(W) + [[d(woW/[d(wo) + 2] [d(wo) + 4] 1 
xt~)t!f1)t~C)R6(W), (1.40) 

where we have set 

R6(W) = 12(W) { [/2(w)]2 _ 1. 12(W) 12(wo) 
d (w) 2 d (w) d (wo) 

+ _1 [/2(WO) ]2}. (1.41) 
12 d(wo) 

We may also note that we have a six-order sum rule for 
L ! Lo of the form 

[do(PoW L [l~O)(Pj)P 
[do(Po) + 2][do(Po) + 4] j (do(pjW 

_ , D (w) [d (woW 1I-)3 [/2(WW 
-1]66 + [d(wo)+2][d(wo) +4] ~2 [d(wW 

r I- 2 { 1 ~O)( Po) 12(wo) I- } 1 
+ 2(r + 2) (~2) do(Po) + 4 - d (wo) + 4 ~2 4(W), 

(1.42) 

if Lo is simple. 
Also for Lo = LA XLB, we find 

L/~)(Pa)/~)(Pb) 
j 

= 1];D6(W) + {[d (woW /[d (wo) + 2] [d (wo) + 4]) 

xt~A)[t!f1)]2[(rB + 2)/rB ]R6(W). (1.43) 

For L = Eg, we have D6(W) = 0 identically, so that Eqs. 
(1.40). (1.42), and (1.43) do not contain new unknown con
stants 1]6' 1]~, and 1];. 

Finally, we simply mention here a mixed seventh-order 
index sum rule for L ! Lo = LA XLB XLc ofthe form 

LI ~)( Pa)D ~B)( Pb )/iC)( Pc) 
j 

_ d(wo) { rB tIC) (AB) + rc 
- d (wo) + 10 d (A)( Po) 2 1]5 d (C)( Po) 

X I- (A ) .... (CB )}D (w) { 12(W) _ 2- 12(wO)} (1.44) 
~2 ·,5 s d(w) 12 d(wo) , 

where 1]~AB) or 1]~CB) is the same coefficient 1]~AB) or 1]~CB) ap
pearing in Eq. (1.38a) when we consider L ! LA XLB, or 
L ! Lc XLB. Equation (1.44) is again useful to resolve possi
ble contragradiency ambiguity which may occur for the case 
of L = E6• It is also valid for the Lie algebra L = Ds. 

II. DERIVATION OF MAIN FORMULA 

First, let 

XI' = w(tp ) (2.1) 

be the representation matrix of element tp E L in the irredu
cible representation w. Then as is well known,30 Tr(XpX,,) is 
proportional to gp,,' if L is simple: 

Tr(XpX,,) = [lid (wO)]D2(w)gp", (2.2) 

where Wo is the adjoint representation of Land 

(2.3) 
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RestrictingX" andXy to be elements ofa Cartan subalgebra 
Ha and Hb in Eq. (2.2) and multiplying ltb, we find Eq. 
(1.23), i.e., 

(2.4) 

where r is the rank of Land 12(w) is defined by Eq. (1.22). 
Since (M,M) in Ref. (19) is normalized by the condition 
(a,a)max = 2 for roots a of L, Eq. (2.4) imposes a suitable 
choice ofthe normalization constant C in Eq. (1.5). 

Next let us briefly review the derivation of the index 
branching sum rules Eq. (1.8) for p = 2 andp = 4. Consider 

1 
- LTr(X"XyXaXp), (2.5) 
4! p 

where Pstands for 4! permutations ofindices IL, v, a, andfJ. If 
L is not the Lie algebra D 4 corresponding to the SO(8) group, 
then by reasons explained in (I) and in Ref. 24 we can express 
it as a linear combination 

= FI(w)g"vaP + F2(W) Ig"ygaP + g"agyp + gl'flgva }, 

(i6) 

for someFI(w) andF2(w) to be determined. Multiplyingg"vaP 
andg"y gaP to both sides ofEq. (2.6) and noting the orthogon
ality condition Eq. (1.4), we obtain 

FI(w)g"vaPg"vaP = D4(w), 

(2.7) 
F2(W)d (woHd (wo) + 2] = D4(W). 

If g"vaPg"vaP = 0, then this implies D4(W) = 0 for all irredu
cible representations w of L and hence J4 = 0 by Harish
Chandra's theorem,23 which in turn implies g"vaP = o. 
Therefore, we may rewrite Eq. (2.6) as 

1 
- LTr(X"XyXaXp) 
4! p 

= C ID4(w)g"yaP + I l/d(woHd(wo) + 2]} 

XD4(w)!g"ygaP + g"agyp + g"pgva }. (2.8) 

Here, the constant CI is given by 

CI = l/g"vaPg"vaP, (2.9) 

if J4 is not identically zero, while CI is arbitrary if J4 = 0 
identically. In either case, the constant CI is regarded to be 
independent of the generic irreducible representation w. 
When L is the Lie algebra D4, we have two independent 
fourth-order Casimir invariants, so that we have to modify 

A A 

Eq. (2.8) by adding another term CID4(wlK"vap to the right 
side of Eq. (2.8), as in Ref. 24. If we restrict ourselves to 
Cartan subalgebra elements of X" = Ha,xy = Hb,xa =He, 
and Xp = Hd and multiply ltb~d to both sides of Eq. (2.8), 
we find 

14(w) = 7]D4(W) + I r(r + 2)/d (woHd (wo) + 2] }D4(w), 
(2.10) 

7] = CIltb~dgabcd' (2.11) 

Clearly, the constant 7] is independent of the generic irredu
cible representation w, and this reproduces Eq. (1.25). The 
explicit value of 7] has been computed in Ref. 24 for a suitable 
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normalization of D4(W). 
Now, let Lo be a simple sub-Lie algebra of L. We rear

range the basis of L so that the base of Lo is spanned by its 
first m elements tl>t2, ... ,tm of L. In order to distinguish the 
basis of Lo from that of L, we use the notation It j } 

(j = 1,2, ... ,m) and It,,} (IL = 1,2, ... ,d) for bases of Lo and 
L, respectively. The pth-order fundamental index D ~)( p) of 
Lo is defined by 

D~)(p) = TrlP)J~) 

= g(OliJ,,,:ip TrlP)(Xj,Xj," .Xj), (2.12) 

where 

J (0) = g(OliJ," :iPt . t .••• ( . (2.13) 
P h h Jp 

is the pth-order fundamental Casimir invariant of Lo andp is 
a representation of Lo, which may not be necessarily irredu
cible. In Eq. (2.2) we now restrict indices to those of the 
subalgebra Lo withlL = i and v = j, and multiply to)ij to both 
sides. When we note 

for p = l: JIB P j' this reproduces Eq. (1.8) for p = 2 as 

52D2(W) = LD~)(pj)' 
j 

~ = _1_ ...(O)iJg· " = dol Po) "., 
~2 d (wo) }5 IJ d (wo) '12' 

where we have defined 7]2 by 

(2. 14a) 

(2. 14b) 

gij = 7]:zi;~, (2.15) 

and dol Po) is the dimension of Lo' Similarly, we restrict our
selves in Eq. (2.8) to L o with IL = i, v = j, a = k, and fJ = I, 
and multiply to)ljkl to both sides. Noting the orthogonality 
condition 

...(O)ijkl...(O)g(O) - 0 
15 }5ij kl - , 

we find similarly 

54D4(W) = LD~)(pj)' (2. 16a) 
j 

...(O)ijkl 
54 = CI}5 gijkl' (2. 16b) 

Clearly both 52 and 54 are independent of the generic irredu
cible representation w of L. However, if L is the Lie algebra 
D 4' then Eq. (2. 16a) must be modified by Eq. (1.9) with p = 4 
since the Lie algebra D4 has now two independent fourth-

A 

order fundamental indices D4(W) and D4(W) as in Ref. 24. 
Next, we multiply to)ijtO)kl to both sides ofEq. (2.8) with 

IL = i, v = j, a = k, andfJ = I. Then, after some calculations, 
we obtain now the mixed fourth-order sum rule Eq. (1.12) 

~-(O) -
£,.P4 (Pj) = 7]4D4(W) + OD4(w), (2. 17a) 
j 

"., - C ...(O)i}...(O)kl
g '14 - 1}5}5' ijkl' (2.17b) 

o = Ido(Po)[do(Po) + 2]1d(woHd(wo) + 2] }(7]2)2 

= I d (woHdo( Po) + 2 ]ldo( PoHd (wo) + 2] }(52)2. 

(2. 17c) 

We remark24 thatgijkl may not necessarily be proportional 
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to ~~kl' although it can be expressed as a linear combination 
of~~kl and~~t21 + ~Tg}~) + ~~)t21· Hence, '174 defined by Eq. 
(2.17b) is not necessarily zero but may be regarded as a new 
unknown constant, although it can be in principle computa
ble. 

If L is one of A I' A2, G2, F4, E6> E7, and Es, we know24 

D4(ClJ) = 0 identically for all ClJ. In that case, Eqs. (2.10) and 
(2. 17a) are rewritten as Eqs. (1.26) and (1.31), when we note 
Eq. (2. 14a). The mixed sum rule Eq. (1.30) can be derived also 
as follows. Assuming Lo=f.D4' Eq. (1.25) for Lo with ClJ being 
replaced by P j gives 

1~)(Pi) = TJoD~)(pj) + ro(ro + 2) 15~)(pi)' 
dol Po)[ dol Po) + 2] 

(2.18) 

Summing over j, this leads to 

~1(0)( ) _ ~D(O)() ro(ro + 2) 
7 4 Pj -'1707 4 Pi + do(Po)[do(Po) +2] 

xL15~)(pj)' 
j 

Using Eqs. (2. 16a), (2. 17a), and (2.10), we can rewrite this as 

L/~)(pj) = C4D4(ClJ) + ro(ro + 2) d(ClJo)[d(ClJo) + 2] 
j r(r + 2) do(Po)[do(Po) + 2] 

X 8l4(ClJ), (2. 19a) 

C4 = TJoS4 + {ro(ro + 2)/do(Po)[do(Po) + 2]} 

X {TJ4 - (d (ClJo)[d (ClJo) + 2]1r(r+ 2))87]}. (2. 19b) 

IfL is oneofA I ,A2, G2,F4 , E6,E7, andEs, thenD4(ClJ) = 0 so 
that Eq. (2. 19a) reproduces Eq. (1.30), when we further note 
Eqs. (1.27) and (2. 17c). Although we have assUmed Lo=f.D4 
for this derivation, this assumption is actually unnecessary 
for the validity ofEq. (2. 19a). However, we will not go into its 
detail here, since it will be straightforward to prove it with a 
slight modification. We remark here that Eqs. (1.30) and 
(1.31) will not be independent of each other when Lo is one of 
A I' A2, B2, G2, F4 , E6 , E7 , and Es, since 1 ~)( P j) will be ex
pressed in terms of 1 f)( P j) as in Eq. (1.26) with replacement 

of ClJ --P and ClJo --Po. 
Next, consider the derivation of Eq. (1.15). Because of 

the reason explained in (I), we can express 
~p Tr(X"X"X,tXaXp) also as 

1 
- LTr(X"X"X,tXaXp) 
5! p 

(2.20) 

where P stands now for 5! permutations of indices 1', v, A, a, 
and p. Multiplying g"",ta./J to both sides of Eqs. (2.20) and 
noting the orthogonality condition 

g"VAaPg""g,taP = 0, 

it gives 

D,(ClJ) = F3(ClJ)g"",ta./Jg"",ta./J' (2.21a) 

Similarly, multiplying g""gAa./J and noting g""g,t"" = 0, we 
find 
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D3(ClJ)[D2(ClJ) _ ~ D2(ClJO)] 
d (ClJ) 4 d (ClJo) 

= ro[d (ClJo) + 6 ]gAaPg,tapF4 (ClJ), (2.21b) 

which determines F3(ClJ) and F4(ClJ) in terms of indices. We 
now restrict Greek suffices 1', v, A, a, and pin Eq. (2.20) to 
the subindices i,j, k, I, and p of Lo' and multiply to)ijkl p or 
to)iitO)kl p to both sides ofEq. (2.20). After some calculations, 
we find Eq. (1.8) for p = 5 and Eq. (1.15), respectively, with 
C = ,JO)ij,JO)klpg.. /g"VAaPg 5 IS IS Ijkl p "v,ta./J· 

We will next discuss the case where Lo is a direct pro-
duct of two simple Lie algebras LA and L B, i.e., 
Lo = LA XLB· We label bases of LA andLB, respectively, as 
{ti } and {ta }. Considering L ~ LA and L ~ L B, we have 
clearly 

t1A)Dp(ClJ) = L d (B)(Pb)D1A)(Pa), 
j 

t~)Dp(ClJ) = Ld(AI(Pa)D~)(Pb)' 
j 

when we decompose ClJ as 

ClJ":)p = L $ Pj = L $ [p~)® p~)] 
j j 

(2.22a) 

(2.22b) 

(2.23) 

ofirreduciblecomponentspj =p~)® p~)ofLA XLB.Next, 
we study the cases of p = 4 and 5 in more detail. In Eq. (2.8), 
we choose X" =X;o Xv =Xj eLA and Xa =Xa, 
Xp = Xb e L B, and multiply tA )ijtB)ab to find 

LD!t)(Pa)D~)(Pb) 
j 

= 'I'I(AB)D (ClJ) + d (ClJo) to (A ) to (B)15 (ClJ) 
',4 4 d (ClJ

o
) + 2 ~ 2 ~ 2 4 , 

'I'I(AB I _ C ,JA )/j,JB )abg ',4 - lIS IS ijab' 

(2.24a) 

(2.24b) 

Similarly, we choose X" =Xi,xv =Xj eLA, X,t =Xa, 
Xa = Xb, Xp = Xc e LB in Eq. (2.20) and mUltiply 
tA)ijtBlabc. In this way, we find 

LD!t)(Pa)D~B)(Pb) 
j 

= 'I'I(AB)D (ClJ) + d (ClJo) to (A ) to (B ) 
',5 5 d (ClJo) + 6 ~ 2 ~ 3 

XD3(ClJ)[D2(ClJ) _ ~ D2(ClJO) ] , 
d (ClJ) 4 d (ClJo) 

'I'I(AB) = ,JAlii,JB)abcg.. /g"v,ta./Jg 
." IS IS' IJabc ""AaP' 

(2.25a) 

(2.25b) 

which is Eq. (1.20). If g"",ta./Jg"",taP = 0, then TJ~AB) is arbi
trary. 

Hereafter, we assume L to be one of the exceptional Lie 
algebras G2, F4 , E 6, E7 , and Es unless it is stated otherwise. 
We now have D3(ClJ) = D4(ClJ) = D7(ClJ) = 0 identically for all 
ClJ, since exceptional Lie algebras do not possess any funda
mental third, fourth, and seventh Casimir invariants. Also, 
we have Ds(ClJ) = 0 except for the case of L = E6• Moreover, 
D6(ClJ) = 0 for L = Es. Equations (1.37) and (1.38a) are direct 
consequences ofEqs. (2.24a) and (2.25a), respectively, when 
we note 
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(2.26a) 

e- _ ro _ ro d(mo) f;-
~2--'T/2----~2' 

r r do(Po) 
(2.26b) 

Consider next the sixth and seventh index sum rules. First, 
we express 

1 
- LTr(XI'XVXAXaXpXy) 
6! p 

since we have J3 = J4 = 0 for the present case. Multiplying 
gl'vi'agPy to both sides of Eq. (2.27), we find 

F6(m) = 15 D2(m){[D2(m)]2 
d (mo)[ d (mo) + 2] [d (mo) + 4] d (m) 

_ ~ D2(mo) D2(m) + _1_ [D2(mo) ]2} . (2.28) 
2 d (mo) d (m) 12 d (mo) 

Choosing J.l = i, v = j, A = k, a = I, /3 = p, and r = q E L o' 
and multiplying tlg"lgpq to both sides of Eq. (2.27), we find 

~R ~)(p j) = 'T/;;D6(m) + [:o~~:) r 
X [do(Po) + 2] [do(Po) + 4] (t2)3R

6
(m), 

[do(mo) + 2] [d (mo) + 4 ] 
which gives Eq. (1.42). Similarly, we can derive Eq. (1.40). 
Analogously, we obtain 

1 
- LTr(XI'XVXAXaXpXyXr) 
7! p 

1 
= C5F7(m)-71 Dl'vgAaPyr, (2.29a) 

• p 

F (m) - 21 D (m){D2(m) _..2.... D2(mo)} 
7 - [d(mo) + 10] 5 dIm) 12 d(mo) , 

(2.29b) 

C5 = lIi'apyrgAatJyr' (2.29c) 

Actually, C5 is meaningless when D5(m) = 0 identically. 
However, we can assume then C5 to be arbitrary but finite so 
that we have C5F7(m) = 0 anyway. From Eqs. (2.29), we can 
derive the mixed seventh-order sum rules Eqs. (1.39b)
(1.39d) and (1.43). Combining Eqs. (1.39c) and (1.39d) and 
using Eq. (1.25) for L o' we find also Eq. (1.3ge) 

LD~A)(Pa)/~)(Pb) 
j 

(2.30) 

In passing, we note that the validity ofEq. (2.29) is related to 
the trace identity of the seventh order. Let tEL be an arbi
trary element of L so that 

(2.31a) 
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for arbitrary real or complex numbers t 1'. Corresponding to 
this, we have 

X = mIt) = t I'Xw (2.31b) 

Then, multiplying tl't vt At at Pt yt T to both sides of Eq. 
(2.29a), we find27 

Tr X 7 = d (mo) F7(m)Tr X 2 Tr X 5, (2.32) 
D2(m)D5(m) 

which is also valid for the Lie algebra D5• Similarly for the 
Lie algebra Eg, we have D6(m) = 0 identically since Eg has no 
fundamental sixth-order Casimir invariant. Then, multiply
ing tl't vtAtatPt y to Eq. (2.29), it leads to 

(2.33) 

as has been already noted in Ref. 31 and (I). It may be need
less to mention that D3(m) = D 4(m) = 0 implies the validity of 
trace identities27 

Tr X 3 = 0, (2.34) 

Tr X 4 = 1 {6 d (mo) _ D2(mo)} (Tr X2f 
2[2 + d(mo)] dIm) D2(m) 

(2.35) 

III. SOME APPLICATIONS 

We shall adopt here the lexicographical ordering con
vention of the simple root system of L as in Ref. 19. Let A be 
the highest weight of the irreducible representation m of L. 
We will often write d (A ), 12 p (A ), D p (A ), and Qp (A ) instead 
of d (m), 12p (m), Dp(m), and Qp(m) hereafter. If A I' A 2, ... ,A, 
are the fundamental weight system of L, then we can ex
press32 

A = mlA I + m~2 + ... + m,A, (3.1) 

in terms of r non-negative integers m l ,m2, ... ,m" so that we 
may write also 

m = A = (m l ,m2, ... ,m,). (3.2) 

It is often more convenient for us to use the Young tableau 
notation33 for classical Lie algebras. First consider the Lie 
algebra A, corresponding to the SU(r + 1) group. Let 
(fl' h, ... ,ir + I) be the Young tableau symbol where 
I j ,(l<j<r + 1) are non-negative integers satisfying 

II> 12>'''> ir+ 1 >0. (3.3) 

Then, m j 's given by Eq. (3.1) are related to Ij 's by 

m l =/I-/2' m2=h-/3' ... , m,=ir-ir+I' 
(3.4) 

Similarly, consider the Lie algebra D, corresponding to the 
SO(2r) group, whose irreducible representation m may be 
labeled by r real numbers/l,f2' ... 1, satisfying 

11>/2>" ·>ir-I>lf..I· (3.5) 

Here,lj (1 < j<r) are all simultaneously integers or half-inte
gers, corresponding to tensor and spinor representations, re
spectively. They are related to m j by 

mj =Ij -11+1 (l<j<r-1), 

(3.6) 
m, =ir-I +ir (j=r). 
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We remark that there exists an extensive table 19 for 
d (ll)), 12(ll)), and 14(ll)) for simple Lie algebras of rank less than 
or equal to 8. However, there is no corresponding table avail
able for higher-order indices. Because of this, we first calcu
late values of Qp(ll)) for a few low-dimensional representa
tions ll) for a later purpose. Let 0 be the basic (or nontrivial 
lowest-dimensional) representation of L. In general, we have 
Dp(O) #0, if Jp is not identically zero. For such a case, we 
normalize Dp(ll)) by Eq. (1.21), so that 

Qp(O) = 1. 

For example, 0 = A I for all classical Lie algebras with possi
ble exception of L =Dp, and 0 =AI' for E6 and Es while 
o = A2 for G2, 0 = A4 for F4, and 0 = A6 for E7. In this 
note, we consider mostly the Lie algebr~...D p with odd p. If p is 
even, then Dp (ll)) here really represents D p (ll)), which is one of 
twopth-orderindices. For either case, wehaveDp(AI) = Oso 
that we have to choose 0 to be the fundamental spinor repre
sentation Ap with normalization 

Qp(Ap) = 1, for L = Dr (3.7) 

The explicit form of Qp in this case can be readily computed 
as follows. Define I j (l<.j<.p) here withp = rby 

I j =/j + j - 1 (I <.j<.p). (3.8) 

Then, we calculate 

2/112 , • • Ip 
Qp(A ) = d (A) (L = Dp' p = r). (3.9) 

(2p-1)!! 

For other cases of any classical Lie algebras, the explicit 
formulas for Qp(A ) are found in II. For example, if L is the 
Lie algebraA r withp<.r + I, then 

Qp(A2) = (r + If - 2P- I, 

(3.10) 
Qp(A3) = !(r + 1)2 - HI + 2P](r + 1) + 3P- I. 

We will next evaluate Qp(A ) for exceptional Lie algebras for 
low-dimensional representations. This is not difficult. First, 
let N = d (0). Then in (II), we noted the validity of 

Qp(rn)= N + 2P- I, (3.11a) 

Qp( B )=N - 2
p

- l
, (3.11b) 

Qp(ITJJ) =!N2+H1+2P]N+3 P- I, (3. 11 c) 

Q, (§) =jN'~H[+2'IN+3'-', (3.lld) 

Qp (SJ) =N 2 -3 P
-\ (3.11e) 

etc. As a matter off act, Eq. (3.10) for L = Ar corresponds to 
N = r + 1 in Eqs. (3.11b) and (3.lld), since 
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in this case. To be definite, let us consider the case of L = E6 
with 0 = Al and N = 27. Then, we have, 

(8) =A" (§)=A" 

(~) = (A, +A,), (rn)=A,e(2A,), 

(3.12) 

([OJ) = (O)e(AI +As)e(3A I), 

as we may verify by using the method explained in (II). Next, 
we note the fact that we have 

(3.13) 

where A • is the contragradient representation of A, which 
may be obtained from A by interchanges of 

for the case of L = E6 and m4 ~ ms for the case of Ds. Espe
cially, we have for E6 

Qp(As) = (- l)PQp(Ad = (- I)P, 

Qp(A4) = ( - 1)PQp(A2), 

Qp(A3) = ( - 1)PQp(A3)· 

Then, Eqs. (3.11), (3.12), and (3.14) lead to 

(3. 14a) 

(3. 14b) 

(3. 14c) 

Qp(A2) = (- 1)PQp(A4) = 27 - 2P- I, (3.15a) 

Qp(A3) = 27(13 - 2P- I) + 3P- I, (3.15b) 

Qp(2Ad = (- l)PQp(2As) = 2P- I + 27 - (- 1)p, 
(3.15c) 

as well as a sum rule 

Qp(AI +As) + Qp(3AI) = 27(14 + 2P- I) + 3P- I. 
(3.15d) 

We emphasize the fact that these relations are meaningful 
only for those values of p where E6 has nontrivial pth-order 
fundamental Casimir invariant Jp ' i.e., only for 
p = 2,5,6,8,9, and 12 but not for other values of p. For exam
ple, Eq. (3.15b) for p = 5 and p = 9 gives 
QS(A3) = Q9(A3) = 0 in accordance with Eq. (3.14c) but it 
leads to nonsensical answers Q3(A3)#0 and Q7(A3)#0 for 
p = 3 and 7 in contradiction with Eq. (3. 14c). The other val
ues of Qp (A ) can be similarly calculated from these, once the 
Kronecker decomposition 

ll),4 Xll)B = r ell)j (3.16a) 
j 

for two irreducible representations ll),4 and ll) B of E6 is 
known. In that case, we have the sum rule22 
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d (liJ,f )Qp(liJB) + d (liJB)Qp(liJ,f) = IQp(liJj ). (3.16b) 
j 

Examples for E6 are AIXA6=(Al +A6)$A 1 EllA4 and 
Al XAs = (A 1 + As) $ A6 $ O. For a later purpose, we com
pute values of Qs(A ) (p = 5) for a few low-dimensional repre
sentations of E6 

QS(Al) = - Qs(As) = 1, Qs(A2) = - QS(A4) = 11, 

QS(A3) = QS(A6) = QS(AI +As) = 0, 

QS{2Al) = - Qs{2As) = 44, (3.17) 

Qs(A 1 + A 6) = - Qs(As + A 6) = 88, 

QS(AI +A2) = 648, Qs{3Atl = 891. 

Similarly, some values of Qs{A) for the Lie algebra As are 
given by 

QS(Al) = - Qs(As) = 1, Qs(A2) = - QS(A4) = - to, 

QS(A3) = 0, QS(AI + A3 ) = - QS(A3 + As) = to, 

QS(AI + A4) = - QS(A2 + As) = 76, (3.18) 

Qs(2Al) = - Qs(2As) = 22, 

Qs(2A2) = - Qs(2A4) = - 320, 

while for L = Ds, Eq. (3.9) enables us to compute 

QS(A4) = - Qs(As) = - 1, 
Qs(Aj) = Qs(Aj + A k ) = 0 

(l<j<h;;3), 

QS(AI + As) = - QS(AI + A4) = 11, 

QS(A2 + As) = - QS(A2 + A4) = 55, 

Qs(2As) = - Qs(2A4) = 32. 

(3.19) 

Now, we would like to demonstrate the usefulness of our 
index branching sum rules. First, we have to know values of 
5p or tp. This can be readily evaluated once a branching rule 
for 0 is known. If Lo is any simple sub-Lie algebra of L with 
the same rank r as L, then it has been found that we have 
always t2 = 1 except for the case of L = C, and Lo = A" 
where we have t = 2. For cases of L = G2,F4,E7' and Es' the 
situation is simple, since any representation of these Lie alge
bras is self-contragradient.34 Consider as an example the 
case of F4 l B4. Then as we have already remarked, we have 
t = 1 by studying the simplest known BR of Al - A2 $ A 4. 
Sum rules Eqs. (1.28), (1.30), and (1.31) are now written as 

12(liJ) = I/~)(pj)' 
j 

14(liJ) = II ~)( P j)' 
j 

19 7 [/(O)(p )]2 
-/4(liJ) + -/2(liJ) = I 2 j , 
27 27 j do(p j) 

(3.20a) 

(3.20b) 

(3.21) 

where we used r = ro = 4, do(Po) = 36, and I~)(po) = 56 
with Po = A2 for Eq. (3.21c). We have also the dimensional 
sum rule 

d(liJ) = Ido(p j)' 
j 
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(3.22) 

These are more than sufficient to establish branching rules l9 

of 

A4- A 4$Al$(0), 

A3-(AI +A4)$Al $A2$A3$A4' 

(2A4) - (2A4) $ (A 1 + A4) $ (2A tl $ A I $ A4 $ (0), 

etc., if we use values of do(p j)' I~)(p j)' and I~)(p j) of B4 as 
well as of d (liJ), 12(liJ), and 14(liJ) of F4 tabulated in Ref. 19. 

The case of L = E6 is slightly more involved since its 
representation may not necessarily be self-contragradient. 
Consider first the case of E6 l Ds as an illustration. Then, the 
simplest BR for this case is liJ = A I with the BR 
AI - As $ AI $ 0 from the table of Ref. 19. Using the values 
of 12(A 1) = 6X6, 1~)(Al) = 5X2, and 1~)(As) = 5X4 again 
from the table of Ref. 19, we calculate t 2 = i, since we must 
have 

t212(A1) = 1~)(As) + I &O)(A tl. 
The branching sum rules Eqs. (1.28), (1.30), and (1.31) are 
now read as 

(3.23a) 

~ 14(liJ) = II ~)( p j), 
48 j 

(3.23b) 

5 
{ 

47 
4} 

[1(O)(p )]2 
- -/4(liJ) + -/2(liJ) = I 2 j , 
27 16 3 j dol p j) 

(3.23c) 

when we note r = 6, ro = 5, dol Po) = 45, and I ~)( Po) = 80 
for the present case. We may readily verify the validity of 
Eqs. (3.23b) and (3.23c) for Al - As $A 1 $ (0) again. To
gether with the dimensional sum rule Eq. (3.22), these sum 
rules are sufficient for most cases to determine the BR 
uniquely except for the question of the contragradiency, i.e., 
how to distinguish p j and P"1. As an example, consider the 
case of liJ = A2 and 2A 1> both of which have the same dimen
sion d (liJ) = 351. The application of our sum rules Eqs. 
(3.23aH3.23c) is sufficient to establish the branching rules of 

A 2-(A1 +As)$Al$A2$A3$A4$As, (3.24a) 

2A 1 - (2As)$(Al +As)$(2AI)$As$Al $(0), 
(3.24b) 

except for ambiguities of contragradiency, since Aj and its 
contragradient representation A "1 for Ds possess exactly the 
same values do(A;! = do(Aj), 1~)(A"1) = 1~)(A.t), and 
1~)(A"1) = 1~)(Aj).Therefore, our use of the sum rules does 
not rule out the replacement Al + As - A 1 + A4 in Eq. 
(3.24a) and 2As-2A4' Al +As-Al +A4 and/or 
As - A4 in Eq. (3.24b), since they are contragradient to each 
other. In order to eliminate this ambiguity, we need consider 
the odd-order branching sum rules Eq. (1.33). Again from 
the known branching rule A I - As $ A 1 $ 0, we evaluate ts 
from Eq. (1.33) to be ts = 1, where we used the values given 
by Eqs. (3.17) and (3.19) for Qs(A) and Q~O)(A). The fifth
order sum rule is now read as 

Qs(liJ) = IQ ~O)( p j)' 
j 
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Using the table in Eqs. (3.17) and (3.19), we can readily 
verify now that correct decompositions of A2 and 2A I are 
indeed uniquely specified by Eqs. (3.24a) and (3.24b), respec
tively. 

Next, let us consider E6 l Al XAs. From the simplest 
BR of A I ~ (0 ® A4) Ell (A I ® A I), we evaluate 

:f(A)_l :f(B)_5 :f(B)-12 :f(A)-O 
~2 -6' ~2 -6' ~s - , ~s -

for this case. Then, for example, the branching rule 

A2 ~ [0 ® (A3 + As)] Ell [At ® (AI + A4)] 

Ell [2AI ®A 2 ] Ell [O®2Ad Ell [AI ®As] 

can be similarly established, solving the contragradiency 
problem. 

The situation is slightly different, however, for the BR of 
E6 l A2 X G2, since both A z and Gz have no fundamental 
fifth-order indices. However, we can resolve the ambiguity 
due to contragradiency for this case now by uses of mixed 
sum rules Eq. (1.38b) and/or (1.3ge) as well as Eq. (1.29), 
although we will not go into detail. Note thatA z (but not G2 ) 

has nontrivial third-order index D3( pl. 
For other exceptional Lie algebras Gz, F4 , E7, and Es, 

the situation is more simple, since we need not be concerned 
about the contragradiency ambiguity for these cases because 
of self-contragadiency of representations of these Lie alge
bras. In the Appendix, we compute values of Qp (A ) for some 
low-dimensional representations of these algebras. 

In summary, our branching sum rules are quite useful in 
determining and checking BR's for exceptional Lie algebras. 
Many cases we have so far studied have been found to have 
unique solutions for their BR's without studying structures 
ofL andLo. 

Finally, we would like to make the following remark. 
The notion of the general Dynkin indices is evidently appli
cable also for Lie superalgebras. It can be used to determine 
Kronecker products as well as the branching rule for Lie 
superalgebras. So far, only the branching rule of the Lie su
peralgebras U(N / M) appears to have been studied in the li
terature.3S Also, the general Dynkin indices are intimately 
related to the anomaly36 appearing in gauge theories. Some 
comments on this problem will be discussed elsewhere. 37 
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APPENDIX: TABLE OF INDICES FOR EXCEPTIONAL LIE 
ALGEBRAS 

We compute here Qp(A ) for some low-dimensional irre
ducible representation with the highest weight A of excep
tional Lie algebras. We recall 

where 0 is the nontrivial lowest-dimensional representation 
of these Lie algebras. Using the method described in Sec. III, 
we find the following. 
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(1) Gz (p = 2,6),0 = A2, and Po = AI; 

Qp(A2) = 1, Qp(Atl = 6 - 2P- I, 

Qp(2Az) = 7 + 2P- I
, 

Qp(3Az) = 27 + 7X2P- 1 + 3P- I, 

Qp(AI + Az) = 8{6 - 2P -
I j, 

Qp(2AI) = 77 - 9X2 p
-

1 
- 4P- I. 

(2) F4 (p = 2,6,8,12), 0 = A4 , and Po = AI; 

Qp(A4) = 1, Qp(2A4) = 25 + 2P- 1, 

Qp(Atl = (274 - 13X2P + 3P- I)/(77 - 2P- I), 

Qp(A2) = (51 - 2P- I)Qp(Atl, 

Qp(A3) = (26 - 2P- I) - Qp(AI), 

Qp(AI + A4) = 25 + 2P- 1 + 27Qp(At). 

(3) E6 (p = 2,5,6,8,9,12),0 = AI' and Po = A6; 

Qp(Atl = (- IVQp(As) = 1, 

Qp(A2) = (- I)PQp(A4) = 27 - 2P- I, 

Qp(A3) = 27(13 - 2P -
I
) + 3P- I, 

Qp(2AI) = (- I)PQp(2As) = 2P- I !:/- 27 - (- IV, 

Q (A ) = Qp(A3) = 27(13 - 2P- I) + 3P- 1 

p 6 77 _ 2 p - I 77 _ 2 p - I 

Qp(AI +Az) = 27{26 - (- I)Pj - 3P- I
, 

Qp(AI +As) = 27{ 1 + (- IVj - Qp(A6), 

Qp(2A6) = {79 + 2P- I jQp(A6) - 27{ 1 + (- I)Pj, 

Qp(3A I)=27{13-(-IV+2P- l j 

+ 3P- 1 + Qp(A6), 

Qp(AI +A6) = 77 - (- IV[27 

-2P- I ] + 27Qp(A6), 

Qp(A4 + A6) = 2925 - 351 X2 P- 1 

+ 3P + 2 _ 4P - I• 

(4) E7 (p = 2,6,8,10,12,14,18), 0 = A6, and Po = AI; 

Qp(A6) = 1, Qp(Az) = (132 - 2P- I)Qp(AI), 

Qp(A3) = 27 664 - 1539X2P- 1 

+ 56X3 p- 1 - 4P- I, 

Qp(A4) = 1539 - 56X2 p- 1 + 3P- I, 

Qp(As) = 56 - 2P- I
, 

Qp(Atl = Qp(A3)/(8513 - 133X2p- 1 + 3P- I), 

Qp(A7) = [856 + 2P- 1 + 2PQp(AI) 

+ Qp(A3)]/(856 - 2 P -
I
), 

Qp(2A6) = 56 + 2P -
1 

- Qp(AI), 

Qp(AI + A6) = 132 + 56Qp(AI) - Qp(A7)' 

Qp(3A6) = 1595 + 56X2 p- 1 

+ 3P- 1 
- Qp(AI + A6 ), 

Qp(As + A 6) = 3003 - 3P- 1 
- 56Qp(A I), 
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Qp(2At) = (133 + 2P- t)Qp(At) - Qp(As). 

(5) Eg (p = 2,8,12,14,18,20,24,30), 0 =Po = At, 

Qp(At) = 1, Qp(A2) = 247 - 2P - 1, 

Qp(A3) = 30133 - 248X2 p- t + 3p- t • 

In deriving these results, we utilized Eq. (3.11) as well as 

N(N-I) 
2 

for N = d (0). In spite of fractional expressions for some 
Qp (A ), these are really integers except for the cases of p = 14 
and 18 for E7 • For example, we compute Q6(A t ) = - 2, 
Qg(At) = 10, Qto(At) = - 2, QdAt) = - 30 and 
Q6(A7) = - 10, Qg(A7) = - 82, Qto(A7) = 230, QdA7) 
= - 2082, but Qt4(At) = Wand Qtg(Atl = - ~g. The 

reason why Qp(At) and Qp(A7) (p = 14 and 18) for E7 are 
fractional is unclear. 

As applications of our formulas, we discuss the branch
ing rule for E7 ! E6. Considering the simplest decomposition 
A6 -At EDAs ED 2(0), we find tp = 2. Then, the branching 
sum rule 

2Qp(A) = LQ~O)(A j) (p = 2,6,8,12), 
j 

for E7 ! E6 can be verified for many cases. 
We have computed here only Qp(A j) (1<j<3) for Eg. 

The calculations of Qp(A j) (8) j>4) tum out to be quite com
plicated and appear to require a considerable effort. This has 
to wait for further study. 

IR. C. King, J. Phys. A 8, 429 (1975), and references quoted therein. 
2R. C. King, L. Dehuai, and B. G. Wyboume, J. Phys. A 14, 2509 (1981). 
3H. Weyl, The Theory of Groups and Quantum Mechanics (Methun, Lon
don, 1931), see p. 391. 

2137 J. Math. Phys., Vol. 26, No.9, September 1985 

4H. Boerner, Representation of Groups (North-Holland, Amsterdam, 
1970), 2nd ed., pp. 267 and 269. 

sw. Miller, Pac. J. Math. 16, 341 (1966). 
6G. C. Hegerfeldt, J. Math. Phys. 8, 1195 (1967). 
7M. L. Whippman, J. Math. Phys. 6,1534 (1965). 
8C.ltzykson and M. Nauenberg, Rev. Mod. Phys. 38, 95 (1966). 
9R. C. King, J. Phys. A 8, 429 (1975). 
lOG. R. E. Black and B. G. Wybourne, J. Phys. A 16, 2405 (1983). 
lIR. C. King and N. G. I. EI-Sharkaway, J. Phys. A 17, 19 (1984). 
120. R. E. Black, R. C. King, and B. G. Wybourne, J. Phys. A 16, 1555 

(1983). 
13 A. Navon and J. Patera, J. Math. Phys. 8, 489 (1967). 
14p. H. Butler, Appendix in B. C. Wybourne, Symmetry Principles and 

Atomic Spectroscopy (Wiley-Interscience, New York, 1970). 
ISA. van Daele, J. Math. Phys. 11, 3275 (1970). 
16B. G. Wyboume and M. J. Bowick, Aust. J. Phys. 30, 259 (1977). 
17B. G. Wybourne, Aust. J. Phys. 32, 417 (1979). 
18G. Feldman, T. Fulton, and P. T. Matthews, J. Math. Phys. 25, 1230 

(1984). 
I~. G. McKay and J. Patera, Tables of Dimensions, Indices, and Branch

ing Rules for Representations of Simple Lie Algebras (Dekker, New York, 
1981). We have, however, changed the notationI(2pl there to 12P (p) here. 

2°B. G. Wybourne, J. Phys. A 17, 1397 (1984). 
21G. Belanger, J. Phys. A: Math. Gen. 16, 3421 (1983). 
22S. Okubo and J. Patera, J. Math. Phys. 25, 219 (1984). 
23J. Diximer, Enveloping Algebras (North-Holland, Amsterdam, 1977). 
24S. Okubo, J. Math. Phys. 23,8 (1982). 
2sE. B. Dynkin, Mat. USSR Sb. 30, 349 (1952) [Am. Math. Soc. Trans. Ser. 2 

6, 111 (1957)]. 
26N. Bourbaki, Lie Groups and Lie Algebras, Part I (Addison-Wesley, 

Reading, MA, 1975). 
27S. Okubo, J. Math. Phys. 20, 586 (1979). 
28S. Okubo and J. Patera, J. Math. Phys. 24, 2722 (1983). 
29J. Patera, R. T. Sharp, and P. Winternitz, J. Math. Phys. 17, 1972 (1976); 

Erratum 18,1519 (1977). 
3OSee, e.g., N. Jacobson, Lie Algebras (Interscience, New York, 1962). 
31y. Tosa, R. E. Marshak, and S. Okubo, Phys. Rev. D 27, 444 (1983). 
32See, e.g., J. E. Humphrey, Introduction to Lie Algebras and Representation 

Theory (Springer, Berlin, 1972). 
"See, e.g., M. Hammermesh, Group Theory and its Application to Physical 

Problems (Addison-Wesley, Reading, MA, 1962). 
34J. Tits, Lecture Notes in Mathematics, Vol. 40 (Springer, New York, 1967); 

M. L. Mehta, J. Math. Phys. 7, 1824 (1966); A. K. Bose and J. Patera, ibid. 
11,2231 (1970). 

3sB. G. Wybourne, J. Phys. A 17, 1573 (1984). 
36J. Patera and R. T. Sharp, J. Math. Phys. 22, 2352 (1981); P. H. Frampton 

and T. W. Kephart, Phys. Rev. Lett. SO, 1343, 1347 (1983); L. Alvarez
Gaume and E. Witten, Nucl. Phys. B 234,269 (1983); M. B. Green and J. 
H. Schwarz, Phys. Lett. B 149, 117 (1984). 

37S. Okubo and J. Patera, Phys. Rev. D 31,2669 (1985). 

Susumu Okubo 2137 



                                                                                                                                    

Evaluation of the self-energy of a droplet interacting via a Yukawa force 
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The binding energy of a homogeneously charged, classical droplet is considered, whose charge 
elements interact via a Yukawa force. The six-dimensional self-energy integral is reduced to a 
three-dimensional integral for axially symmetric, but otherwise arbitrarily shaped, droplets. This 
integral is brought into a form particularly convenient for numerical calculations. Two integrals 
involving products of Bessel functions are evaluated, which are either not listed in standard tables 
of integrals or given in an erroneous form. 

I. INTRODUCTION 

In the nuclear liquid-drop model one has to calculate 
the binding energy of a droplet interacting via a short-range 
force. Using in particular the Yukawa potential 

Y(r) = (41T02r)-le -rla 

for the interaction, the six-dimensional self-energy integral 

(1) 

has to be evaluated, where the integration extends over the 
volume V of the nuclear droplet in both variables. I Account
ing for the diffuse nuclear surface, the zero-point motion of 
the nucleons, and the Pauli principle in the Thomas-Fermi 
approximation, the surface energy can be shown2 to have the 
form 

E __ 2dl(0) 
surf- r do' 

where r is the surface energy constant. The same formulas 
hold for any liquid interacting via a saturating, short-range 
force. 

The Coulomb self-energy is also obtained from I (0). In 
the limit a-+oo the Coulomb energy is given by 

21TP~ lim a21(a) =P~ r 1, d 3rd 3r', (2) 
a~", 2 Jv Ir - r I 

Po being the electric charge density. 
In nuclear physics one is mostly interested in the bind

ing energy of axially symmetric droplets. In the next section 
we show that Fourier transformation techniques can be used 
to transform I (a) into a three-dimensional integral. This re
quires some integrals over products of Bessel functions, 
which are evaluated in the last two sections. 

II. REDUCTION OF THE SIX-DIMENSIONAL SELF
ENERGY INTEGRAL TO A THREE-DIMENSIONAL 
INTEGRAL 

Introducing the three-dimensional step function (), 
which shall be 1 inside the nuclear surface and 0 outside, the 
integral l(a) may be written as 

L Y(/r - r'/)d 3r d 3r' 

= (21T)-3 f F[(}]F[Y]F[(}]*d 3q, (3) 

where the Fourier transforms 

F [()] = f () (r)e1qr dr , (4) 

F[Y] = f Y(r)eiqrd 3r=(1 +a2q2)-1 (5) 

have been introduced. In cylindrical coordinates the surface 
of an axiaiIy symmetric droplet may be generated by turning 
the shape function p = P (z) around the z axis. The Fourier 
transforms (4) and (5) are then given in terms of the shape 
function P (z) by 

F [()] = 21T f: '" eizqzp(z) JI(ql P(Z))ql-1 dz, (6) 

(7) 

where qz and ql denote the components of q in the direction 
of the symmetry axis and perpendicular to it. Inserting (6) 
and (7) into (3) the expression 

Iv Y(/r - r'/)d 3rd 3r' 

= f: '" P(z) f: '" P(z') f: '" iq~z-z') 
X r'" JI(ql P(Z))JMl P(z')) dql dqz dz'dz (8) 

Jo ql [1 + a2(q~ + qr)] 

is obtained after reordering the sequence of integrations. The 
innermost integral will be shown in the next section to have 
the value 

roo JI!qP) JI!qP') dq 
Jo q(b 2 + q2) 

= -b-211(bP<)KI(bP»+!b- 2P< P> -I, (9) 

where II and KI are modified Bessel and Hankel functions of 
order 1, respectively,3 and P < is the smaller and P> the 
larger of the two numbers P and P'. The last term on the 
right-hand side (rhs) of (9) is missing in Gradshteyn-Ryz
hik.4 There, reference is made to Bateman's collection of 
integrals,5 where the result is already given in the erroneous 
form. Note that the integral on the left-hand side (lhs) of(9) is 
not a special case of Hankel's integral, as given in Sec, 13.53 
of Ref. 6, 
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p-I 
XH(1)(xP'e1Ti)] x dx 

v (X2 _ r 2t+ 1 

= 1 (~)m[rp-2~p(rp<)H~)(rp»], 
2m+ 1m! rdr 

for ~ p (z) = Jp (z), J-l = v = 1, m = 0, r = ib, since the for
mula is only valid if 

l&fvl - &fJ-l < &fp . 

The latter condition excludes the case p = 0 which is of in
terest here. Only for p > 0 would there be no second term in 
(9). That the condition is in fact necessary is easily seen from 
the argument presented in Sec. 13.53 of Ref. 6. Unfortunate
ly, it is not properly taken into account in Refs. 4 and 5. 

That the second term on the rhs of (9) is required for 
p = 0 is easily checked in the limit b = 1, P = P '-0. If for 
real positive z we define 

A = max [( J I(z))2/z] , 
z 

the integral on the lhs of (9) can be estimated by 

O<P (CO (JMP))2 dq<PA (CO ~=!!.-PA, 
Jo qP(l +q2) Jo 1 +q2 2 

which tends to zero for P-o. On the other hand, 

so that (9) is satisfied in this limit only with the inclusion of 
the second term on the lhs. 

Inserting (9) into (8) the qz integration can be brought 
into a considerably more convenient form by using the iden
tity 

f: co eiqzlz-z') b -2 [2I1(bP < )KI(bP» - P < P> -I ]dz 

= -2aPP' IT sin2 t/JR -2(exp ( -lza-z'l) 

[ 
~ (z - Z,)2 + R 2 ]) 

- exp - dt/J, 
a 

(10) 

with 

b 2 =a-2 +ti, 
R 2 = P 2(Z) + P 2(Z') - 2P (z)P (z') cos t/J . 

This result will be derived in the third section. 
Inserting (10) into (8) leads to a reduction of the original 

six-dimensional integral (1) to a three-dimensional one: 

Iv Y(lr - r'I)d3r d 3r' 

= a-I f: co P2(Z) f: co p 2(z') [ sin
2 t/J 

XR -2(exp( -Iz - z'lla) 

- exp [ - ~ (z - z,)2 + R 2 I a] ) dt/J dz' dz . 

For general shape functions P (z) this has to be evaluated nu
merically. The singular behavior of the integrand for z = z' 
suggests the introduction of new variables t and t ' by 
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t = (z - zmin )/zo, tt' = (z' - zmin )/zo, O<t,t ' < 1 , 

with 

Zo = zmax - zmin , 

Zmax and zmin denoting the largest and the smallest zero of 
P(z) (the end points of the droplet), respectively. This trans
formation, introduced by Lawrence7 for a similar purpose, 
maps the line of singularity z = z' onto the boundary line 
t' = 1, which is more convenient for numerical purposes. 
The resulting expression for the self-energy integral is 

~ II II 111" I (a) = 2 ~ dt tP 2(Z) dt' P 2(Z') dt/J 
a 0 0 0 

with 

G (t,t', t/J) = exp[ - (zola)t (1 - t ')] 

-exp[ -a-I~~ t2(1_t')2+R2] , 

z = zot + Zmin' Z' = zott' + Zmin • 

Using the relation 

lim aG = ~~t2(1 - t')2 + R 2 -zo t(l - t'), 
a_co 

the Coulomb limit (2) is readily obtained from this result 

ECoul = 41r p~ z~ f dttP 2(Z) f dt' P 2(Z') 111" dt/J 

xsin2 t/JR -2{~t2(1_t')2+R2/~ -t(l-t')I. 

This expression for the Coulomb energy agrees with the one 
obtained by Lawrence7 after use has been made of the identi
ty 

(zol R )2 [ ~ t 2(1 - t ')2 + (R Izof - t (1 - t ')] 

= [t(l- t') + ~t2(1 - t')2 + (R Izof] -I. 

III. EVALUATION OF THE INTEGRALfO' q-1 In(qP) 
X In(qP ')(b2 + q2)-1 dq 

Writing 

I n (qP) I n (qP') 

=! In(qP < )(H~I)(qP » + H~)(qP >)) 

and choosing the branch cut for the Hankel function along 
the negative real axis, we first consider the integral 

1 In(qP < )H~I)(qP » d 

b
2 2 q 

A+B+C q( +q) 
= - hrb -2Jn(ibP < )H~I)(ibP » 

= -2b-2I n(bP<)Kn(bP», (11) 

for integer n > 0 over the closed contour A + B + C in the 
complex q plane (cf. Fig. 1 for the definition of integration 
paths) and 

( In(qP < )H~)(qP » d 

JA+D+E+F q(b 2+q2) q 

= i1rb -2Jn( - ibP < )H~)( - ibP» 

= - 2b -2In(bP < )Kn(bP», (12) 
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FIG. 1. Integration path used in (11) and (12). The branch cut of the inte
grand is along the negative real axis. There are two closed contours 
C + A + Band E + F + A + 0 of which the part E is in the second sheet. 

over the closed contour A + 0 + E + F. Since 

H ~)(xe - 1'1) = H ~)(xe17'i) - 4Jn (xel'i) , 

we have 

r In(qP < )H~)(qP » dq 

JE q(b 2+q2) 

= i In(qP < )(H~)(qP » - 4Jn(qP>)) dq. 

C q(b 2 + q2) 
(13) 

For P < <.P> the asymptotic behavior of the Bessel func
tions for large arguments implies a vanishing contribution to 
the integrals (11) and (12) from the circular parts B and 0 of 
the contour when iqi---+oo. At the origin 

In(z) = (l/nl)(z/2r + d(Zn+2) , 

H~)(z) = _ 2i In(z) In-=-+ ~(n _ 1)1 (~)n + d(r-n). 
1'f 2 1'f Z 

Therefore 

r In(qP < )H~)(qP > ) dq = __ 2_ (P < )n , (14) 
JF q(b 2 + q2) nb 2 P> 

for iqi-D, n >0. Adding (11) and (12) and using (13) and (14) 
yields finally 

4 L"" In(qP <) In(qP » dq __ 2_ (P <)n 
o q(b 2 + q2) nb 2 P> 

= - 4b -2In(bP < )Kn(bP» , 

for integer n > O. 

IV. TRANSFORMATION OF THE INTEGRAL 
f~ "" e'K'/1(bP < )K1(bP> )b-2 dK 

For the product of two modified Bessel functions an 
integral representation can be obtained from the summation 
formula6 
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Kn(bR) =2nr(n) .f (n+m) Kn+m(bP» 
(bR r m = 0 (bP> r 

X [In+m(bP < )/(bP < tjC::'(cos t/J), 

where 

R 2=P<2+p> 2_2P< P> cost/J, 

(15) 

and the C::'(x) are Gegenbauer polynomials. Multiplying 
(15) with C ~ sin2 t/J and taking n = 1, one obtains after inte
grating over t/J 

~ L17' K1(bR) sin2 t/J dt/J = K1(bP> ) II(bP <) . 
1'f 0 bR bP> bP < 

Using the Fourier transform8 

1 J"" IK,K1(bR) d a (_~~2+R2) - e K=-2exp , 
1'f - "" bR R a 

with b 2 = K2 + a-2
, therefore leads to 

L"" "" eiK' II(bP < )K1(bP> )b -2 dK 

= P P [sin
2 

t/J ( - ~ ~ 2 + R 2) d''/'' 
a< > 2 exp 'P' oRa 

Since 

P 2L17"2
,/" -=:"=P P - ~d'/" 

P < > R2 'P, 
> 1'f 0 

the identity (10) is seen to hold. 
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T~e ~aper contains a discussi?n of the phase retrieval problem in two dimensions and proposes 
cntena to select those resolutions of the discrete ambiguity of the zero trajectories which are 
compatible with the analyticity in two variables of the scattered field. 

I. INTRODUCTION 

It has been realized over the last few years that the prob
lem of phase retrieval from a given intensity distribution has 
features that are qualitatively different in higher dimensions 
(d;;o.2), as compared to the one-dimensional situation. Loose
ly speaking, it appears much easier to achieve uniqueness of 
the reconstructed phase (up to an overall phase factor) in 
higher dimensions. 

The reasons for this occurrence may be most easily un
derstood in the artificial problem of the reconstruction of a 
polynomial P(u,v) of degree (M,N) with respect to u and v 
from knowledge of its modulus in the Re u-Re v plane. If 
P (u,v) may be decomposed into Q prime factors P;(u,v), then 
the modulus squared of P (u,v) in the Re u-Re v plane 

M (u,v) = P (u,v)P *(u* ,v*) 

Q 
= II P;(u,vlPr(u*,v*) (1.1) 

;=1 

contains 2Q such factors, and the ambiguity in the recon
struction1

•
2 of P(u,v) knowing M(u,v) is clearly 2Q (if the Q 

factors are distinct). The remarkable feature is that the num
ber Q bears in general no relation to the degree of P (u,v); it 
depends on the specific polynomial under consideration. 
This is in contrast to the one-dimensional case3.4 where any 
polynomial P (u) of degree N may always be written as a pro
duct ofN factors (u - u;) and the ambiguity is invariably 2N. 

The fact that in two dimensions there exists a much 
richer variety of prime factors than in one dimension leads to 
several problems: (i) given a polynomial M (u,v), positive in 
the Re u-Re v plane and of degree 2M,2N, one needs a meth
od to decide whether it may be written as a product of pairs 
of prime factors, complex conjugate to each other. In two 
dimensions, there exist irreducible positive polynomials 
[e.g.,P(u,v) = u2 + v2 + I]andthusonlyasubsetoftheposi
tive polynomials makes up admissible intensity distribu
tions. (ii) The extension of this question is that of finding the 
ambiguity in the phase determination from an admissible 
intensity distribution M (u,v), given numerically in the Re u
Re v plane, i.e., to determine the number of its prime factors. 
(iii) If M (u,v) is admissible, one wishes to construct all poly
nomials P (u,v) so that (1.1) is obeyed. (iv) The coefficients of a 
solution P (u,v) of the phase problem are determined from 
data only within errors; every polynomial P (u,v) of degree 
(M,N) may be regarded as an element ofR(M + 1)(N + 1) with the 
Eucli~an metric and the question arises whether all polyno
mials P (u,v) in a sufficiently small ball around P (u,v) 

liP - P IIR'M+ IIIN+ I) < E (1.2) 
have the same number of prime factors. This is in fact wrong, 

since reducibility may be easily destroyed (as an example, 
u2 + v2 is reducible over C, but u2 + v2 + E is not), and the 
problem is to describe the situation in precise terms. 

A solution to this problem is provided by Ref. 5, where it 
is shown that the set of reducible polynomials is of measure 
zero in R(M + 1)(N + 1) and that, as a consequence of the method 
of proof, for each irreducible polynomialP (u,v), there exists a 
neighborhood Ok of it, such that each element of Ok is irredu
cible. In fact, one can prove, following Ref. 5, that each po
lynomial of degree (M,N) with Q prime factors has a neigh
borhood Ok 1 in R(M + 1)(N + 1) such that each element of Ok 1 

has at most Q factors. 
The purpose of this paper is to explore and partly for

mulate answers to the questions above in the framework of 
entire functions of exponential type in two variables. These 
functions occur naturally in the description of scattered 
fields in electromagnetic theory (see Sec. II); we shall call a 
function in this class "truly entire" if it is not equal to a 
polynomial, and it is with such functions that we shall be 
concerned. The solutions to problems (iHiii) for polynomi
als will appear in the text (Sec. IV), however, as special cases. 
It may be surprising that it will tum out that it is not yet 
possible, in general, for truly entire functions, to relate the 
extent of the ambiguity to the number of prime factors (as 
assumed by some authors2

). 

In Sec. II of this paper, we recall and render more pre
cise known results concerning the solution of the phase re
trieval problem in the framework of entire functions; we also 
give an analysis of the stability of the determination of the 
ambiguities, as discussed above [under (iv)]. 

In Sec. III, we give an answer (which might still seem 
impractical) to questions (iHiii) above for entire functions, 
using the zero trajectories of the modulus distribution. In 
two variables, there appears an "ambiguity of trajectories" 
instead of one of zeros, as in the one-variable case, but not 
every resolution of this ambiguity turns out to be compatible 
with two-variable analyticity (see also Ref. 2). 

In Sec. IV, we give a quick approximate method of 
grouping trajectories into irreducible factors. This method 
has already been used in the analysis of scattering data in 
high-energy physics, in order to discard solutions that are 
incompatible with local analyticity in two variables.6

•
7 

Further, we apply the results of the previous sections to the 
case of polynomials, as used by Bruck and Sodin. 1 

Appendix A contains the proofs of some statements in 
the text, Appendix B proves explicitly that reducibility is 
unstable for zero sets of entire functions, and Appendix C 
contains the construction of a truly entire irreducible (i.e., 
not admissible) intensity distribution. 
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II. THE AMBIGUITY OF THE SOLUTIONS OF THE PHASE 
RETRIEVAL PROBLEM 

We consider the field F(u,v) in the plane at infinity, ob
tained from the scattering of a monochromatic parallel beam 
of light, normally incident on an aperture with finite extent 
~. In the Kirchhoffapproximation,8 F(u,v) is related to the 
wave function ¢A.,x, y) in the aperture plane by 

F(u,v) = const LJ exp i(ux + vy)¢A.,x,yjdx dy, 

u = kp, v = kq, k = 21T/A., (2.1) 

whereA. is the wavelength andp,q are the direction cosines of 
the scattered wave with respect to orthogonal x, y axes in the 
aperture plane and a z axis normal to it. One verifies that 
F(u,v) is an entire function of exponential type in u and v, 
with a square-integrable modulus over the Re u-Re v plane. 
The rate ofincrease ofF (u,v) in an imaginary direction (A. 1,A.2) 

[i.e., sup lim(logIF(al - lit I r,a2 - iA.2rJllr)] is deter-
a.,a2 

mined by the convex hull of the aperture ~ (Ref. 9). 

A generalization of the Paley-Wiener theorem is true9 

and states that any entire function of exponential type, with 
square-integrable modulus in the Re u-Re v plane, is the 
Fourier transform of a square-integrable function with 
bounded support. The convex hull of the support can be read 
off the growth properties of F(u,v) in imaginary directions. 

As a consequence of this theorem, the phase retrieval 
problem is that of finding constraints on the phase of an 
entire function of exponential type F(u,v) given its square
integrable modulus on the subset 1m u = 0 ® 1m v = o. 

A central part is played in the study of this problem by 
the set fr of points (u,v)eC2 where the entire function F(u,v) 
vanishes. This has been pointed out also in Ref. 2. 

The set fr may be written as a union over several irre
ducible analytic sets JI; (Ref. 10, p. 265). An irreducible 
analytic set can be defined as follows: consider a point (u,v) 
on fr, so that the equation F(u,v) = 0 can be solved with 
respect to v, say, in a neighborhood Uk of u:v = vo(u); the set 
of all points (u,v(u))eC2, where v(u) is obtained by the analytic 
continuation ofvo(u) in the u plane along all possible paths, is 
clearly included in fr, and makes up an irreducible compo
nent of it. 

For each irreducible component JI; of fr, one can con
struct an entire function G;(u,v), vanishing only on JI; and 
nowhere elselO (Cousin's second theorem). This leads to a 
decomposition of F(u,v) into "prime factors" 

n 

F(u,v) = II G;(u,v) , (2.2) 
;=1 

where n may be infinite. Each factor Gj (u,v) is defined up to a 
nonvanishing entire function. In an obvious manner, one 
may introduce multiplicities pj for each manifold Jlj and 
corresponding powers for each G;(u,v) in (2.2). One might 
suspect that, if F is of exponential type, then each of the 
Gj(u,v) can be chosen to be of exponential type. This is far 
from obvious and will be discussed below. 

Similarly to the one-variable case, the relevance of the 
set of zeros of F (u,v) is seen if one constructs from the avail
able modulus distribution the entire function 
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M(u,v) =F(u,v)F*(u*,v*). (2.3) 

For (u,v) on 1m u = 0 ® 1m v = 0, the (real) values of M (u,v) 
are known. They can be used to construct M(u,v) every
where, e.g., by means of the Lagrange interpolation formula 
(see Sec. III). In particular, one can find in principle the set of 
zeros fr M of M (u,v). It contains, apart from fr, the set fr* 
[(u,v)e fr* if(u*,v*)e fr] and nothing else. If the irreducible 
components of fr are JI;o then those of fr* are Jlr (which 
are also analytic). Now, knowing the JI; 's, we can in princi
ple use Cousin's method to construct the corresponding Gj's 
and thus F. We expect thus that the only ambiguities of the 
phase retrieval problem arise from the possible replacement 
of Gj(u,v) by Gr (u*,v*), which vanishes on Jlr. 

We agree to call two solutions distinct if they do riot 
differ by a constant phase factor exp(i~o); we can then make 
the above statements precise through the following. 

Proposition 1: If two solutions FI(u,v), F2(u,v) of the 
phase problem have the same set of zeros, then their Fourier 
transforms differ at most by a translation. 

Proof Let FI ,F2 be the two distinct solutions; their quo
tient R (u,v) = F2(u,v)/FI(u,v) has unit modulus for u,v real 
and is holomorphic and free of zeros in all of C2

• It is there
fore an entire function which may be written as exp(iP(u,v)) 
with P(u,v) a real analytic entire function. 

Now, at each fixed u, we have the following (i) In IF2(u,v) I 
is bounded from above by const Ivl; (ii) for any given €>O 
and 0' > 0, there exists an r 0 such that, for I v I > r 0' 

IniFI(u,v)i> - Ivll +E, if v lies outside circles centered atthe 
zeros Vn of FI(u,v) and of radius larger than 1I1v" IU (see Ref. 
11, Lemma 2.6.18). 

Consequently, at each u, for Ivl sufficiently large, and 
outside those circles, 

InlR (u,v)1 <k Ivl1+£. (2.4) 

We can choose 0' (e.g., 0'> 1) such that, for any v with Ivl 
sufficiently large [I v I > vo(O',€,U I], there exists a circle of radi
us kv Ivl with, e.g., 2 < kv < 3, so that (2.4) is valid on that 
circle. Applying Caratheodory's inequality (Ref. 11, p. 3) to 
the function iP (u,v)=ln R (u,v) whose real part is bounded by 
(2.4) on the boundary of disks of radius kv Ivl,lvl > vo, we 
obtain 

IP(u,v)1 <constlvl l 
+E, (2.5) 

for alllvi sufficiently large. Choosing E < 1, (2.5) implies that 
P (u,v) is a polynomial of order at most unity, at each fixed u. 

The same reasoning can be done at fixed v, and it fol
lows that 

R (u,v) = exp[i(ru + c5v)] , (2.6) 

with r,c5 real. Proposition 1 follows then from a known prop
erty of Fourier transforms. 

We can thus part the solutionsF(u,v) of the phase prob
lem into equivalence classes modulo translations. 

Proposition 2: The solutions in two different classes dif
fer by the replacement of at least one irreducible zero set Jl1 

by its complex conjugate Jlr. 
This may be regarded as rather obvious, since it is equi

valent to saying that irreducible sets cannot be "broken" if 
they are to be zero sets of some entire function. Nevertheless, 
we prove this in detail below. 
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Proof: According to Proposition 1, the sets of zeros of 
the two solutions FI(u,v), F2(u,v) cannot be identical. As a 
consequence of Weierstrass' preparation theorem (Ref. 10, 
p. 86), there must exist a point (uo,vo) and a neighborhood 
uu oX roofit, so thatthesets of zeros ofFI(u,v) andF2(u,v) in 
uu 0 X r 0 are described by different pseudopolynomials (one 
of them may be a constant). We may assume FI(uo,vo) = 0 
and write, for (u,v)euu oX r o, 

with 

FI(u,v) = WI(u,v)ill(u,v~ 

+ on;(u), i = 1,2, 

0k;(UO) = 0, n l > 1, n2>0, 

(2.7) 

(2.8) 

Ok;(U) holomorphic in uu 0' and il;(u,v) nonvanishing in 
uuoXro· 

We choose the indices 1 and 2 so that W2(u,v) may be a 
divisor of WI(u,v), but not conversely. There exists then an 
open set tf c uu oX r o, whereR (u,v) = F I(u,v)fF2(u,v) van
ishes at all points where at least one ofthe irreducible factors 
(see Ref. 10, p. 104) Wi (u,v) of WI(u,v) vanishes [with the 
exception of at most a finite number of points where Wi (u,v) 
=0]. 

However, R (u,v) obeys on the plane 1m u 
= 0 ® 1m v = 0 the identify 

R (u,v)R *(u*,v*) = 1 . (2.9) 

Since this plane is nonanalytic (Ref. 12, p. 93), Eq. (2.9) holds 
throughoutC2. In particular, if(ul,v l ) e & andR (ul,vd = 0, 
it follows from (2.9) that R (uT ,vT) cannot be finite, i.e., F2(uT, 
vT) = O. Thus F2(u,v) = 0 on the set of points (u,v) fulfilling 
Wi (u* ,v*) = O. Let v = v(u) be the solution of Wi (u,v) = 0 
in the neighborhood of a point in tf, where aWifc1v#O 
(such points exist). Then, for all analytic continuations of 
v(u), FI(u,v(u)) = O. This defines the irreducible set vI/ I and it 
follows from the above that F2 must vanish on vl/T. 

If F2(u,v) does not vanish on vI/ I' the proof is finished, 
since FI and F2 differ by the "reflection" of the irreducible set 
vI/ I' If F2 vanishes on vI/ I' then, by assumption, FI(u,v) van
ishes with a higher order, so that R (u,v) = 0, for (u,v) e vI/ I' 
Then, however, (2.9) implies that F2(u,v) vanishes on vl/T 
with an order higher than FI , which proves the assertion 
completely. 

As a consequence, if ~ = u7 = I vI/; is the set of zeros of 
a solution Fo(u,v) of the phase problem, there are at most 2n 

distinct solutions of the problem. One would like to show 
that, as in the case of polynomials, there exist precisely 2n 

such solutions. Such a statement is difficult to prove because 
the Cousin construction leading to Eq. (1.2) cannot ensure 
that the solutions constructed with the reflected manifolds 
are indeed of exponential type. It is ° priori not even clear 
that they are of order unity. 

Using a generalization of the Weierstrass product, due 
to Lelong,13 it is possible to answer this last point in the 
affirmative. 
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Proposition 3: To each set~' obtained from ~ by the 
reflection of an arbitrary number of manifolds, there exists 
an entire function of order unity F (u,v) vanishing on ~' and 
nowhere else, and with the same modulus as Fo(u,v) in the 
Re u-Re v plane. 

The proof of this statement is given in Appendix A. 
Clearly, one needs further to show that, to each ~', there 
exists a function of exponential type vanishing on it. A neces
sary and sufficient condition for this, generalizing Lindelofs 
theorem (Ref. 11, p. 27) of the one-variable case, is provided 
in the same paper 13 by Lelong. Namely, the set~' admits of 
a function of exponential type vanishing on it and nowhere 
else if and only if the coefficients of u and v of the polynomi
als 

PR(u,v) = r V~ logIF(a l ,a2)1 °IU + :2V dVa (2.10) 
Jllall <R Iiall 

are bounded, as R--+oo. In (2.10), F(a l ,02) is any entire func
tion vanishing on ~' [e.g., obtained from (2.2) by replacing 
factors G;(u,v) by their conjugates G r (u*,v*)]; it is easy to 
verify that (2.10) is independent of the choice of F (a l,a2) so 
that it refers indeed to~' only; dVa is the volume element in 
the real space alx , 0ly' a2x ' a2y . The integral in (2.10) may be 
written as a sum over the polynomials P R.; corresponding to 
each manifold vI/; (if they intersect the balliiall <R). The 
replacement of vI/; by vl/r causes the complex conjugation 
of the coefficients of PR.;(u,v). 

In the one-variable case, one can prove that, if U; are the 
zeros of the Fourier transform F(u), then:I; 11m U; Iflu; 12 
converges, so that the reflection of zeros does not harm Lin
delOfs criterion. However, the analogous statement in two 
dimensions, namely that the family of integrals (0 < R < (0) 

r 2 1m a; 
I;(R) = J~:la~:o Va logIF(0lta2)1 ~dva , 

i= 1,2 (2.11) 
is bounded, is wrong. A simple example where (2.11) diverge 
as R--+oo is given in Appendix A. Therefore, we can only 
state the following. 

Proposition 4: Let ~ consist of a finite number of irre
ducible manifolds vI/; and suppose each of them has the 
property that the imaginary parts of the coefficients of u and 
v in the polynomials PR.;(u,v) defined by (2.10) on vI/; are 
bounded as R--+ 00. Then, if ~ is the zero set of a solution of 
the phase retrieval problem, to each set ~' obtained from ~ 
by reflecting any number of manifolds vI/ it there corre
sponds a distinct solution of the phase retrieval problem, 
vanishing on~' and nowhere else. 

Clearly, a statement on ambiguities without the restric
tion above on P R.i is desirable. Indeed, one should notice that 
Proposition 4 does not contain the simple case of a purely 
radial dependence of r/J(x, y) = fi,(r). In that case, the intensity 
distribution is given by the Bessel transform of ~(r), which is 
an entire function of order! in u2 + v2

• Consequently, it con
tains infinitely many zeros and may be written as a conver
gent product over irreducible factors of the form 
(1 - (u2 + v2)1a;), a; #0, complex. Any number of these 
factors may be replaced by their conjugates 
(1 - (U*2 + v*2)1a;)*, still giving rise to a solution of the 
phase problem. 
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A remark on the existence of solutions to the phase 
problem is now appropriate. In the one-variable situation, it 
is true that, if an entire function M (u) of exponential type 1'is 
positive and integrable on the real axis, then a function F (u) 
of type 1'/2 exists (in fact an infinity of them) so that M (u) 
=F(u)F*(u), ueR. This follows from Theorem 7.5.1 of 
Ref. 11, since the conditions on M(u) ensure that :In 
11m l/un 1< 00 (un being its zeros). Thus, one can give a com
plete characterization of those functions M (u) that are Four
ier transforms of autocorrelation functions. 

In two variables, it is not true that a function which is 
positive in the Re u-Re v plane and entire necessarily con
tains pairs of irreducible manifolds, conjugate to each other 
(by analogy to the conjugate zeros in one variable). As an 
example, consider M(u,v) = exp(u) + exp(v) + 1, whose ze
ros consist of one irreducible manifold. It is more complicat
ed tofindfunctionsM(u,v) that also belongtoL ·(R2

) and for 
which irreducibility can be proven, but we construct such an 
example in Appendix C. 

From the construction of Appendix C, one expects that, 
in general, there exist many functions M (u,v), positive and 
with integrable modulus in the Re u-Re v plane whose Four
ier transforms, although they have compact support, are not 
autocorrelation functions. From Proposition 4, we may read 
thatM(u,v) is admissible ifit has a finite number ofirreduci
ble zero sets J/;. which may be parted into two classes so 
that (i) to each J/; in one class, there corresponds J/r in the 
other class and (ii) each class separately can support an entire 
function of exponential type. 

With Proposition 4, we have established that, if.fl' con
sists of N irreducible zero sets, the ambiguity of the phase 
problem is at most 2N. The next problem is whether state
ments are possible if the modulus M (u,v), Eq. (2.3), is affected 
by sufficiently small errors, still staying admissible. 

It is sufficient to this end to study the variation in the 
number of prime factors of two Fourier transforms F.(u,v), 
F2(u,v), Eq. (2.1), that have values close to each other in the 
Re u-Re v plane, in the sense that 

IIF. - F2112 = f IF.(u,v) - F2(u,vW du dv < c , (2.12) 

and are further such that the original functions tf.(x, y), 
tf2(X, y) have support contained in a rectangle 
[ - a,a] X [ - b,b]. Equation (2.12) is a norm in a Hilbert 
space Ea,b of entire functions of exponential type less than a, 
at each fixed v, and less than b at each fixed u, as.a conse
quence of the Paley-Wiener theorem. [One cannot use Eq. 
(2.12) instead of(1.2) for polynomials, since (2.12) would im
ply that the two polynomials differ by a small constant.] 

By means of Schwartz's inequality and Parseval's 
theorem, one may verify that, if F.(u,v), F2(u,v) e Ea•b and 
(u,v) e C2 then 
1F.(u,v) - F2(u,v)1 

<exp[aIIm ul] exp[b 11m vi] IIF. - F211 X2(ab )./2. 

(2.13) 

Equation (2.13) shows that within any strip 11m ul <A, 
11m vi <B, we can make the absolute departure ofF. fromF2 
as small as we wish, if I IF. - F211 is chosen small enough, i.e., 
the analytic extrapolation within Ea,b off an error corridor 
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(2.12) is stable, inside any strip of finite width. This statement 
may seem to contradict those of Ref. 14, where an investiga
tion of the instabilities in zero location is performed; our 
statement refers to the situation when F(u,v) is available on 
the whole Re u-Re v plane with errors (2.12). 

As we shall see in Secs. III and IV, the decision whether 
a manifold is irreducible or not rests with the ability oflocat
ing branch points in the u plane of the functions v = v(u), the 
solutions of the equation F(u,v) = O. In view ofthe finite er
rors (2.12), it is not artificial to replace the notion ofirreduci
bility in the large by that of irreducibility with respect to a 
compact set D(A • .A2,B.,B2): IReul<A.; IRevl<A2; 

11m ul <B.; 11m vi <B2;D = D. XD2· WecallasubsetJ/ D,; 

ofthe intersection.fl' D =.fl'nD of the zero set.fl' of F(u,v) 
with D irreducible with respect to D if it consists of all points 
with coordinates (u,v(u)), where v(u) is obtained by analytic 
continuation from a function element vo(u), u e D., vo(u) e D2 
along all possible paths for which u e D., v e D 2 • Clearly, the 
number N ~ of irreducible sets J/ D,; with respect to D is 
larger, in general, than the number ND of irreducible sets of 
.fl' which intersect D. 

We can now state the following. 
Proposition 5: Let Fo(u,v) belong to Ea,b and consider the 

compact rectangleD (A l.A2,B .,B2)' There exists then a neigh
borhood ~ of Fo in Ea,b so that any other Fin ~ has at most 
the same number of irreducible zero sets with respect to D as 
Fo(u,v). 

In other words, the number of irreducible zero sets with 
respect to D can at most decrease under perturbation. The 
meaning of this statement concerning ambiguities is, how
ever, rather complicated; that part of the ambiguity of the 
phase problem coming from the N D irreducible zero sets that 
intersect D is at most 2ND

• Proposition 5 makes a statement 

about an upper bound 2N D of the latter estimate; it decreases 
under sufficiently small perturbations. 

Proof: We consider the set Y of points (UOjJvOi ) of.fl' D 

with the property that several roots vjl(u), ... ,vj,(u), r> 1 of the 
equation Fo(u,v) = 0 assume the common value vo,; at 
u = uo,;. The set consists either of (a finite number of) isolat
ed points or contains an irreducible zero set of Fo. We assume 
first, for simplicity, that the former is the case and surround 
each of these points by a polydisk: d?: lu - uo,;I<r;, 
Iv - vo,; I <r;, with r; chosen so that no two points of Y be
long to the same d? 

To each point (u,v) of D lying outside u/ d? we attach by 
the implicit function theorem a polydisk d (u,v) = du (u,v) 
®dv(u,v),du:lu - ul <r.(u,v),dv:lv - vi <r2(u,v), so that, for 
each u in du there exists one and only one root of Fo(u,v) = 0 
lying strictly inside dv. The covering of .fl'~ =.fl' D '\U; d? 
that is thus obtained can be chosen so as to be contained in a 
rectangle 

Dk : IRe ul <leA., IRe vi <IeA2, 

11m ul <kB1, 11m vi <kB2' 
(2.14) 

for any given k> 1. Now .fl' ~ is a compact set and we can 
extract from the set of d (u,v) a finite cover of it; let its ele
ments be dj = du,j ®dv,j' j = 1,2, ... ,N •. It is only at this 
stage that we use the finite extension of D in the Re u, Re v 
direction. 
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We shall now show that we can choose perturbations 
c5F(u,v) of Fo(u,v) such that (i) the set of zeros of any function 
(Fo + c5F) (u,v) is entirely contained in (u; d~) u(u} d]) and (ii) 
that the d/s maintain the property that, for each u in du,}, 

there exists one and only one root of(Fo + c5F)(u,v) = 0 lying 
inside dv,] , To this end, let 

inf 
U E dM,i 

(2.15) 

Iv - iill = ',.» 

with v} the center of dv,}' By our choice of du(u,v), IL} :1=0. 
Further, let 

~ = u~ul.j (la:V°(U,V)1 + !Fo(u,v)l) (2.16) 

Iv- iill = '2.j 0 

and let 

(2.17) 

Now let D;' be defined by (2.14) with k' > k and choose 
c5F(u,v) E Ea,b so that 

suplc5F(u,v)l <E', sup -- <E'. I 
ac5F I 

D" D" av(u,v) 
(2.18) 

Then conditions (i) and (ii) above are fulfilled. This is verified 
by evaluating in each du,} the differences ofthe values of the 
integer-valued functions 

N(F) = ~,J: aF lav (u,v)dv, (2.19) 
2'TTlJ;V-iijl='2.j F 

evaluated for Fo and Fo + c5F. Clearly, N (Fo) = 1 and (2.17) 
ensures that IN (Fo) - N (Fo + c5F)I < 1. Thus, condition (ii) 
is fulfilled; (i) is also verified by applying the reasoning above 
to a point outside (u; d~) u(uj dj ) and we conclude that it is 
impossible for (Fo + c5F)(u,v) to vanish there. It is also true 
that all points (u,v(u)) ofthe zero set,q liF,D of(Fo + c5F)(u,v) 
lying inside n] d] are regular points, i.e., v(u) is holomorphic 
in du,}, 

We can now show that,q liF,D contains at most as many 
irreducible manifolds with respect to D as ,q D [correspond
ing to Fo(u,v) = 0]. 

To this end, consider the set % of those polydisks dj,k 

which are part of the covering of an irreducible manifold 
.At 1 D of,q D (with respect toD). We shall argue that any two 
poi~ts of ,q liF,D lying in % can be connected by analytic 
continuation along °a path such that (u,v(u)) stays inside D. 
Indeed, letthe two points of,q liF,D be (up v;(u;)), (uf' VF(UF)), 
lying in the polydisks d; and df , in turn and let v;(u), vf(u) be 
the function elements defining ,q liF,D for u in du; and duf. By 
the construction above there exist two other function ele
ments defining ,q D' vj(u), vf(u), defined on du; and duf and 
such that v;(u) E dv; if u E dup vf(u) E dvf if u E duf. Further, 
vf(u) may be obtained by the analytic continuation of v;(u) 
along a path 9 contained inDu; let d1=dp d2, ... ,dn =df be 
the polydisks covering 9 and (u,vk(u)), (u,vk(u)) the coordi
nates of points of ,q D and ,q liF,D contained in the polydisk 
dk for u E du,k' Now, since to each u in du,k there corre
spondsjust one root of(Fo + c5F)(u,v) = 0, it follows that in 
the overlap dUI ndu2 , v1(U)=V2(u). This means that V2(U) is the 
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analytic continuation ofv1(u) and our assertion is proved by 
repeating this reasoning from d2 to dn • 

As a consequence ,q liF,D cannot contain more irreduci
ble zero sets than,q D' However, it is possible that, by using 
paths of continuation that intersect u; d~, we may connect 
points of ,q liF,D whose correspondents on ,q D (outside 
uj d~) were unrelated. Therefore, in general, if N F,D denotes 
the number of irreducible zero sets of F with respect to D, 
then NFo + liF<NFo ' Clearly, using Cauchy's inequalities, we 
can ensure both inequalities (2.18) by requiring 
suplc5F(u,v)l < E", for (u,v) on the boundary of Dk ., for suffi
cientlysmallE" andk" >k '. According to (2. 13), this may in 
tum be obtained by choosing IIc5F II sufficiently small. 

If the set of points (uo,pvo,;) with vo,; multiple roots of the 
equation F (uo pv) = 0 does not consist only ofisolated points 
in D, it must ~ontain an irreducible zero set 1, on which 
Fo(u,v) has at each fixed u, a zero of multiplicity p > 1. In this 
case, we cover 1 as above with polydisks, avoiding those 
points where the multiplicity of the root is higher. Under a 
sufficiently small perturbation,p roots of Fo + c5Fstay inside 
the covering % 1 of 1 (except for some special points) with 
polydisks. In general, we cannot ensure that the p roots are 
distinct at all points of the projection of % I onto the u plane. 
Thus there will appear PI <. P irreducible zero sets under per
turbation, as asserted. 

Next follow some comments. 
(i) Assume NFo = 1. Then, according to Proposition 5, 

there exists a neighborhood U of Fo in the topology above, so 
that N Fo + liF = 1 for any Fo + c5F in U. This means that irre
ducible zero sets are stable under small perturbations and 
this is sufficient for the analysis of the ambiguity problem. 

One would like, however, to show also that reducible 
situations are in some sense unstable. In fact, one expects 
that, if (uo,vo) is a point which is common to two irreducible 
zero sets of a function Fo(u,v), then in any neighborhood of Fo 
(in the topology above) there are functions Fo + c5F which 
have just one irreducible zero set in a sufficiently small do
main containing (uo,vo). We show that this is the case in Ap
pendix B. Several examples for the generation of branch 
points under the perturbation of reducible zero sets are given 
in Ref. 6. 

(ii) If we let the rectangle D increase in the imaginary 
direction then (a) the maximum IIc5F II allowed so that the 
inequalities (2.18) are fulfilled tends to zero, according to 
(2.13) and (b) the number of polydisks required to cover ,q D 

increases, so that E' in (2.18) may tend to zero. Only the 
second problem occurs if we let D increase in the real direc
tions and it is conceivable that one may show, by a more 
careful treatment, that E' stays nevertheless finite (at least for 
Fourier transforms). 

(iii) The fact that Fo(u,v) is entire was used only through 
(2.13). In the next proposition, we shall use the fact that, 
according to the proof above, we may also state the follow
ing: for any Fo(u,v), holomorphic in D k • , there exists an E", 

so that all F(u,v), holomorphic in Dk • and satisfying !F(u,v) 
- Fo(u,v) I < E" for (u,v) in D k ·, have the same number of 

irreducible zero sets with respect to D as Fo(u,v) (D C Dk • ). 

(iv) A question of interest is the following: given E> 0 
and the function Fo(u,v) in Ea•b , what is the number ofirredu-
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cible zero sets with respect to D of a function FI(u,v) in Ea•b 

departing from Fo(u,v) by less than E, in the sense of (2. 12)? 
This is answered by the following. 

Proposition 6: For any E> 0 and rectangle D [given by 
(2.14) with k = 1], there exists JY'o(E,D) such that the num
berofirreducible zero sets with respect toD of any F(u,v) in 
Ea•b and obeying IIF - Foil <E,forsomeFoinEa•b is less than 
JY'0' 

Proof: Let Y be the set of functions F (u,v) in Ea•b obey-
ing IIF - Foil < E and let kl > k /I (of the previous proposi
tion). According to (2.13), there exists a number Q, so that all 
Fin Yalso obey IF(u,v) - Fo(u,v) I < Q forall(u,v)inDk ,. By 
Montel's principle, Y is a compact set in the space H (Dk, ) of 
all functions holomorphic in Dk " with the topology of uni
form convergence on compact subsets of Dk ,. Further, by 
remark (iii) above, we can attach to each F in Y a set of 
functions gQ(F) holomorphic in Dk , and having the same 
number N(F) of irred'!..cible zero sets with respect to .. P as 
F(u,v). The functions F(u,v) of the set gQ(F) obey IF(u,v) 
-F(u,v)1 <E" forallu,vinDk , and make up an open set of 

H (Dk ). The set of all gQ (F) makes up a covering of the com
pact ~et Y and we may therefore extract from it a finite 
subcover. Let the numbers N (F) associated to this subcover 
be Nj. Then JY'o(E,D ) = maxj Nj. This ends the proof. 

We recall that 2%0 is an upper bound on the ambiguity 
of the phase problem coming from the reflection of those 
irreducible zero sets that intersect D. The computation of 
JY'o(E,D) may be difficult. Its existence is, however, signifi
cant since it may happen that it is much smaller than the 
number of roots v(u) of F(u,v) = 0 at fixed u in IRe vi <A2' 
11m v I < B2• The claims that two-variable analyticity leads to 
a reduction of ambiguities rest on this occurrence. 

As is apparent from the above discussion, the present 
author disagrees with the remarks made in Ref. 2 concerning 
the "number" of irreducible functions, as compared to that 
of reducible ones. No statistical arguments are pertinent to 
this problem, except the relation to a topology defined on the 
space Ea•b of entire functions, e.g., by means of Eq. (2.12); 
reducible situations are in this sense unstable. However, one 
cannot conclude that, consequently, the "chance" of meet
ing them is zero. The relevant question is the one under (iv) 
above and it may well be that quite common intensity distri
butions and error channels lead to a high JY'o(E,D) (for a 
reasonably large D ); simple examples are offered by the weak 
perturbation of the diffraction patterns on rectangular or 
circular apertures. 

III. ZERO TRAJECTORIES 

The discussion of the preceding section relies on meth
ods of construction of F (u,v) (Cousin's method and Lelong's 
generalization of the Weierstrass product) which uses its 
whole set of zeros in (:2. The set !r is completely determined, 
in principle, from knowledge of M(u,v) in the Re u-Re v 
plane, but its actual computation is prohibitive. Thus, these 
methods are suited for a discussion of the ambiguity prob
lem, but not for the actual construction of F(u,v) fromM (u,v). 

Instead, it is natural to use, e.g., at each fixed real v, 
representations in one variable of F(u,v) in the complex u 
plane. 
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(a) First, we use a Weierstrass product of order of 
growth unity (Ref. 11, p. 22) 

F(u,v) = Co(v) exp(a(v)u) Ii (1 -~( )) 
n = I un V 

xexp(u/un(v)) (3.1) 

(b) Second, we use a conditionally convergent Titch
marsh product, IS valid for Fourier transforms of functions 
with compact support • 

F(u,v) = Co(v) exp(iau) Ii (1 - ~( )). (3.2) 
n = I Un V 

Let the smallest x strip containing the support of I/J(x, y), 
Eq. (2.1), be a I <x<a2• Then, by writing the integral in (2.1) as 
an iterated integral, we may verify that the smallest interval 
containing the support ofthe Fourier transform at fixed v of 
F(u,v) is [al,aJ and is independent ofv. It follows then from 
Ref. 15 that, inEq. (3.2), a = (al + a2)/2,independentlyofv. 
Since we are interested in solutions that are equivalent mod
ulo translations, there is no loss of generality to assume 
a=O. 

Equations (3.1) and (3.2) require for their evaluation the 
intersection of the set !r of zeros of F(u,v) with 1m v = O. 
The complex functions u = Un (v), v real, are called v-zero 
trajectories. They are continuous functions of v, except for 
cusps, where several of them can meet (assume the same 
value). By a small continuation clockwise in the complex v 
plane at such cusps, it is possible to identify (connect with 
each other) unambiguously the zero trajectories on the 
whole real v axis. 

At first sight, knowledge of M (u,v) at each fixed real v in 
the complex u plane fixes the v-zero trajectories up to a two
fold ambiguity: un(v)~ u~(v). Further, I Co(v) I is fixed by 
M(u,v), but its phase requires the value of F(O,v), which in 
tum depends on the resolution of the discrete ambiguity of 
the zeros in the complex v plane, at u = o. 

On the other hand, we have seen in Sec. II that use of the 
analyticity of M (u,v) in two variables implies an upper bound 
on the number of solutions, which might be considerably 
smaller than the infinite one above. In particular, it may be 
that no solutions exist at all. This means that part of the 
resolutions of the discrete ambiguity of the zero trajectories 
and of the zeros in the v plane at u = 0 lead by means of (3.1) 
or (3.2) to functions F(u,v) that, although continuous and 
holomorphic in one variable, will fail to be analytic in two 
variables or will violate the exponential bounds. 

In this section, we set up necessary and sufficient condi
tions for the resolutions of the discrete ambiguity of the v
zero trajectories and of the zeros at u = 0 to lead, via Eq. 
(3.2), to solutions of the phase retrieval problem. In doing so, 
we shall give an answer to questions (i)-(iii) of the Introduc
tion, in the framework of entire functions. 

Before starting on this, we notice the following. 
Lemma: Consider the smallest rectangle with sides par

allel to the x and y axes, that contains the support of the 
Fourier transform of M (u,v). Let 4ao, 4bo be the lengths of its 
sides. Then, if solutions to the phase retrieval problem exist, 
each class of solutions contains an entire function of expo
nential type ao at each fixed v and of exponential type bo at 
each fixed u. 
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Clearly, it is enough to show that the smallest rectangle 
with sides parallel to the x and y axes that contains the sup
port g of the object function f/!{x, y) [Eq. (2.1)] has sides of 
lengths 2ao,2bo. To see this, notice that (i) the support Y of 
the autocorrelation function is symmetrical; if Y E Y, 
- Y E Y, and (ii) a point Y = II yll Y on the boundary of Y 

has the property II yll = maxllr2 - rdl, over r I,r2 E g, 
yX (r2 - rd = o. Let now 2bI be the length of the vertical 
side of the smallest rectangle containing g (with sides paral
lel to x and y) and let Yo be a point on the boundary of Y at 
which the horizontal side of the smallest rectangle touches 
Y. If e is the unit vector in the direction of the y axis, we may 
choose Yo such that (e, Yo) > 0 and write 

2bo = (e, Yo) = I(e, yo)1 = sup (e, y) = (e,r20 - rIO) 
ye.:T 

< sup (e,r2) - inf (e,rI) = 2bI = (e,r~ - r;) 
r2 E9 r.e!:P 

(r,-r,)X y, =0 

= I(e, Y2)1 <Ie, Yo) = 2bo . (3.3) 

In(3.3), YI = II r~ - r; IIYI' Y2 = YI sup IIr2 - rIll· The same 
reasoning can be done for the horizontal side. This ends the 
proof. 

In the following, we shall assume that the modulus func
tionM (u,v) belongs in the Re u-Re v plane toL I(R 2) and that 
its Fourier transform is contained in a rectangle of size 
4ao,4bo. We shall need the following theorem of Plancherel 
andPolya.9 

Theorem: If the entire function of exponential type 
M(u,v) belongs to L I(R2) in the Re u-Re v plane, then the 
series 

(3.4) 

is convergent for any a > 0, b> 0 (see Ref. 9, Sec. 46). 
To state the necessary and sufficient conditions for the 

correct resolution of the ambiguity of v-zero trajectories and 
zeros at u = 0, we consider the set of points (um ,v") 
= (m1Tla,mrlb ) with a > ao, b > bo, and ao,bo of the Lemma. 
At each v = n1Tlb, we construct a function F (u,n1Tlb )intheu 
plane by means of the Titchmarsh product (3.2) and some 
resolution of the discrete ambiguity for v-zero trajectories 
and for the zeros in the u = 0 plane. With this, we construct a 
function of the Lagrange-Valiron type 

L (u,v) = sin bv f (- 1)"F(u,n1Tlb) 
bv - n1T 

(3.5) 
n= - 00 

Concerning (3.5) we prove the following. 
Proposition 7: Let a> ao, b> bo; then the function L (u,v) 

defined in (3.5) exists and is an entire function of u and v; at 
each fixed u, it is of exponential type less than b with respect 
to v, and it is of type less than a with respect to u at each fixed 
v. 

It is worth pointing out that this statement is true re
gardless of whether the choices of the discrete ambiguity are 
"correct" or "wrong" in the sense discussed above, and in 
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fact independent of whether a solution exists or not. Accord
ing to the Lemma, we can read off the Fourier transform of 
M (u,v) the allowed values of a and b. 

Proof We show first that the functions F(u,n1Tlb) exist 
and are of exponential type less than a. It will be assumed 
that M(O,n1Tlb )#0; the modifications needed to treat this 
situation are obvious. We proceed as follows. 

(i) Carleman's theorem (see, e.g., Ref. 11, p. 2) applied to 
M(u,n1Tlb) shows that (see also Ref. 15) 

1m < 00 , I 1 I ~ udn1Tlb) 
(3.6) 

where udn1Tlb ) are the roots of M (u,n1Tlb ) lying, e.g., in the 
upper half plane. [Since M (u ,n1T I b ) is real, all its zeros fall in 
complex conjugate pairs or are real.] 

(ii) M(u,n1Tlb) obeys the Titchmarsh representation 
(3.2); in particular, the series 

(3.7) 

converges. If we replace any number of Uk'S by their conju
gates, (3.6) shows that the series still converges. Thus, we 
may defineF(u,n1Tlb) by the Titchmarsh product construct
ed from an arbitrary resolution of the ambiguity of the v-zero 
trajectories; the product is certainly convergent. [We take 
a = 0 in Eq. (3.2).] 

(iii) The functionF(u,n1Tlb ) is of exponential type. To see 
this, we use the fact that, if n(r) represents the number of 
zeros of M(u,n1Tlb) of modulus less than r, then 
limHoo n(r)/r is a nonzero constant (see, e.g., Ref. 15, 
Theorem III). As a consequence, a constant e exists, so that 
forallk, luk(n1Tlb )I>k Ie [ifM(O,n1Tlb )#0]. We write then 

InlF(u,n1Tlb )1 

(3.8) 

with N chosen so that luluk(n1Tlb)1 <eI, for some el and all 
k>N. Withthehelpoftheinequalityln(1 +x)<x(x> -1), 
we can write for the second term in (3.8) 

T2<luI(IReSN+ 11 + IlmSN + III +~ lul 2 L _1_2 . 
2 k>N+ I lukl 

(3.9) 

The last term in (3.9) is O(lul) and SN+ 1 in the first term 
represents the rest of (3.7) after removing the first N terms. 
Comparing with an integral, we verify that TI is also 0 (I u I) 
as lul--oo, which proves our statement. 

(iv) Since S~ 00 IF(u,n1Tlb W du exists, it follows that 
F(u) is the Fourier transform of a function with compact 
support. From Titchmarsh's representation, we see that the 
support has the form ( - /3, /3 ), for some/3 > o. We now show 
that, in fact, /3 = ao. 

To this end, we use the fact (Theorem 7.5.1 of Ref. 10) 
that there exists an entire function w(u) with modulus 
squared equal to M(u,n1Tlb), of exponential type a0l2 and 
with all its zeros in the upper half u plane. Such a function 
satisfies the Titchmarsh representation andF (u,n1T I b ) differs 
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from it by the flipping of a certain (maybe infinite) number of 
zeros, Uk, (n1T/b). We can write 

1 
( 

n1T) 1 11 - u/ur I 
In F u, - = lnICIJ(u)I + In II I , 

b k, 11 - u/uk, I 
(3.10) 

where the product extends over the set of zeros that have 
been flipped. The Ahlfors-Heins theorem (Ref. 11, p. 115) 
ensures then that, if B (u) denotes the second term, then 

limsup In(IB(u)I/lull=O, (3.11) 
lul~oo 

u = lui exp(19) 

for almost all directions (J. It follows that 

lim sup (In(lF(u,n1T/b )1)llull = Plsin (JI 
lul~oo 

u = lui exp(i9) 

= lim sup InICIJ(u)1 = aolsin (JI ' 
lul~oo lui 

(3.12) 

u = lui exp(/9) 

i.e., that P = ao. 
As a consequence of this, F(u,n1T/b) satisfies a La

grange-Valiron representation (a > ao) 

F( 
n1T). ~ ( - 1tF(m1T/a, n1T/b) 

U,- =smau £.. 
b m = - 00 au - m1T 

(3.13) 

It is important that, by construction 

IF(:1T, nb
1T

) 12 =M(:1T, 7), (3.14) 

and the theorem cited at the beginning of this proof ensures 
that 

(3.15) 

i.e., F(m1T/a, n1T/b ) are the Fourier coefficients ofa function 
tPdx,y) in L 2(D), where D = [ - a,a] X [ - b,b] 

Consider then 

L1(u,v) = _1_ ( tPl(x,y) exp(i(ux + vy)) dxdy, (3.17) 
21T JD 

which is, at each fixed u, of exponential type at most equal to 
b with respect to v, and at most equal to a with respect to u at 
fixed v. Expanding the exponential in a Fourier series in D 
and integrating term by term (which is permitted for square
integrable tP I), we obtain the Lagrange-Valiron expansion of 
L1(u,v) 

L1(u,v) = sin au sin bv 

XL (- It + nF(m1T/a, n1T/b) . (3.18) 
m.n (au - m1T)(bv - n1T) 

It is easy to verify that, in view of (3.15), the series in (3.18) 
converges absolutely and uniformly on every compact subset 
of (;2. Using a theorem on the iteration of double series (Ref. 
16), the absolute convergence of the series in (3.18) entails the 
convergence ofthe iterated series to the same limit; one first 
keeps n fixed and obtains F(u,n1T/b) by (3.10) and then sums 
over m. Thus L1(u,v) = L (u,v), which ends the proof. 
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We can now formulate a criterion of the type an
nounced in the Introduction. 

Proposition 8: The function L (u,v),Eq.(3.5),constructed 
from a certain resolution of the discrete ambiguity at each 
fixed v = k1T/b and at u = 0 is a solution of the phase retriev
al problem if and only if 

IL (r;:, ;;)1 2 =M(r;:, ;;), (3.19) 

for all m and all odd n. 
ProotThefunction 2"(u,v) = L (u,v)L *(u*,v*) is at fixed 

u of exponential type at most equal to 2b in v, and at fixed v of 
exponential type at most equal to 20 with respect to u. So is 
M (u,v), since 20 > 200 , 2b> 2bo. The two functions are abso
lutely integrable over the Re u-Re v plane and, therefore 
(Ref. 9, Sec. 15), also square integrable. By the Paley-Wiener 
theorem, they are Fourier transforms of square-integrable 
functions with support contained in [ - 20,20] X [ - 2b,2b] 
and, therefore, with the reasoning following Eq. (3.17), sa
tisfy representations like (3.18), with a,b replaced by 2o,2b. It 
follows that the two functions coincide if they coincide at all 
points (u,v) = (m1T/2a, n1T/2b), with (m,n) ranging over all 
integers (see also Ref. 9, Sec. 26). But 2"(u,v) and M (u,v) 
already coincide by construction at those points with n even. 
SinceL (u,v) is entire, of exponential type, and has the correct 
modulus, it is a solution of the phase problem. 

Conversely, if L (u,v) is a solution of the phase problem, 
then Eq. (3.19) must be fulfilled. This ends the proof. 

Next follow some comments. 
(i) If condition (3.19) is fulfilled, a solution of the phase 

retrieval problem exists and is explicitly constructed. The 
resolution of the discrete ambiguity of the v-zero trajectories 
is done not only in a manner compatible with two-variable 
analyticity, but also with the constraints of Lindelofs 
theorem. 

(ii) The parameter b is arbitrary, as long as b> boo It 
follows that, by allowing b to increase, we can make 2"(u,v) 
= L (u,v)L *(u*,v*) coincide withM(u,v) at points (u,n1T/b) 

as closely spaced as we wish. Now, the type of M (u,v) with 
respect to v is 2bo; one might wonder whether, by choosing 
b> 2bo, we may not force the two functions to coincide for all 
vat fixed u, and thus conclude that L (u,v) is always a solution 
of the phase problem, independently of whether it is con
structed with a correct or wrong resolution of the discrete 
ambiguities. The reason why this is wrong is that the type of 
2" (u,v) at fixed u is larger than b in the case of wrong resolu
tions and less than b (for b> 2bo) only in the case of correct 
resolutions. In other words, if we consider the Fourier trans
form of L (u,v) with respect to v [cf. (3.13)] 

tPl(u,y) = f F(U, n1T) exp( - i n1T y), (3.20) 
n=-oo b b 

then for a correct resolution of the discrete ambiguity, 
tPl(U, y) has support contained in - bo < y < bo; for an incor
rect resolution, the support of tPl(U, y) increases with b. 

(iii) We inquire what happens if, instead of being satis
fied exactly, Eqs. (3.19) are satisfied only on the average, i.e., 

LL 12"(m1T, n1T)_M(m1T, n1T)I\c' (3.21) 
mn 2a2b 2a2b 
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for some E. Application of the Paley-Wiener theorem and of 
Parseval's equality shows that 

r 12"(u,v) - M (u,vW du dv<c , 
JR' 

(3.22) 

i.e., that L (u,v) is a solution of the phase problem, within the 
errors c. Thus, Eqs. (3.19) are stable against errors. 

Equations (3.19) represent sufficient conditions for the 
compatibility between a resolution of the ambiguity of the v
zero trajectories, that of the zeros in the u = ° plane, analy
ticity in two variables, and the exponential type of the solu
tion. They do not allow, however, a simple manner to fix the 
ambiguity of the zeros in the u = ° plane once a solution for 
that of the v-zero trajectories has been chosen, although they 
show that such a correlation exists. This correlation means 
that the positions of at least some of the zeros in the complex 
v plane at u = 0 should be accessible from knowledge of the 
trajectories u = u(v) by analytic continuation along some 
path in the v plane. In general, we cannot expect to obtain all 
zeros by such a continuation, since F (u,v) may contain, e.g., 
zero sets of the form v = Vo = const. These zero sets lead to 
ambiguities that are independent of those of the v-zero tra
jectories. In particular, the criterion (3.19) will be satisfied at 
a replacement vo-+v~. 

The problem is whether we can find in a more direct 
manner the positions of all other zeros in the u = 0 plane, 
having chosen a resolution of the ambiguity of the v-zero 
trajectories. A method is clearly afforded by the following. 

Remark: If Fo(u,v) is a solution of the phase problem, 
then the function 

Z (u,v) = IT (1 __ U_) 
n=l un(v) 

(3.23) 

is a meromorphic function of v, for every fixed u; its poles are 
among the zeros of Fo(O,v). 

Indeed, from the fact that, at every fixed u, Fo(u,v) is 
square integrable on the real axis and of exponential type 
equal to a constant bo' independent of u, it follows from the 
Titchmarsh representation (3.2) that (we have seen we may 
assume a =0) 

Z (u,v) = Fo(u,v)! Fo(O,v) (3.24) 

which makes the remark obvious. 
Thus, the discrete ambiguity of the zeros in the u = 0 

plane has to be solved in such a manner as to render 
Z (u,v)Fo(O,v) holomorphic in v for all u. 

Loosely speaking, we expect, e.g., for real u, the function 
Z (u,v) to show structures as a function of real v; these struc
tures have to disappear if we mUltiply them by the correct 
resolution of the zeros in Fo(O,v). Assume now we start from 
an arbitrary resolution of the ambiguity of the v-zero trajec
tories. The obvious problem is to find out for how many u's 
we have to check that the combination F (O,v)Z (u,v) is entire, 
in order to make sure that the resolution was correct. This is 
answered by the following. 

Proposition 9: If for every integer m, - 00 < m < 00, the 
functions Gm(v) = F(O,v)Z(m17/a,v) are entire and of expo
nential type less than b, then there exists a solution of the 
phase problem, which vanishes at every real v at the same 
points as Z (u,v). 
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Proof: Clearly, for real v, IGm(vW = M(m1r/a,v), and 
sinceM(m1r/a,v)belongstoL I(R),Gm(v)istheFouriertrans
form of a function with support contained in (- b,b). 
Further, since IGm(n1r/b W = M(m1r/a, mr/b), theconver
gence of the series (3.4) implies that Eq. (3.18) with F(m1r/ 
a, n1r/b) replaced by Gm (n1r/b) defines an entire function of 
u and v, which we call G (u,v). We now sum the series first 
over n, leaving m fixed; the result of the summation is un
changed, since the double series converges absolutely. But 
Gm(v) can be written as a Lagrange-Valiron expansion 

n= - 00 

( - l)nGm(n1r/b) . b 
------S1O V. 

bv - n1r 
(3.25) 

We obtain thus G (u,v) at each fixed v, as an entire function of 
type less than a in u, coinciding with Gm (v) at each u = m1r/ 
a. To show that G (u,v) is a solution of the phase problem, we 
still have to show that it has the correct modulus in the Re u
Re v plane. But, at each real v, the function G (u,v)-F(O,v) 
Z (u,v) is, according to the first part of the proof of Proposi
tion 7, entire of exponential type less than a with respect to u 
and coincides at u = m1r/a with Gm(v). Thus, at every real v, 
G (u,v)==G (u,v), forallu. However, I G (u,vW M (u,v) for real 
u,v and this shows that G (u,v) is indeed a solution to the 
phase problem. This ends the proof. 

This sufficient condition for the existence of a solution 
can be presumably much relaxed. It is indeed only under 
very special circumstances that one expects Gm(v) to be en
tire for some values of m, but not for others. This is discussed 
in the next section in relation with the polynomial example. 

To summarize this section, we notice we are now able to 
answer questions (i)-(iii) of the Introduction, for entire func
tions: (i) a modulus distribution M (u,v) is admissible if Eqs. 
(2.19) are satisfied for some resolution of the discrete ambi
guity of the zero trajectories; (ii) the extent of the ambiguity 
of the phase problem is given by the number of distinct reso
lutions of the ambiguity of trajectories, such that (3.19) is 
satisfied; (iii) the function L (u,v), Eq. (3.5), represents the 
explicit solution of the phase problem, for each "correct" 
resolution of the ambiguity of trajectories. 

In the above statements, an alternative condition to Eq. 
(3.19) for a correct resolution of the ambiguity of trajectories 
is available in the statement of Proposition 9. 

IV. APPROXIMATE METHODS 

One may object that the criteria proposed in the pre
vious section for picking out solutions to the phase problem 
are not practical; they require checking an infinite number of 
equalities. Within the framework of entire functions, one can 
hardly expect simpler results. 

In this section, we consider two practical simplifica
tions: (i) an approximate method to find the correct resolu
tion ofthe discrete ambiguity of the zero trajectories6•7; and 
(ii) the approximation of F(u,v) by a polynomial in eiu

, eiv 

(following Bruck and Sodin1
). 

(i) The v-zero trajectories are the sections of the various 
irreducible zero sets of F(u,v) by the plane 1m v = O. An irre
ducible zero set gives rise, in general, to several trajectories 
which, as a consequence, cannot be reflected independently 
of each other. 
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If we disregard the situation when zero trajectories 
u = u;(v) intersect on the plane 1m v = 0, they are holomor
phic functions of v, in a certain neighborhood dr(vo): 
Iv - vol < r(vo) of any point Vo on 1m v = o (thesubscriptihas 
been dropped). The radius r(vo) varies with the point Vo' In 
the limit of zero errors, the values of the zero trajectory u(v) 
determine the radius r(vo) unambiguously. The disk dr(vo) 
extends until the nearest algebraic branch point v of u(v). If 
we continue around v and return to 1m v = 0, we obtain an
other zero trajectory ul(v), whose disk of analyticity around 
Vo may also extend up to v. 

Assume now there exists a certain domain Du XDv of 
(;2, so that Dv contains a segment of 1m v = 0, and has the 
property that for each v in Dv ' there are only two solutions 
ul(v), u2(v) ofF(u,v) = 0 inDu' When two v-zero trajectories 
come close to each other in the u plane and are well separated 
from the others, one may expect that such domains exist. In 
this situation, the set of zeros ofF(u,v) inDu XDv is described 
by the equation 

P(u,v) = u2 + al(v)u + a2(v) = 0, (4.1) 

with coefficients ai(v) that are holomorphic inDv. The analy
ticity domain of the individual zero trajectories may be much 
smallerthanDv ' However, the sum ul(v) + U2(V) and the pro
duct U1(V)U2(V) are holomorphic inDo. On the other hand, if 
we replace, e.g., u2(v) by u~(v) the resulting sum and product 
are not holomorphic in D v' 

Therefore, in the limit of zero errors, one expects an 
increase of the radius of the disk of analyticity dr(vo) as one 
moves from the individual trajectories to their sum and pro
duct, if they are "coupled" correctly. When the errors 
around the data h (v) (individual trajectories or their sum and 
product) are of finite size E, this test can be carried out only 
within some approximation; quantities Mo(h,E) can be con
structed, depending on the domain D v' with the property 
that, as E-D, Mo(h,E)~oo if the function h cannot be ex
tended to a holomorphic function in D v ' whereas 
Mo(h,E)~const if it can. The use of these tests has been de
scribed in many places. 17.18 In fact, most of the decisions can 
be taken by simply inspecting the local form of the zero tra
jectories: the nearby branch points can be seen clearly if the 
zero trajectories are close to the physical region, and the way 
they must be situated with respect to each other may be 
guessed immediately. In Sec. V, we give a rather extreme 
example of this. 

With these tests, one is able to fix the relative position of 
some of the trajectories and exhaust this way the constraints 
coming from local two-variable analyticity. Once this is 
done, one can use Eqs. (3.19) to verify that the selected solu
tions are indeed correct. 

The positions of the zeros in the u = 0 plane may be 
obtained by a simple extrapolation of the v-zero trajectories 
(see Refs. 6 and 7 for details at "intersections"). According to 
the remark of the previous section, one must in fact solve the 
discrete ambiguity of the zeros in the u = 0 plane, so that the 
singularities of Z (u,v), Eq. (3.23), are removed. 

Before closing this discussion of point (i), one should 
remember that the first paper in which the importance of 
zero trajectories for phase shift analysis in high energy phys
ics was made clear is the one by Barrelet. 19 
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(ii) We consider now the model used by Bruck and So
din l 

M,N 

W(x,y) = L amn t5(x - m..:1 )t5(y - n..:1), (4.2) 
m,n=l 

M.N 

F(u,v) = L amn exp(imu..:1 ) exp(jnv..:1 ) , (4.3) 
m,n=l 

and introduce the variables s = exp(iu..:1 ), t = exp(iv..:1 ) 
M.N 

F(u,v)-P(s,t) = L amn~tn, 
m,n= 1 

(4.4) 

so that the measured intensity distribution is a polynomial in 
sand t (divided by ~t N) of degree 2M and 2N 

M(s,t) = P(s,t)P*(1/s*,1/t *). (4.5) 

An easy example of an irreducible (nonadmissible) intensity 
distribution is 

M(s,t) = (s + it + 1)(1/s - ilt + 1) + 1 . (4.6) 
In any case, at each fixed t, It I = 1, the 2Mzerossi(t) of 

M (s,t ) may be grouped in pairs, complex conjugate with re
spect to lsi = 1, S2k _ Ift) = 1/s~dt), k = 1, ... ,M. When t 
leaves It I = 1, S2k _ 1 (t) = 1/S~k (1/t *). The question is now 
how to pick one trajectory out of each pair, if at all possible, 
so as to obtain a polynomial P(s,t), obeying (4.5). Ifa choice 
has been made, a tentative solution reads 

M 

P(s,t) = y(t) IT (s+ I-(s;(t)+ 1)), (4.7) 
i= 1 

where y(t) is determined by 
M 

P( - l,t) = y(t)( - I)M IT (1 +s;(t)). (4.8) 
i=1 

In (4.8), we also assume that a choice has been made for the 
discrete ambiguity of the zeros in the t plane for P ( - I ,t ). 

Now, expression (4.7) is a solution of the phase problem 
if P (s,t ) is a polynomial with respect to t. The analytic con
tinuation of the functions Si(t) has branch points in the t 
plane and clearly P (s,t ) will be a solution if all these branch 
points cancel out in (4.7). By substituting (4.8) into (4.7) one 
verifies that this latter will be the case if the symmetric com
binations 

(4.9) 

M 1 
aM(t) = IT ---

k=1 (1 +Sk(t)) 

are meromorphic functions of t, with poles at those values 
for which Si(t) = - 1, i.e., at some of the zeros of P ( - l,t). 
Clearly, the resolution of the discrete ambiguity of the zeros 
of P ( - l,t) should be such that these poles are cancelled. 
Apart from the zeros needed for these cancellations, 
P ( - l,t) may contain, say, Q additional zeros which appear 
in P (s,t ) as s-independent factors of the form (t - t;). They 
generate a 2Q ambiguity of the problem, which cannot be 
further reduced. 

We conclude that a necessary condition for a correct 
resolution of the discrete ambiguity of the trajectories and of 
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the zeros of P ( - l,t) is that the combinations 

Ap(t) =P( - l,t)ap(t), p = 1,2, ... ,M (4.10) 

are polynomials in t, of degree at most equal to N. 
In analogy to Proposition 9, it is easy to see that this 

latter condition is also sufficient, i.e., if it is fulfilled, the 
function 

M 

P(s,t) = L Ap(t)(s+I)P(-I)P (Ao(t)=P(-I,t)) 
p=o 

(4.11) 

is a solution of the phase problem. To see this, we only have 
to verify that P (s,t ) has the correct modulus on 
lsi = 1 ® It 1= 1. But by construction, the function M(s,t) 
= P(s,t)p *(1/s*,1/t *) vanishes for It I = 1 in the complexs 

plane at the same points as M (s,t). Thus, the ratio R (s,t ) 
= M(s,t )IM(s,t ) is independentofs for each ton It I = 1 and 

is thus independent ofsfor all t:R (s,t) = g(t),andg(t)canbe 
fixed by letting s = - 1. From (4.11) we see, however, that 
g(t )= 1, and thus P (s,t) is indeed a solution. 

We can express the condition that P (s,t ) be a solution of 
the phase problem in a manner similar to Eq. (3.19). Choose 
to this end N + 1 values tk of t, Itk I = 1 and construct by 
meansof(4.11) the polynomials ins,P(s,tk). LetPI(s,t) be the 
polynomial in sand t that interpolates them. Then PI (s,t ) is a 
solution of the phase problem if and only if, for 2M + 1 dis
tinct valuess; of s on lsi = 1 and N further values tk oft, Itk I 
=1 

IPI(sptkW = M(Sjttk)' 

i = 1,2, ... ,2M + 1, k = N + 2, ... ,2N + 1 . (4.12) 

An obvious question that may be raised is the following: 
assume we know that a solution P (s,t ) exists. Is it then neces
sary to check that the Ap (t ), Eq. (4.10), are polynomials in t, 
for allp, or is it enough to consider only, say,AI(t)? Unless 
special situations occur, we expect the latter to be the case. 
To support this, we consider the situation of a polynomial of 
the second degree in sand t and inquire, e.g., under what 
conditions, although the root S2(t) is the analytic continu
ation of Sl(t) around one of its branch points at to, and thus 
the product Sl(t )s2(t) is holomorphic near to, nevertheless, 
s I (t ) X 1/ srI 1/ t *) is also holomorphic near to' This can hap
pen only if Sl(t) has a branch point also at 1/t~, with an 
appropriate discontinuity. This is clearly exceptional. It 
happens, however, in the example 

P(s,t) = s2(4t + i(1 - t 2)) - 2s(1 - t)2 + (4t - i(1 - t 2)). 
(4.13) 

It is only the sumsl(t) + S2(t) which distinguishes the wrong 
from the correct solution. 

We now apply the method of Ref. 20 to the problem of 
finding a polynomial Po(s,t) that vanishes for It I = Ion the 
zero trajectoriess = s;(t). The method is more involved than 
the previous procedure, and actually suited for more compli
cated topologies. 

One starts by drawing the curves y;:s = s;(t), It I = 1, 
i = 1,2, ... ,M in the complex s plane and parting it this way 
into (a finite number of) domains ~j' j = 1,2, .... One can 
show (see Ref. 20) that the number of roots t = tj(s) of the 
equation Po(s,t) = 0, lying inside (or outside) the unit disk 
It I.;;; 1 is constant as long as s lies inside one ~j" Further, 

2151 J. Math. Phys., Vol. 26, No.9, September 1985 

knowingthenumberofrootsofPo(s,t) = Ofors = - 1 in the 
tplane,i.e.,inone~j,sayj= l,containings= -1,wecan 
deduce the number ~ of such roots in all ~ j' 

Assume further Po(s,t) is known and consider, e.g., 
those roots lying outside It I.;;; 1; in each ~j' the sums 

~ 1 
Sk,j(S) = L -( ())k' (4.14) 

1=1 tl s 

over the ~ zeros lying outside It I.;;; 1 for s in ~j> are holo
morphic functions of s for s in ~ j' If one of the ~ /s extends 
to infinity, Sk,j(s)---+Const, as Isl~oo. It is possible to show 
that one can write in each ~j a Cauchy integral for Sk(s)1 
(s+ 1) 

S () - 8 S ( 1) + (1 + s) t Sk,j(S') d' 
k,jS - j,-I k - -2-'- (1 ')(' ) s, m afi1J + s s - s 

(4.15) 

where 8j , _ I means that the term is to be counted only if 
- 1 E ~j and a~j is the boundary of ~j' Since the discon

tinuities over a~ j are known, one can add all equations 
(4.15) to obtain (see Ref. 20) 

flds) = Sk ( - 1) + ~ ~ f (s + 1) ds' , 
t 2m J)'/ t~(s')(s' -s)(s' + 1) 

(4.16) 

where the integration is performed in the sense induced on Yj 
by the clockwise motion on It I = 1 and t;(s') is defined by t; 
(s;(t')) =t', It'l = 1. The function flds) has the property 
that, in each ~j' 

flds) = Sk,j(S) . (4.17) 

From the Sk,;(S) one can obtain algebraically the sym
metric combinations a k,; (s) so that, for s in each ~ j' the roots 
t = t;(s) of Po(s,t) = 0, lying outside It I.;;; 1, are obtained by 
solving the equation 

PI,j(s,t) = p~o ap,j(s) (+ )~- P, aO,j = 1 . (4.18) 

In a similar manner, we obtain a polynomial in t, 
P2,j(s,t), with coefficientsp p,j(s,t) that vanish in each ~j at 
those roots of P o(s,t ) = 0 that lie inside I t I.;;; 1. Then, one may 
verify that 

P(s,t )==PI,j(s,t )P2,j(S,t )t~/aNi'j(s) (4.19) 

is a polynomial of constant degree in t, independent ofj, with 
the coefficient of the highest power of t equal to unity and 
with the other coefficients rational functions of s, indepen
dent ofj. This polynomial vanishes for It I = 1 on s = s;(t). 
Multiplying by the common denominator of the coefficients, 
we obtain a polynomial ins and t which differs from Po(s,t ) at 
most by factors containing s only. 

Now, the flk (s), Eq. (4.16), maybe constructed, both for 
I t I.;; 1 and for I t 1;;.1 starting from any resolution of the dis
crete ambiguity of the trajectories S; (t ) and from knowledge 
of the Sk ( - 1), as above. Also, given thes; (t ), one can always 
assign numbers ~ of roots t = tj(s) in It I.;;; 1 (and It I ;;.1, in 
tum) of the equation P (s,t ) = 0 for s in each domain ~ j' 
starting, e.g., from the domain that contains s = - 1. One 
would like to know where the construction leading to (4.19) 
fails if we start from a wrong resolution or if the constants 
Sd - 1) in Eq. (4.16) are assigned wrong values. 
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The answer is that the manner in which flds) was con
structed contains no information about the number of roots 
tl(s) of P(s,t) = 0 for S in ~l' that appear in the sums (4.14) 
and (4.17). This number is determined by different methods 
and a priori an incompatibility might appear. Indeed, we 
recall the coefficients a P,l(s) in Eq. (4.18) are obtained from 
the sums S P,l(s) by means of Newton's formulas (Ref. 21) 

aO,j(s) = 1, 
( -1)P 

a .(s)=--
p.J p! 

Slj(s) 0 

X 
Sz)s) SI,j2 0 

p-l 

(4.20) 

If the sum Sp,j (s) contains ~ roots, then (4.20) leads to 

a p,j(s)=O, for p>~ + 1 . (4.21) 

However, given a sequence S k,j (s), k = 1,2,00' of numbers, as 
is generated by (4.16) with an arbitrary choice of Sk ( - 1) and 
of the resolution of the discrete ambiguity ofthesj(t), condi
tion (4.21) will fail to be satisfied. 

In fact, we shall show that, if(4.21) is satisfied, then one 
can indeed construct a polynomial P (s,t) by (4.19), which 
vanishes for It I = 1 precisely on S = Sj(t) and is thus a solu
tion to the problem. We assume for simplicity that the curves 
rj have unit multiplicity so that for two adjacent domains, 
~ - ~_I = 1 (see Ref. 20) (~j lies to the left of rj)' By 
assumption, we can then write polynomials (4.18) of degree 
~ and ~ - 1 for ~ j and ~ j _ I in tum, so that the differ
ence ofthe corresponding sums of roots, Eqs. (4.14), for S on 

rj' is 

Sj,ds) - Sj_I,k(S) = l/(tj(s))k, k = 1,2,00.,N. (4.22) 

It follows then that the two polynomials (4.18) for ~j and 
g j _ I have, for S on rj' all roots equal, except for one, which 
is equal to tj(s), Itj(s)1 = 1. Thus, as s---+so E rj' one of the 
zerosofPI,j(s,t ) tends to It 1= 1, sothatsj(t) = so. The same 

is then true for PZ,j(s,t ); it follows thatthe combination P (s,t ) 
in Eq. (4.19) is independent of j, with coefficients that are 
holomorphic functions of s, except for isolated singularities, 
at those points with aN./'j(s) = O. It can be argued that these 
singularities are poles, so that the coefficients are rational 
functions of s, as desired. 

Notice, conditions (4.21) fix the possible values of the 
sums S k ( - 1) and thus of the extrapolation of the trajector
ies tos = - 1. In the conclusions of Ref. 20, condition (4.21) 
was missed as one of the sufficient conditions for a resolution 
of the discrete ambiguity of the zero trajectories to be compa
tible with two-variable analyticity. 

v. DISCUSSION OF AN EXAMPLE AND CONCLUSIONS 

Loosely speaking, the violations of two-variable analy
ticity through "wrong" reflections of zero trajectories stem 
from the presence of "uncompensated" branch points in 
each trajectory. In Ref. 6, in another context, it was shown in 
examples how such branch points lead to easily recognizable 
distortions of the trajectories near "intersections," if these 
occur sufficiently close to the Re u-Re v plane. 

Examples in optics in which intersections occur near to 
the Re u-Re v plane are easily manufactured by perturbing 
the diffraction pattern on a rectangular aperture. We take, 
for instance, 

F(u,v) = sin u sin v/uv 

- A. [(u cos u - sin u)(v cos v - sin V)/U
2
V

2
] , 

(5.1) 

for small complex values of A.. There are intersections near 
the points u = m1T", m#O, v = n1T", n#O. The pattern oftra
jectories near intersections appears in its typical form if we 
move over to the variables 

s = (u + v)/2, t = (u - v)/2 (5.2) 
and look, e.g., for t-zero trajectories, that is, we find at each 
fixed t, those complex s values where F(s,t) = O. 

Figure 1 shows the projections onto the Re soRe t plane 
of the t-zero trajectories, for A. = 0.1 exp(i1T"/4). Figure 2 

6r-~~r-r-r-V-~'-~'-~TT~'-~~~~~~~-'~-'~~-' 

Ret 

4 

2 

o 

-2 

-4 

-6 

-8 
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FIG. 1. Pattern of the projec
tions of the (-zero trajectories for 
the model (5.1) onto the Re soRe ( 
plane. 
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shows the imaginary part of the trajectories labeled A and B 
(dotted) for the same A and a certain range oft. The intersec
tion regions have been surrounded by a thick line. The other 
structures are due to branch points at intersections with oth
er trajectories. In Figs. 3(a) and 3(b), we show the imaginary 
parts of the sum and product of the two trajectories [the 
coefficients at(v), a2(v) in (4.1), with v replaced by t] and the 
dotted lines show the same quantities if trajectory B were 
reflected and, thus, its branch points left "uncompensated." 
Any test of analyticity will indicate that the thick line is 
compatible with quite smooth analytic functions inside a 
disk centered at to = - 4.7, whereas the dotted curves re
quire "wild" analytic approximants. 

These qualitative tests indicate that, in fact, the intensi
ty distribution pertaining to (4.1) admits only of the trivial 
ambiguity F(u,v)-F *(u* ,v*) in the determination of the scat
tered field. 

This is supported by an application of the "exact" tests 
(3.19) or (3.22). In a numerical calculation, a truncation of 
the Lagrange-Valiron series, Eq. (3.5), has to be performed 
and the construction of F(u,mr/b) must be achieved by 
means of a finite Titchmarsh product. The convergence of 
the latter is very slow and other methods (e.g., integral repre
sentations for log IF I) have to be used in order to construct 
F(u,mr/b). This was unnecessary, as a test ofEqs. (3.19) or 
(3.22), since the exact expression ofthe solution F(U,n1T/b) 
was available. The equalities (3.19) give too-detailed infor
mation. We use (3.22) with the integral restricted to the do
main - 31T';;;U, V.;;;31T and assume a mean error E = 10-3 for 
M(u,v). The integral in (3.22) must then be divided by c. 
Table I gives an example of the increase of the integral if one 
or several trajectories are reflected in the "wrong" manner 
or if the ambiguity of the zeros in the u = 0 plane is solved in 
a "wrong" way. The fact that even for the correct choice of 
the ambiguities we do not obtain strictly zero is due to the 
truncation of the Lagrange-Valiron series. 
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FIG. 2. The imaginary parts of the t
zero trajectories A and D as a func
tion of t. The intersection regions are 
enclosed in a rectangle. 
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As pointed out in Sec. III, the Fourier transform with 
respect to v of L (u,u), Eq. (3.4), at fixed u, has a support that is 
independent of the value ofthe parameter b used in the con
struction, if the resolution of the ambiguity of the trajector
ies was correctly performed. On the contrary, the support 
increases with increasing b if this is not the case. This effect is 
shown in Fig. 4, for the example (5.1), at s = - 1.1 and the 
reflection of the trajectories A and C. 

Figure 5 shows an example of a pole at complex v in 
Z (u,v) and the way it is removed in the complete function, in 
relation with Proposition 9. The dotted line shows the effect 
of the multiplication by a "wrong" zero of F(O,v). 

To summarize the difference between the one- and two
dimensional versions of the phase problem, it is profitable to 
part the latter into four more precise questions (similar to 
those of the IntrOduction), that are typical of inverse prob
lems22

: (i) uniqueness; (ii) reconstruction; (iii) characteriza
tion; and (iv) construction (stability). Question (i) concerns 
the extent of the ambiguity allowed by an intensity distribu
tion: f(u,v) = 1F0(u,vW, withFo E Ea,b; at each fixed v (or u), 
the one-dimensional ambiguity is infinite; in two dimen-

sions, it is less than or equal to 2Nz with N z the number of 
irreducible zero sets of Fo(u,v) (Sec. II). It is reasonable to 
conjecture that it is in fact equal to 2Nz

, but the proof, if it 
exists, is not a generalization of the one-variable case (see 
Appendix A). Question (ii) requires the construction of all 
solutionsF(u,v) in Ea,b with the same modulus as Fo(u,v). The 
answer is simple at fixed v (or u). In two dimensions, this may 
be done by the construction in Appendix A, taken from Ref. 
11, but this requires knowledge of Fo(u,v) in all of C2• An 
alternative construction is given in Sec. III, based on the zero 
trajectories of Fo(u,v), supplemented by a criterion to select 
the correct resolution (Propositions 7-9). We have argued 
that this method may be improved, if one resorts to approxi
mate methods of grouping trajectories into irreducible sets 
(Sec. IV). Question (iii) requires criteria for a modulus M (u,v) 
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1m SA(t),SO(t) 
0.5 SA(t)+SO(t) 

0.4 
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whose Fourier transform has a compact support, to be an 
admissible intensity. No such criteria are needed in one di
mension. In two dimensions, a necessary condition is that 
the set of zeros of M (u,v) should consist of pairs of irreducible 
zero sets, conjugate to each other, which is a rare occurrence 
(see Appendix C). No conditions are as yet established that 
are both necessary and sufficient, since it is not clear that at 

TABLE I. Values of the integral (3.22). 

Situation 

No reflection 
Reflection of A 
Reflection of A and C 
Reflection of E 

Integral 

1.91 
360.2 
654.2 

12.1 
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Re t 
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FIG. 3. (a) The imaginary parts of 
the A and D trajectories in a certain 
interval of t values; also shown are 
their sum for the correct and a 
"wrong" resolution (dotted line) of 
the discrete ambiguity. (b) The 
imaginary part ofthe product of the 
A and D trajectories for a correct 
and a "wrong" resolution (dotted 
line) of the discrete ambiguity of the 
zero trajectories. 

least one choice of elements of each of these pairs can be 
made, so that one obtains a zero set of a function of exponen
tial type. This is a very interesting problem. A (rather com
plicated) way to verify whether M (u,v) is admissible, using 
zero trajectories, is provided again by Propositions 7-9 in 
Sec. III. 

Question (iv) requires the construction of all solutions 
inside a certain error channel around an experimental I (u ,v). 
This is, of course, very difficult to answer exactly. Part of this 
problem consists of establishing the degree of ambiguity ad
mitted by the various moduli surrounding I (u,v). This degree 
is unstable in two dimensions. The fact that it decreases un
der perturbations is shown in Ref. 3 for polynomials; Propo
sitions 5 and 6 generalize this to some extent for entire func
tions (see also Appendix B). 

Finally, it would be of considerable interest to under
stand the difference between the one- and two-dimensional 
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1m tV, (so,y) 

0.05 
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ambiguities in terms of more standard, iterative approaches 
to the solution of the phase problem_ It has been reported 
that such algorithms (Refs. 23-25) show a better conver
gence to the correct phase in two dimensions, than in one. 
However, since these procedures have no connection with 
the irreducibility of zero sets, they suffer from the drawback 
that they cannot distinguish whether a given intensity distri
bution is admissible or not. It is in this direction that, in the 
opinion of the author, an improvement is necessary and he 
hopes to return to these questions in the future. 
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FIG. 4. The increase of the support 
of the imaginary part of the Fourier 
transform !P I (so ,y)ofL (so,t)Eq.(3.5), 
for increasing values of b 
(so = - 1.1) and the model (5.1). 

APPENDIX A: ON PROPOSITIONS 3 AND 4 
We first reformulate, using the notation of the present 

paper, the generalization to n dimensions of Weierstrass' 
representation for entire functions, due to Lelong (Theorem 
5 of Ref. 13). We consider only n = 2; here are some defini
tions. 

Let .:r F be the set of zeros of some entire function F (u,v). 
Then [z = (u,v), Z E (;2] 

v(a) = +, f V 2 10gIF(u,v)ldu dv (AI) 
21T a )IIZII<O 
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Re t 

1m Z (so.t) F(o, t) 
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FIG. 5. (a) The poles present in 
Z(so,t) for So = 1T/4. The points 
PI and P2 show the real part of 
the pole positions. (b) The result 
of the multiplication of Z (so>t ) by 
F(O,t ) with the correct resolution 
of the discrete ambiguity of the 
zeros (FI) and with the zero 
whose real part is given by PI re-
placed by its complex conjugate 
(F2 )· 
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is called the mean degree of the set of zeros of F(u,v) over the 
ball of radius a and 

X..2' = lim [log v(a)!1og a] (A2) 
a_co 

is called the order of increase of ~ F as a_ 00. An intuitive 
definition of vIa) is given in Ref. 26, where it is also shown 
that it is an increasing function of a. Define further, for any 
entire function G (u,v), with 

M(a) = sup IG(u,v)l, 
II(u.v)lT <a 

aG = lim [log M (a)!1og a] 

as the order of increase of G as a- 00 • 

(A3) 

(A4) 

Further, let h2(a,z) be the Green's function with a singu
larity at a and vanishing at infinity, for Laplace's equation in 
R4 

h2(a,z) = lIa - zll-2 . (AS) 

Denote 

cos v = (a,z)/(IIallllzll), u = IIzll/liall . (A6) 

Then for small u 

h2(a,z) = lIall- 2(1 + C: (cos v)u 

+ C~(cos v)u 2 + ... ), (A7) 

where the C! (cos v) are Gegenbauer polynomials (see Ref. 
27). One defines the truncated kernel of order q, with singu
larity at a, as 

e2(a,z,q) = - h2(a,z) + lIall-2(1 + C :lcos v)u + ... 

+ C !(cos v)u q) . 
(AS) 

It is still a Green's function of Laplace's equation, but with a 
more rapid increase at infinity. However, if pIa) is a "charge 
distribution" in R4, the potential 

(A9) 

converges even if pIa) increases at infinity like aq 
- • - e, for 

any E > O. The analogy to one complex dimension is obtained 
by letting 

h.(a,z) = -logla - zl . (AW) 

One defines the genus of ~ F as the smallest integer q for 
which 

f t -qdv(t) (All) 

converges (it is assumed that 0 Ei ~ F)' If X..2' is not an in
teger, then q = IX - 1]. Now we can state the following. 

Theoreml3
: If ~ F has order of increase X, then we have 

the following. 
(i) There exists an entire function Fo(u,v) with order of 

increase X, and having ~ F as its zero set. 
(ii) Fo(z) is defined by (z = (u,v)), z Ei .:r F 

log lFo(z) I = ~ f V210gIF(a)le2(a,z,q)d4a , (AI2) 
41T 

where q is the genus of ~ F 
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+ a loglFo(a.,a2)I .J ua2 , 
aa2 

(A13) 

where the integration is done along a path joining 0 to (u,v) 
and avoiding.:r F' 

(iii) Any other entire function G (u,v) vanishing at every 
point of ~ F has order of increase at least equal to X and is 
divisible by Fo(u,v). 

To avoid confusion, it should be stated that one must 
show not only that (AI2) verifies the Poisson equation in R4 

( ~ a2 
) V 210glFol== --_ + -- log lFo I 

au au av iJij 

= V 2 log IF I , (A14) 

(which it does by construction), but that it can be the real part 
of the logarithm of a solution of the second Cousin problem. 
This means 10gIFoi must satisfy 

a2
10gIFoi =~logIFI, i,j=I,2, Z.=U,Z2=V. 

az; OZj az; OZj 

(A1S) 

The proof of Proposition 3 is easy with the help of the 
Theorem above. Indeed, we assume that .:r F is the set of 
zeros of a solution of the phase retrieval problem, i.e., of an 
entire function of exponential type. It follows from part (iii) 
of the Theorem that the order of increase of ~ F is at most 
unity. 

Now, vIa), Eq. (AI), can be written as the sum of the 
contributions of each irreducible zero set that intersects 
IIzll <a [z = (u,v)]. There can only be a finite number of such 
sets, for each finite a. We verify next that vIa) is unchanged 
by the replacement of any of these zero sets by their complex 
conjugates. To this end, we describe.:r F as the zero set of the 
product (2.2), where each factor corresponds to an irreduci
ble subset of .:r F' (The order of the product need not be 
unity.) The reflection of such a subset is described by the 
replacement of a factor G; (u,v) in (2.1) by G r (u* ,v*). We can 
then write, with u,v = r; exp(iO;), i = 1,2, 0<0; <21T, and the 
substitution X; = - 0; + 21T 

vG\I'(a) = +, r V 210g IGr(r.e-;6',r2e-;6')1 
, 21T a J?, + ?,<a2 

Xr. dr] dO] r2 dr2 d02 

= -1-f V210gIG.(r e;6, r e;6,) I 2ra2 I] '2 

Xr. dr] r2 dr2 dO] d02 = vG,(a). (A16) 
This verifies that vIa) is unchanged if a number of zero 

sets are reflected. By part (i) of the Theorem, there exists an 
entire function of order unity, F 0 (u,v), vanishing on the new 
zero set, obtained from ~ F by the replacement ofG;(u,v) by 
Gr (u*,v*), and nowhere else, as asserted by Proposition 3. 

Such a function is given by (A12) and (A13), where F 
may be taken as the product (2.2) with any number offactors 
G;(u,v) replaced by Gr (u*,v*). Writing (A12) as a sum over 
the irreducible zero sets of Fo(u,v) [q = l,z = (u,v)] 

log lFo(z) I 
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= lim '5' A~ J V2 10gIGj (a)le2(a,z,1)d4a , 
R~ 00 ..Kin irz'1I < R 't-7I 

(A17) 

one can verify that, under the replacement Gj(a)--G r(a·), 
the value of the integral stays unchanged for u,v real, so that 
10giFo(u,v)I = 10gIFo(u,v)1 in the 1m u = O® 1m v = 0 
plane. This completes the proof of Proposition 3. 

We next explain why we cannot exclude, by arguments 
similar to the one-variable case, that reflections of irreduci
ble zero sets may lead to functions of infinite type. To this 
end, we evaluate the integrals [z = (u,v)) 

r 2 Imu 
I(R) = jllzll<R V 10gIF(u,v)1 Tzifdu dv 

Imu;;.O 

(AI8) 

and show that they diverge for the special case when F(u,v) 
= F I(u)F2(V) with FI and F2 one-dimensional Fourier trans
forms. To be sure, this does not disprove the conjecture that 
to the reflection of an arbitrary number of irreducible zero 
sets there corresponds a solution of the phase problem. 

To prove our statement, we separate (A17) into two inte
grals corresponding to the partition 

10gIF(u,v) I = 10gIFI(u)I + logIF2(v) I , (AI9) 

and use the volume element 

dux duy dvx dvy = r l drl r2 dr2 dOl d02 . (A20) 

The integral containing 10gIFI(u)1 reduces to the sum of the 
imaginary parts of the zeros of FI(u), lying in 1m u>O, as 
R--oo. This is convergent if FI(u) is a Fourier transform. 
The second integral leads, however, to the evaluation of 

[ 
1 ((R 2 - ~S/2) 

S = L -- arctan 
r2.<R 2r2n r2n 

_ (R 2 _ ~n)1/2] 
2R 2 ' (A21) 

where r2n are the radii of the positions of the zeros of F2(v). 
Using the fact that r2n -n for Fourier transforms, one veri
fies that the sum over the second terms in brackets con
verges, as R--oo, whereas that over the first one diverges 
logarithmically with R. Therefore, we may not yet exclude 
that irreducible zero sets of Fo(u,v) exist, such that individu
ally they support only entire functions of order 1 and ofinfi
nite type, and satisfy the generalization of LindeloPs crite
rion, Eq. (2.11), only when they occur in pairs. 

APPENDIX B: THE INSTABILITY OF REDUCIBLE ZERO 
SETS 

It follows from Ref. 5 that in any neighborhood (in 
R(N+ I)(M+ I)) ofa given reducible polynomialP (u,v) [of maxi
mal degree (M,N)], there exist irreducible polynomials, i.e., 
that reducibility is an unstable property. In this Appendix, 
we wish to prove a similar, but weaker result for entire func
tions (and in fact, for functions holomorphic in some do
main) namely: let (uo,vo) be a point of the zero set !l' of 
Fo(u,v), so that !l' is reducible with respect to any (sufficient
ly small) neighborhood of(uo'vo). Then, in any neighborhood 
of Fo(u,v) in the sense ofEq. (2.12), there exists F(u,v) so that 
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the set !l' of zeros of F is irreducible with respect to a (suffi
ciently small) neighborhood OU of (uo,vo). 

The method of proof may be used also to establish the 
result of Ref. 5 for polynomials. It should also be added that, 
for a reader of, e.g., Ref. 10, the statement above is not unex
pected. However, the present author was unable to find it 
anywhere, in this or a related (accessible) form. 

We start by applying Weierstrass' preparation theorem 
to Fo(u,v) E Ea,b at (uo,vo) and write it in some neighborhood 
of (uo,vo) as 

Fo(u,v) = Po(u,v)IJ (u,v) , (B1) 

where, by assumption, Po(u,v), a polynomial in v of degree N, 
with peak at (uo,vo), is reducible to 

Po(u,v) = PO,I (U,V)PO,2 (u,v) (B2) 

and n (uo,vo)¥O and is holomorphic. As a consequence of 
(B2) not only apc/av(uo,vo) = 0 but also apc/au(uo,vo) = o. 
We shall assume for simplicity that Po, I (u,V),PO,2 (u,v) are ir
reducible and distinct, but it is very easy to allow for any 
number of factors. 

Consider now a perturbation 8F=Anl(u,v) of Fo, with 
n l E Ea,b' The zeros of Fo + 8Fare, near (uo,vo), the same as 
thoseofPo(u,v) + AG (u,v), withG (u,v) = nl(u,v)/n (u,v),ho
lomorphic near (uo,vo). One may choose now a number of E 

and a neighborhood U X Vof (uo,vo) such that, for every A 
with IA I < E and u E U, Po + AG vanishes precisely N times 
inside V. We can then write a polynomial in (v - vo) of degree 
N 

P(u,v,A) = (v - vot + al(u,A )(v - VO)N-I 

+ ... + aN(u,A ) , (B3) 

with coefficients depending on n I' holomorphic in u and A, 
u E U, IA I <E and such that P(u,v,O) = Po(u,v), ai(O,O) = 0, 
j = 1, ... ,N and P (u,v,A ) = 0 there, where Po + AG = 0 for 
(u,v) in U X V. 

Our purpose is to find the constraints on nl(u,v), which 
ensure that the corresponding P (u,v,A ), Eq. (B3), is irreduci
ble for any A small enough. To this end, we shall show that (i) 
if, for some sequence An-D, P(u,v,A) is reducible, then, for 
high enough n: it may have only two factors with the same 
degree with respect to v as the two factors of P (u,v); (ii) conse
quently, there must exist points (un 'Vn )--(uo,vo), so that 

ap(Un,Vn,An) = ap (Un,Vn,An)=P(Un,Vn,An)=O; 
au av 

(B4) 

and (iii) for allnl(u,v) E Ea,b' with the exception of a set of 
codimension 1, there is a neighborhood 
W = UI X VI X { IA I < E I} of (uo,vo,O) so that (B4) is impossi
ble for (un ,vn,An) E W. This will establish our statement. 

To prove (i), we proceed as in the proof of Proposition 5; 
given two numbers rl ,r2 >0, so that the set C l2: 

r l < lu - uol < r2 is contained in U, we can find a covering of 
the set of zeros of Po(u,v) contained in CI2 X Vby a finite 
number of poly disks d/j,J = d/j,iu Xd/j,iV' of radius 8, so that 
at each fixed u E d/j,iu' there exists just one root of Po(u,v) 
contained in d/j,Jv' Further, we can choose E2 as a function of 
8 so small that the set of zeros of P(u,v,A) in C12 X V stays 
contained inside ud/j' for IA I < E2(8 ). 
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Now let P",k (u,v), k = 1,2, ... , be the (nontrivial) irredu
cible factors of P(u,v, A,,). We may index as P",du,v) that 
factor for which one of the roots V",I (u) lies in the same disk 
d6.jv for a fixedj, as a root VO,I (u~ of Po, I (u,v), for u in d6,}u' 

Then, however, as argued in Proposition 5, the analytic con
tinuation of V",I (u) to el2 stays close to the continuation of 
VO,I (u) throughout e12; that is, if to u E e12 we associate d6k 
so that u E d6k,u' VO,I (u) E d6k,v, then V",I (u) E d6k,v' It follows 
that, if N",I is the degree of P",I (u,v) with respect to v, and 
No, I that of Po, I (u,v), then N",I >No,1 . Similarly, there must 
exist P",2 (u,v) so that its roots V",2 (u) stay close (in the above 
sense) to those of PO,2 (u,v) for u in e12, and N",2 >No,2' But 
!i",1 + N",2 = N = No,1 + No,2' so that the only possibility 
IS N",I = No,l and N",2 = No,2' as claimed in (i). 

To prove (ii), we show first that the coefficients a",k,1 (u) 
of the powers of v in P",I (u,v) tend to the corresponding coef
ficients aO,k,1 (u) in PO,I (u,v), uniformly in the disk 
lu - uOI<r2' To see this, weexpressa",k,du). ao,k,du) assym
metric combinations of the roots of P",I (u,v) and Po, I (u,v) and 
conclude from the proof of (i) that a",k,1 (U)-+aO,k,1 (u), uni
formly in rl<lu - uol<rz. However, bothan,k(u) and aO,k(u) 
are holomorphic functions in lu - uOI<r2 and from 
Cauchy's theorem, we conclude that. in fact. a",k,1 (u) 
-<lO,k,1 (u). uniformly in lu - uol <rz, as announced. 

Now, we can show that. if n is sufficiently large, there 
exists (un,v,,), lu" - uol <rz, v" E V, so that P",I (u",v,,) = O. 
P",2 (u" ,v,,) = O. To verify this, we construct the resultant 
R" (u) (eliminantZI) of Pn,l (u,v). P",2 (u.v); it consists of sums 
and products of coefficients of P",I (u,v) and P",2 (u.v) and is 
thus a holomorphic function of u in lu - uol <r2' Clearly. 
R" (u) tends to Ro(u) [obtained from PO,I (u,v) and PO,2 (u,v)]. 
uniformly in lu - uol <r2, and consequently, for n large 
enough, it vanishes the same number of times as Ro(u) in this 
disk. By assumption, however. Ro(u) has at least a simple 
zero in lu - uol <r2, and consequently, so has R,,(u). for n 
large enough. Let (u" ,v,,) be one of these roots. At such a 
point, Eq. (B4) is clearly fulfilled. This ends the proof of (ii). 

To show (iii), we notice that. if Eq. (B4) is satisfied for 
some values of U", v"' An' then these are also roots of the 
three equations 

Po(u,v) + AG (u,v) = 0, 

apo + A aG = 0 , apo + A aG = 0 . 
au au av av 

(B5) 

At u = uo• v = vo, A = O. the Jacobian of these three func
tions with respect to U,v,A. is 

J(uo.vo,O) = G(uo,vo)(azpo azpo _ (azpo )2). (B6) 
au2 av2 au av 

If the bracket does not vanish. then any G (u,v) [and thus 
JJI(u,v)] with G(uo,vo)#O leads to J(uo.vo.O) #0. and thus to 
the conclusion that the root (uo.vo.O) of (B5) is isolated. This 
proves (iii) for this particular case. If the bracket vanishes, we 
have to show that, nevertheless, G may be chosen so that 
Eqs. (B5) admit of a unique solution [in a neighborhood of 
(uo,vo.O)]. IfEqs. (B5) admit ofa sequence of points (u".v",A.,,) 
-(uo.vo,O) among their solutions, one may eliminate A" and 
conclude that (u",v,,) satisfies the equations 
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(B7) 

It is easy to verify that (B7) for an infinite sequence of n 
implies that there exists an irreducible factor P (u,v), which 
divides both functions in (B7) in a neighborhood of (uo,vo). 
We may try to determine the leading coefficient a I in the 
expansion v = Vo + al(u - uo)'" + .. '. with,u some rational 
number. This leads to an algebraic equation for a I' with coef
ficients that are linear in (a certain number) of the few first 
Taylor coefficients in the expansion of Po(u.v),G (u.v) around 
uo,vo' They admit of a solution only if their resultant vanish
es. This leads to a quadratic equation for the first few Taylor 
coefficients of G. whose precise form depends on Po(u.v). 
This ends the proof of (iii). since we only have to choose G so 
that this equation is not fulfilled. Thus the assertion of the 
beginning of this Appendix is justified. 

APPENDIX C: AN IRREDUCIBLE INTENSITY 
DISTRIBUTION 

Since it is easy to find polynomials in two variables 
which are positive over the Re u-Re v plane and are not re
ducible (e.g., u2 + v2 + 1). it is not surprising that there exist 
truly entire intensity distributions (i.e., entire functions of 
exponential type, positive and integrable over the Re u-Re v 
plane), which do not correspond to any amplitude. It is, how
ever, somewhat difficult to prove that a given intensity distri
bution is irreducible. or even to show how such distributions 
may arise. In this Appendix, we show how to generate such 
distributions, in some simple special cases. 

To this end, let. for a real 

F(u,a) = sin(u - ia) sin(u + ia)/(u2 + a Z
). (C1) 

and consider 

I(u,v,ai,y) =F(u.at)F(v,a3 ) + yF(u,az)F(v,a4). (C2) 

We shall show how we may choose ai' i = 1 .... ,4, Y so that 
I(u,v,a.y), which is clearly positive in the Re u-Re v plane, 
for positive y, integrable and of exponential type, is irreduci
ble. 

To show that I (u.v) is irreducible, we have to prove that, 
if v = vt(u) is an analytic function, defined in the neighbor
hood of some point U t in the u plane, such thatF(u,vt(u))==O, 
and v2(u) a similar function element, defined near another 
point U2 (it is not necessary that u2#u t) with F(u,vz(u)) = O. 
then there exists a path f!jJ in the u plane so that v2(u) is the 
analytic continuation of Vt(u) along f!jJ. Further. I(u,v) 
should not vanish along any line v = Vo or u = Uo' 

Let us choose first at #a2, and a 3 #a4. Then, clearly 
I (u,v) does not vanish along any line u = Uo or v = VO' 
Further. we may obtain a parametric representation of the 
set of zeros of I (u,v) as follows: let u = U(A ) be a solution of 
the equation 

F(u,a t)lF(u,a2) = A 

and v = v( ,u) be a solution of the equation 

F(v.a3 )IF(v,a4) = ,u . 
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It is clear that the set of points u = u(A. ), v = v( - A. /y) 
describes part of the set of zeros of I (u ,v) as A. moves over the 
complex plane. To show that we obtain this way the whole 
set of zeros, we have to prove that Eqs. (C3), (C4) define 
irreducible functions of u and A. ( J.L). But this is obvious, since 
(i) A. = A. (u) defined in (C3) is a meromorphic, one-valued 
function ofu, and (ii) by assumptionF(u,a l ), F(u,az) do not 
vanish at the same points. The same is true for J.L = J.L(v) of 
(C4). Certainly, thefunctionsu(A. ), v( - A. /y) have an infinity 
of branch points in the complex A. plane, since, e.g., at fixed 
A., the function F(u,al) - A.F(u,az) vanishes infinitely many 
times in the u plane. 

Now, we claim that, if the set (A. i JI: I of branch points 
of u = u(A. ) is completely disjoint from the set [A. ; J pertain
ing to v( - A. /y), then the manifold defined by u = u(A. ), 
v = v( - A. /y) is irreducible. To see this, first let v = vl(u), 
v = v2(u) be two roots of I (u,v) = o defined in a neighborhood 
of u I and A.I = A. (u I) be defined by (C3). Since all the zeros of 
F(v,a3) + A. /yF(v,a4) = 0 are obtained by analytic continu
ation in the A. plane, let 9,t be the closed path of continu
ation needed to obtain vz( - A. /y) from vl( - A. /y), both de
fined near A. I • The essential point is that, if the set of branch 
points (A. i J and [A. ; J are distinct, we can choose 9,t so that 
its image 9 under u(A. ) is also a closed path in the u plane; the 
path 9,t must avoid the set [A. i J and not turn around any of 
its points, although it may turn around the A. ;, as required. If 
&' ,t is chosen as shown, then 9 is the path of continuation in 
the u plane leading from vl(u) to vz(u). 

The generalization to arbitrary u I and U2 and roots 
vl(u), v2(u) defined near ul and Uz is obvious; let A. I ==A. (u l ), 
A.z==A. (uz) and 9 ~ be a path joining A.I to A.2 and on which 
u = u(A. ) is holomorphic, one-valued, and with a one-valued 
inverse. The result of the continuation of vl ( - A. /y) along 
&' ~ up to A.z is not, in general, V2(U(A.2)), but another root 
v~ ( - A.z/y). Supplement then 9 ~ by as many cycles passing 
through A.z as are needed in order to obtain V2(U(A.Z))' The 
cycl~s may be chosen so that their images under u = utA. ) are 
again' cycles &' H. The path of continuation in the u plane 
needed to obtain v2(u) fromvl(u) is made up of 9', the image 
of &' ~ and the cycles 9". 

With this, the next task is to show that we can choose 
ai' i = 1, ... ,4 and y so that, indeed, the sets [A.;}, [A. n, de
fined by (C3) and (C4) are disjoint. 

Clearly, the set of branch points [A. i J is among the solu
tions of the set of equation~ 

F(u,a l ) - A.F(u,a2) = 0, 

aF (u,a l ) -A. aF (u,az) = O. (C5) 
au au 

Let un (al,az) be the roots of the equation 

aF aF 
F(u,a l ) - (u,az) - F(u,a2) - (u,a l ) = O. (C6) 

au au 

Then, the set [A. i J is contained in the set given by 

F(un(a l,a2),al ) A. = . 
n F(un(al,aZ),az) 

This set must be compared with the one given by 
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(C7) 

(C8) 

where Vn (a3,a4 ) are the roots of an equation in v, analogous 
to (C6) 

(C9) 

Let us notice that, if a i #0, for all i, the values A. = 0 
and A. = 00 are not contained in the sets (C7) or (C8). Indeed, 
A.n = o for some n impliesF(un(al,az),a l) = O. But, ifa l #0, 
all roots of F(u,a l ) are simple, so that (C6) implies 
F(u,a2) = Oatu = Un (al,az)' This is, however, forbidden by 
the fact that a l #a2' The same argument shows that A. = 00 

is not in (C7) or (C8). 
We shall now investigate the asymptotic distribution of 

the zeros of (C6) and (C9) and show that, apart possibly from 
a finite number of points, the two sets (C7) and (C8) are in
deed distinct. A simple calculation shows that the zeros of 
(C6) are the roots of 

u(ai - a~) sinz 2u + (u2 + ai)(u2 + a~)(cosh 2aIl 
- cosh 2az) sin 2u + (ai - a~)u(cosh 2a 1 

+ cosh 2a2) cos 2u - (ai - a~) 

Xu(l + cosh 2a 1 cosh 2az) = O. (ClO) 

One can verify that the roots of(ClO) fall asymptotically 
into two classes 

(i) Un = n1r/2 + O(n- 3
), (Cll) 

(ii) Un = mr ~ 1T/4 ± ~ itn k Inl 
+ O(lnlnl/n) • (CI2) 

In (CI2) the upper/lower sign in front of 1T/4 holds if n 
is positive/negative and 

k = 1T[2(cosh 2a 1 - cosh 2a2)/(ai - a~W/3 . 

A way of deriving (Cll) and (CI2) is sketched at the end of 
the Appendix. 

With this, it is easy to check that the subset of A. n 's, Eq. 
(C7), generated by (Cll) is made up of real points, accumu
lating at A. ± (A. ± > 0) 

A. ± = (cosh 2a1 ± l)l(cosh 2a2 ± 1). (C13) 

The other subset of A.n 's generated by (C12) is made up of 
pairs of complex conjugate points, accumulating at 
A.o = + 1. It is now obvious that, if y> 0, the set (C8) accu
mulates at - yA. ± #A. ± and - y# + 1, so that it may 
have at most a finite number of points in common with (C7), 
as announced. Now, since A. = 0 is not contained in either 
(C7) or (C8), any choice ofy>O, except possibly for a finite 
number of values, makes the sets [A.n J and [ - yA. ~ J dis
joint and leads thus to irreducible intensities. 

To verify, e.g., (CIl), one proceeds as follows: one sub
stitutes Un = n1T/2 + /3 in (ClO), expresses sin 2{3 appearing 
in the second term (which is dominant for high n) as a func-
tion of/3 -

/3 = ! arcsin <p (/3 )=r (/3) , (CI4) 

proves then explicitly that, for I /31 <: 1T / 4 and n high enough, 
Ir'( /3)1 <: 1, so that (CI4)can be solved by iteration, and final-
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ly evaluates the error committed by taking /3 = 0 on the 
right-hand side of(CI4) 

I /3el< I < I rtO)I/(1 - sup Ir'( /3 )1). 
IPI..; ,,-/4 

(Ct5) 

Equation (CI2) is obtained in a similar manner. It is also true 
that Eqs. (CII) and (CI2) represent asymptotically all the 
roots ofEq. (ClO). 
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Two lemmas are proved for local noncentral forces in multidimensional space. First, the lowest 
partial wave for the ground state is nodeless. Second, the lowest partial wave for the first excited 
state has at least one node. Ballot-Fabre de la Ripelle perturbation theory is also used to show that 
higher partial waves for the ground state have nodes near the positions of nodes (if any) in the 
corresponding element of the matrix element of the noncentral potential. 

I. INTRODUCTION 

There is a well-known nodal theorem 1-3 for a one-di
mensional Sturm-Liouville problem, such as the solution of 
the Schrooinger equation for a bound state for a one-dimen
sionallocal potential V (x). The theorem states that the order
ing of solutions by numbers of nodes is the same as the order
ing by energy eigenValue. In particular, the ground state has 
no nodes (for finite x) and is therefore nondegenerate. Of 
course a central potential in spherical coordinates gives equi
valent one-dimensional problems, and the nodal theorem ap
plies separately to each of the three functions R (r), e (() ), and 
tP (t/> ), which, when multiplied together, give the wave func
tion tP(r). 

The generalization of the nodal theorem to multidimen
sional space I was given many years ago. The proof is repeat
ed later below in this note, since a number of physicists are 
unaware of the Courant-Hilbert theorem. The theorem 
states that for a local potential VIr) the ground state has no 
nodal surfaces, and the first excited state has one nodal sur
face. The number of nodal surfaces is not determined for the 
second or higher excited states. Here r is a vector in multidi
mensional space: we are concerned with examples of three
dimensional, six-dimensional, and nine-dimensional spaces. 

We prove below two lemmas concerning the lowest par
tial wave for the ground state and first excited state eigen
functions, respectively. (The partial waves are ordered by a 
quantum number, which in three dimensions is the orbital 
angular momentum I. In multidimensional space, we order 
using the "grand orbital" L. The "lowest partial wave" has 
1=0 or L = 0.) (i) The lowest partial wave for the ground 
state eigenfunction is nodeless, and (ii) the lowest partial 
wave for the first excited state has at least one node, provided 
that the nodal surface is closed and does not go through the 
origin. 

We also use the perturbation theory formalism of Ballot 
and Fabre de la Ripelle4 (BF) to examine nodes of higher 
partial waves for the ground state (1)0 or L>O.) We find 
that for a nearly diagonal potential matrix-the case for 
which the BF approximation is valid-a given partial wave 
has nodes if and only if the appropriate off-diagonal matrix 
element has a node. 

The two lemmas and the perturbation theory approxi
mation are used to check solutions of a number of examples: 
the anisotropic harmonic oscillator problem solved in 
spherical coordinates; the trinucleon solved in six-dimen
sional space using hyperspherical harmonics (H.H.); the hy-

pertriton solved by the same techniques; the alpha particle 
solved in nine-dimensional space for both the ground and 
first excited states; and the helium tetramer 4He4 solved in 
nine-dimensional space with a model atom-atom potential. 

Finally we review the importance of the assumption that 
we are dealing with a local potential, and give examples 
where this assumption is not valid. We also consider two 
related problems for which we do not have solutions: Is the 
lowest partial wave nodeless for the ground state solution of 
two coupled differential equations (CDE's), and is the S wave 
u(r) nodeless for the deuteron with a local tensor force? 

II. NODAL THEOREMS, LEMMAS, AND 
APPROXIMATIONS 

The Courant-Hilbert theorem l for two solutions of a 
Sturm-Liouville problem is proved in multidimensional 
space with the use of Green's formula. They choose tPo(r) as 
the twice continuously differentiable normalizable solution 
of 

- (~/2m)V2tPo(r) + V(r)tPo(r) = EotPo(r). (1) 

Here, tPo(r) vanishes on the boundary r of some regionB, and 
is positive in B. The eigenfunction for a higher energy EI 
obeys the equation 

- (~/2m)V2tPI(r) + V(r)tPI(r) = EltPl(r). (2) 

Multiply Eq. (1) by tPI(r), multiply Eq. (2) by tPo(r), subtract 
the first equation from the second, and integrate over B. 
Then 

!f... r (tPl V2tPo - tPo V2tPdd nr = (EI - Eo) r tPo(r)tPdr)d nr. 
2m JB JB 

(3) 

Here d nr is the volume element and V2 is the Laplacian in n
dimensional space. The left-hand side of (3) is evaluated us
ing Green's formula (valid in multidimensional space), giv
ingus 

~ r tPl atPo dn-Is = (EI - Eo) r tPo(r)tPl(r)dnr, (4) mk ~ h 
where d n - I S is the differential element on a surface or hy
persurfaceF, and a/an is the normal derivative. the outward 
normal being positive. 

Ifwe assume that tPI(r) is positive throughoutB, we find 
that Eq. (4) cannot hold. The left side is negative, since the 
normal derivative atPoi an is negative on r. But the right side 
is positive, since we assumed Eo<EI <0. Therefore, tPI(r) 
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must have at least one nodal surface. 
Courant and Hilbert conclude that the eigenfunction 

with the lowest eigenvalue will have no nodal surfaces in B; 
and the first excited state will have one nodal surface. Note 
that the proof depends on the assumption of the locality of 
VIr), since we used the cancellation of rPo(r) V(r)rPl(r) and 
- rPl(r) V (r)rPo(r) in writing Eq. (3). (A "nonlocal" potential is 

illustrated below: it uses Majorana exchange.) 
Our first lemma is easily proved by expanding rPo(r) in a 

complete orthonormal set of angular functions (spherical or 
hyperspherical harmonics) the expansion coefficients being 
the partial waves. In three dimensions, 

npo(r) = t,; u/(r)Y;"(8,t,6 ), (5) 

using the standard spherical harmonics. In six dimensions4 

we write an analogous equation using hyperspherical har
monics (H.H.), which are functions of five angular variables, 
denoted by IJ. We use r as the hyperradius. The sUbscript [L ] 
stands for five quantum numbers. We have 

,s12rPo(r) = L Udr)Y(L )(IJ). (6) 
(L) 

The partial waves udr) depend only on a single quantum 
number L, called the grand orbital. (Simonovs uses K as this 
quantum number and refers to "K-harmonics.") 

We solve for the lowest partial wave uo(r) by inverting 
the series (5) or (6). For instance, in three-dimensional space, 

(7) 

(We integrate over d 2IJ = sin 8d8dt,6.) But the lowest 
spherical harmonic yg is a constant, which, by convention, 
is positive. Therefore the integrand in (7) is positive for all r 
and IJ, and so the integral is also positive. We repeat this 
argument in six dimensions (or nine dimensions, etc.). The 
inversion of(6) uses the orthonormality of the H.H. The low
est H.H. Y(O )(IJ ) is again nodeless and, again by convention, 
is positive. Then 

(8) 

Our second lemma concerns the partial wave ut(r) for 
the first excited state, with eigenfunction rPl(r). Courant and 
Hilbert show that this eigenfunction has one nodal surface, 
or hypersurface. If this surface does not go through the ori
gin, and does not go to infinity, then we show below that the 
lowest partial wave [which we denote by ut (r)] must have at 
least one node. We must first investigate the behavior of the 
nodal surface. 

First, we assume that the excited state in question has a 
lowest partial wave ut(r) that is not identically zero. (That is, 
we exclude problems such as an odd parity excited state of an 
anisotropic harmonic oscillator, which cannot have any S 
state, because of parity arguments.) Second, we assume that 
this lowest partial wave does not "happen" to "be extra 
small" near the origin. Let us illustrate in three dimensions, 
where ut(r) is expected to be small, of order r, near the origin; 
and "extra small" means still smaller. In six dimensions, 
ut(r) is expected to be of order ,s12; in nine dimensions of 
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order I" etc. Since higher partial waves are excluded from 
the origin by the centrifugal barrier, the behavior of 4[l1(r) 
near the origin is determined by the behavior of ut(r) in this 
region. The validity of this second assumption can be investi
gated numerically for any specified noncentral potential. 

The nodal surface cannot go to infinity for a bound ex
cited state, since the wave function must change sign at the 
nodal surface; but it must go to zero at infinity for a bound 
state. 

Now that we know (subject to conditions given above) 
that rPl(r) has a nodal surface that does not go through the 
origin, or go to infinity, we can prove our lemma on nodes in 
the lowest partial wave ut(r). We first write an equation anal
ogous to (7), for a three-dimensional problem: 

ut(r) = f npl(r)yg(8,t,6 )d2IJ. (9) 

Since rPl(r) has a closed nodal surface that does not go 
through the origin it has a minimum radius r denoted by r l , 

and a maximum denoted by r2• Assume, for instance, that 
rPl(r) is positive for O<r<rl , and rPl(r) is negative for 
r2 < r < 00. Ifwe evaluate (9) for 0 < r < r l we clearly obtain a 
positive value for the lowest partial wave ut(r). On the other 
hand, (9) gives us a negative ut(r) for r2 < r < 00. Thus we 
have proved that ut(r) changes sign in the region r l < r < r2, 

and therefore has one node (or possibly more than one). This 
proof clearly generalizes to six-dimensional or any multidi
mensional space. 

Finally, we use the Ballot-Fabre de la Ripelle perturba
tion theory to examine the nodal character of the partial 
wave udr), for the ground state triton eigenfunction, for 
positive grand orbital L. Ballot and Fabre de la Ripelle treat 
off-diagonal terms in the potential matrix [V] as a perturba
tion, and find that to lowest order in this perturbation the 
partial wave udr) is given by 

uL(r)::::: [uo(r)Vo,L(r)/L (L + 4)] (rm/-If). (10) 

The factor -If L (L + 4)/(mr) is the difference of centrifugal 
barriers in six dimensions for a state with grand orbital L and 
a state with grand orbital zero. [In three dimensions one 
should use / (/ + 1), and in nine dimensions one should use 
L (L + 7); but these numerical differences do not change our 
conclusions below.] 

The small matrix element VOL (r) is 

VOL(r) = f Y(O)(IJ)V(r)YdIJ)dsIJ. (11) 

This expression holds in six-dimensional space, with Y(O )(IJ ) 
the lowest H.H., which we used in (8), and YL (IJ ) a suitable 
combination of H.H. for grand orbital L. Here VIr) is the 
total potential energy of the trinucleon, a function of the six
dimensional r. 

We see that all terms on the right side of Eq. (10) are 
positive, with the possible exception of the matrix element 
Vodr), defined by (11). Hence if the approximation (10) is 
sufficiently accurate to use for the determination of nodes, 
the number of nodes in the partial wave u L (r) will be just the 
same as the number of nodes in the corresponding matrix 
element VOL (r), and they will occur at the same values of 
hyperradius r. 
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We use this approximation to show the existence of 
nodes in higher partial waves for the ground state eigenfunc
tion in certain specified cases. Assume that all off-diagonal 
elements VOL (r) are sufficiently small that the BF approxi
mation is valid. Then if VOL (r) has a node for a specified L, in 
this case we can use (10) with confidence, and conclude that 
udr) also has a node for this value of the grand orbital. We 
find below that quantitative use of (10) to find nodes in u L (r) 
works moderately well for finite but small values of VOL (r) 
such as those for the ground state of the triton or alpha parti
cle using the V olkov potential. 

For convenience I summarize our two lemmas and one 
approximation. 

First lemma: The lowest partial wave for the ground 
state for a local noncentral potential has no modes. 

Second lemma: The lowest partial wave for an excited 
state for a local noncentral potential has at least one node. 

Approximation: For small off-diagonal terms in the po
tential matrix, the nodes in the partial wave udr) for the 
ground state wave function occur at the same hyperradius as 
the nodes (if any) in VOL (r). 

III. ILLUSTRATIONS AND DISCUSSION 

We present briefly five illustrations of the first lemma. 
(i) The ground state wavefunction of an anisotropic ax

ially symmetric oscillator is clearly nodeless in Cartesian co
ordinates, and so it is also nodeless in spherical coordinates. 
Elminyawi6 and Elminyawi and Levinger7 calculated the 
lowest partial wave solution, and found both analytically 
and in numerical work that the s wave uo(r) is also nodeless. 

(ii) Ballot et al. S found partial waves numerically for the 
ground state of the triton, for several different choices of 
nucleon-nucleon potential. In each case they found that uo(r) 
was nodeless. 

(iii) Clare9 and Clare and LevingerlO made an analogous 
calculation for the partial waves for the ground state of the 
hypertriton, and found that uo(r) was again nodeless. 

(iv) Ballot et al.,s Elminyawi,6 and Elminyawa and Le
vinger7 found numerical solutions for the lowest partial 
wave for the alpha particle: again uo(r) was nodeless. 

(v) Elminyawi6 and Elminyawi and Levinger7 found nu
merical values for the partial waves for the ground state of 
the helium tetramer He4 (composed of atoms with 4He nu
clei) for a model potential, and found that for this case uo(r) 
did have a node, but that the ratio of minimum Uo to maxi
mum Uo was only about - 1 %. 

The reader may well wonder, "Why bother to give ex
amples of a mathematical lemma?" First, they are illustra
tions of its applicability to a variety of problems. Second, the 
lemma is useful as a check on the accuracy of numerical (or 
for one case analytical) work in determination of the lowest 
partial wave. Third, the lemma applies to uo(r) determined 
from Eqs. (7) or (8): that is, to uo(r) as determined from the 
solution of an infinite set of COE's. But all numerical work is 
based on solution of a finite set of M COE's; e.g., for the 
tetramer M = 8. 

The agreement between numerical solutions and our 
lemma for the first four illustrations shows we can answer 
"yes" to the following two questions: (i) is the numerical 
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work of high enough accuracy and (ii) does the exact solution 
of M COE's show the same nodeless behavior of uo(r) as the 
solution of an infinite set of COE's? The fifth case-the te
tramer-shows that one (or both) of these questions must be 
answered with "no, not exactly." Note that the potential 
matrix for the model potential used has very large off-diag
onal matrix elements, thus posing a severe strain on the nu
merical procedures used. 

We present one illustration of the second lemma: the 
lowest partial wave for the first excited state of the helium 
nucleus for a Volkov nucleon-nucleon potential. Ballot et 
al. S and also Elminyawi6 found that the lowest partial wave 
u~(r) is not smaller than ,s/2near the origin and has a node at 
a hyperradius of 4.5 fm. (Unlike the tetramer case, the node 
is not due to numerical errors or possible failure of conver
gence of the H.H. expansion. The ratio [minimum 
u~(r)]/[maximum u~(r)] is - 60%.) One can understand 
this node in a naive way using a wave function as a single 
H.H. The ground state is the nodeless solution uo(r) of an 
ordinary differential equation; and the excited state is the 
solution u~(r) of the same equation, at the higher energy. The 
node persists as the solution u~(r) for M COE's. 

We present two illustrations of the BF approximation 
method of finding nodes in higher partial waves of the 
ground state wave function. In each example, we use the 
V olkov potential. The first case is for the ground state of the 
triton. The positions of the nodes in u4(r), u6(r), and us(r) are 
taken from Ballot et al. S and compared in Table I with the 
positions ofthe nodes ofthe Volkov potential. We find per
fect agreement in the number of nodes; for this case one and 
only one node for each higher partial wave. We see quite 
good agreement in the nodal positions for each partial wave, 
showing that the Ballot-Fabre de la Ripelle approximation 
scheme is successful for this problem. The second case is for 
the ground state of the alpha particle again with the Volkov 
potential. Again we have perfect agreement in the number of 
nodes: namely one for each higher partial wave. The table 
shows that for this case the positions of nodes in VOL (see Ref. 
6) are in only fair agreement with the positionss of nodes in 
the partial waves u4(r), u6(r), and us(r). 

Of course the Courant-Hilbert theorem for the node
less character of the ground state wave function need not 
apply for a nonlocal potential V(r,r'). We give several illus
trations of nonlocal potentials. 

The easiest example to calculate is that of a strong Ma
jorana space exchange force between two nucleons, chosen 
with the opposite sign to the one present in the real world. 

TABLE I. Positions of nodes in higher partial waves and in the correspond
ing element of the potential matrix. 

Triton nodes Alpha nodes 
Grand Wave Potential Wave Potential 
orbital function matrix function matrix 

4 3.5fm 3.5fm 3.9fm 2.8fm 
6 4.8 4.6 5.6 4.1 
8 5.7 5.8 6.4 5.3 
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That is, assume the exchange force is repulsive in the S state 
and attractive in the P state. A sufficiently strong Majorana 
force of this sign could clearly overcome the effect of the P 
state centrifugal potential, and give us a ground state which 
is a P state, with a nodal surface! This violation of the nodal 
theorem occurs because a Majorana force is a (complicated) 
examplell

,12 of a nonlocal potential. Note that it takes a 
strong Majorana force (of appropriate sign) to invert the nor
mal order of Sand P states. 

Another example is Tabakin'sl3 separable (nonlocal) 
nucleon-nucleon potential. He chose a potential so that the 
2S state was bound, and the IS state was in the continuum: 
another reversal of the order given by the nodal theorem. 
Like the first example, such a strong nonlocality seems un
likely to exist in the real world. 

A third example is a shell model for a system of fer
mions. Here the Pauli principle forces us to put particles into 
higher shells, which have nodes in their wave functions, so 
the wave function of the system has nodal surfaces2 even for 
the ground state. But (at least in the atomic case in the nonre
lativistic approximation) the potential is local! Ifwe neglect
ed the Pauli principle we would find lower energy eigenval
ues; and the lowest would indeed have a nodeless 
eigenfunction. But the Pauli principle forbids our use of any 
wave function that is not completely antisymmetric for 
space and spin exchange of two electronic coordinates. 

Finally, the reader may ask, "What is so special about 
coordinate space that tP(r) is nodeless but in general the cor
responding momentum space wave function t/J (p) does have 
nodes?" At first glance this asymmetry between coordinate 
and momentum space is strange, since we could solve the 
Schrodinger equation for the ground state in either space. 
The asymmetry enters because we generally use a local po
tential V(r) in coordinate space, which, when we transform 
to momentum space, becomes a nonlocal potential V(p, p'). 

We have tried without success to extend the two lem
mas. First, consider the lowest partial wave ubMI(r) found 
from the solution of M CDE's for the ground state of a local 
noncentral potential. Can we show that ubMI(r) is nodeless, 
for all M, 1 < M < oo? (The case M = I follows for solutions 
of an ordinary differential equation; the case of infinite M is 
just our first lemma.) The assertion that ubMI(r) is nodeless is 
certainly plausible, since it seems unlikely that a function 
that is nodeless for one "CDE" would develop a node for 
some finite number M of CDE's and then lose this node as M 
goes to infinity. 

A very similar, or perhaps identical, problem is the fol
lowing: Is the S-wave radial function u(r) nodeless for the 
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solution of the deuteron problem with a local tensor force in 
three dimensions? Here u(r) and the D wave w(r) are the solu
tion of two CDE's, so this problem is closely related to the 
problem above for M = 2. We have never seen a node in u(r) 
for any of the very large number of published numerical so
lutions of the deuteron problem with tensor forces; but of 
course this literature survey does not constitute a mathemat
ical proof. 

The second lemma does not extend to the second excited 
state ""2(r), and its lowest partial wave. The reason is that the 
ordering theorem for the number of nodal surfaces and the 
rank order of eigenvalues breaks down in general, when we 
go beyond the first excited state. An anisotropic harmonic 
oscillator in three dimensions provides a simple example of 
the failure of the ordering theorem. Suppose It}z >It}x' where 
the "spring constants" are kz = !mlt};, and kx = !mlt};. 
Then the state with one quantum excitation for z motion 
(nz = 1) with one nodal surface (the plane z = 0) would lie in 
the vicinity of many quantum excitations for x motion (nx 
some large integer) with many nodal surfaces. 
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In addition to the symmetries that are known to apply to arbitrary flow, the self-similar equations 
may present other symmetries of their own. We present here such a symmetry of the self-similar 
unidimensional flow of an adiabatic inviscid fluid, with arbitrary polytropic index and arbitrary 
power-law entropy distribution. The new symmetry can be extended to the non-self-similar case if 
the flow is assumed isentropic. A connection with the theory of Riemann invariants is also 
discussed. 

I. INTRODUCTION 

We consider here the one-dimensional flow of an adia
batic ideal gas; since we will essentially concentrate on the 
self-similar case, we assume a constant polytropic index r 
and a power-law entropy distribution, which may be written 
in the form 

oi,M )=P I pY <X M - I'll + 111"), (1.1) 

where M is the Lagrangian mass [dM = p(dr - v dt )). 
We start (Sec. II) with the canonical formulation of the 

self-similar problem, as derived by Gaffetl (hereafter re
ferred to as Paper I). We then show (Sec. III) that the self
similar equations present a previously unnoticed symmetry, 
here denoted by (Ts ), which leaves the two indices r, r' invar
iant. 

In Sec. IV we show that, at least for isentropic flow, the 
transformation can be defined for the most general flow 
without assuming self-similarity. A connection with the the
ory of Riemann invariants is also discussed. 

II. DIMENSIONLESS FORMALISM 

We recall here some basic results derived in Paper I con
cerning the dimensionless form of the Euler equations and 
the derivation of the self-similar equations. The system of the 
Euler equations reads 

av + d lnp = 0, dv ap 0 
ar dt '7t+a;= , 

(2.1) 

d a a 
p = pY oi,M), -=:- + v-, 

dt at ar 

where r, t, v, P, p are the Eulerian coordinates, velocity, 
pressure, and density, respectively. The sound velocity is 

e = ~ rP I p. We introduce the following three dimensionless 
variables: 

51=-Avt, 52==A(r+r'Mlp), 53==A(vt-r), (2.2) 

where A ==p/(r'M) <xplly Mill". We note the identity 

(2.3) 

Two more dimensionless variables also come into play: 

K ==pv(vt - r)/r'Me, 

(2.4) 

They satisfy the identity 

KK= -5.5~3' (2.5) 

It turns out to be also useful to introduce the following quan
tities, differing from S by a fixed translation: 

a l = 2/(r + r'), a 2 = (r' - l)/(r + r'). (2.6) 

a 3 = (r - l)/(r + r'). 

Equation (2.3) implies the relation 

(2.7) 

Starting from the Euler equations (2.1), it was shown in 
Paper I that, for arbitrary indices r.r', the following dimen
sionless partial differential equations hold: 

2aa (K +K) + (r' - 3)k aa In 52 + (r- 3)K aa In 53 

= +(r+r')(U.aaU2-U2aaU.), 

2ap(K +K) + (r' - 3)k ap In 52 + (r- 3)K ap In 53 

= - (r + r')(u. ap U2 - U2 apu.). 

(2.8) 

Here, a, {3 are characteristic coordinates. The latter are. as 
usual. defined by2 

da <X (v + e)dt - dr. 

d{3 <X (v - e)dt - dr, 

whence 

(2.9) 

We assume self-similarity from now on. Since all quanti
ties appearing in Eq. (2.8) are dimensionless, they depend on 
a single variable (the self-similar coordinate), and the partial 
derivatives aa. ap may be replaced by the total differential 
symbol d (Paper I, Sec. IV B). In this way. Eqs. (2.8) give rise 
to two ordinary differential equations 

(a) 2 d (K + K) + (r' - 3)k d In 52 + (r - 3)K dIn 53 = 0, 

(2.10) 

(b) U.dU2 - u~u. = O. 

Together with Eqs. (2.5H2.7), Eqs. (2.10) constitute a com
plete system of ordinary differential equations for the deter
mination of the self-similar solutions. Since Eq. (2.10) (b) is 
integrable in closed form, namely, 
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U2 = mu I (m constant), (2.11) 

the system is of the first-order only, as is well known. 2 

III. THE INVARIANCE TRANSFORMATION (Ts) 

A. A geometrical transformation in three dimensions 

In a three-dimensional Euclidean space of coordinates 
5; (i = 1,2,3), let a be a vector with components a; such that 

and let us denote f3 the vector product 

f3 = a/\S· 

(3.1) 

(3.2) 

We introduce the geometrical transformation defined by the 
homogeneous formulas 

5; = - a 151u2u3/P133' 

52 = - a:52U3UI/P~I' (3.3) 

5 i = - a353ulu2IP~2' 

where the vector u of components u I' u2, U 3 is 

(3.4) 

and a prime denotes transformed quantities. The formulas 
are obviously invariant under circular permutation of the 
indices. 

The straight line through the origin parallel to a is, since 
f3 = 0 there, a singular line for the transformation, which 
may be called the axis. An essential property of the transfor
mation is that, on straight lines intersecting the axis, it re
duces to an affine transformation of the coordinates 5;, since 
P;lu; (i = 1, 2, 3) are then constants; in particular such 
straight lines transform into other straight lines. 

By substitution we derive the identity 

(3.5) 

which means that the planes of the equation 
51 + 52 + 53 = const are globally invariant. 

The reSUlting tranformation formulas for the U; 's are 
obtained as follows: 

u; = - al<P IP133 (plus circular permutation), (3.6) 

where 

<P = UIU2U3 

- {a3(a l + a2)ui + 2aza3U2U3 + a2(a l + a3)u~}. 
Taking account of the property 1:;u j = 0, it is easily verified 
that <P is invariant under circular permutation of the indices. 
Finally, the transformation formulas for f3 read as follows: 

(3.7) 

The property P;lu; = const (i = 1,2,3) characterizing 
straight lines intersecting the axis is thus invariant; there
fore, the transformed straight lines also intersect the axis. 

Using Eqs. (3.3), (3.6), and (3.7) we immediately see that 
the transformation squared is the identity, i.e., it coincides 
with its inverse. 
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B. The invariance transformation (Ts) 

Identifying S, u, a with the dimensionless quantities de
fined in Sec. II, and remembering the relation (2.3) 
(1:; 5; = 1), the transformation formulas (3.3) read as follows: 

5; = a 151(52 - a2)(53 - a3)/(a:51 - a IS2)(aJ51 - a 153) 

(3.8) 
(plus circular permutation). 

This is, in effect, an affine transformation of the coordi
nates 5; in the case of self-similar flow, since such flows are 
represented (in these coordinates) by straight lines intersect
ing the axis, as shown in Sec. II [Eq. (2.11 )]. The transforma
tion is an exact symmetry of the complete system of the self
similar equations [Eqs. (2.5H2.7) and (2.10)], as may be 
verified by direct substitution into the equations. We will 
denote this symmetry by the symbol (T.). 

The transformation formulas for the remaining dimen
sionless variables K and k, defined by Eqs. (2.5) and 
(2.10) (a), reduce to a rescaling by a constant factor A: 

K' = AK, k' = Ak, (3.9) 

where A is determined by the condition (2.5): 

A = (s; S~ 53 )112 = (U IU2U3 ) (_ )1/2 
515:53 P~133 a la2a 3

• 
(3.10) 

This is a constant in the case of self-similar flow, since, as 
already observed, the ratios u;lP; (i = 1, 2, 3) are then con
stant. Equation (2.10) (a) is thus manifestly invariant. 

C. The transformation formula for dimensional 
variables 

When the dimensionless variables are known the dimen
sional variables can be deduced by quadrature [see, e.g., Pa
per I, Eq. (4.5)]; thus the time coordinate t is, assuming a self
similar flow, given by 

t=apexpf K _ dln(51), 
(K -K) 53 

(3.11) 

where a, P constitute a particular choice of characteristic 
coordinates, normalized in such a way that 

!!.... = expf d52 _ . 
a (K-K) 

(3.12) 

Since (T.) amounts to a rescaling of K, k and of the 5; 's, the 
transformed characteristic coordinates a', P , are, according 
to (3.12), such that 

p'la' = IP la)k (k constant). (3.l3) 

In order to make the characteristic curves invariant, we 
choose the solution a' = a k

, P' = pk , thus completing the 
definition of the symmetry (T.) (see Ref. 3). 

In the same way, it is evident that the integral in (3.11) 
does not change under (T.); therefore the transformed time 
coordinate reads as follows: 

t' = (ap t expf K _ d In(51) 
(K -K) 53 

= (ap )(k - I) t. 

It is convenient to choose a(k - I) ,P(k - I) as new characteris-
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tic coordinates, so that the transformation formula for t sim
ply reads as follows: 

t' = apt. (3.14) 

The above result is of rather uncommon and interesting form 
and suggests a relation with the theory of Riemann invar
iants, as shown in Sec. IV. 

IV. THE GENERALIZATION OF (Ta) TO NON-SELF
SIMILAR (ISENTROPIC) FLOW 

It would be of great interest to have a generalization of 
(Ts) that remains valid for non-self-similar flow. Equation 
(3.14) then would determine the product ap of the character
istic coordinates, i.e., the product of two Riemann invar
iants, in closed form. This would constitute a very important 
result, since, when two Riemann invariants are known, the 
general solution can be explicitly constructed in closed form 
[see, e.g., Gaffet,4 Eq. (5.3)). We presently show that (Ts) can 
indeed be so generalized, at least in the case of isentropic 
flow. 

We treat the case of a polytrope r = 3. By the classical 
transformation of isentropic flow (see Landau and LifshitzS

), 

corresponding results can be derived for all adiabatic indices 
of the general form 

r = (2n + 3)/(2n + 1) (m = 1,2,3, ... ,(0). 

The characteristic form of the Euler equations is, as
suming isentropic flow and r = 3 (see Refs. 2 and 4), 

(a) aa(v - c) = 0, ap(v + c) = 0, 

(b) aaM= -2-aat, apM= c2 apt. (4.1) 

The first two equations may be solved without loss of genera
lity in the form 

v = a + p, c = a - p, 
so that the resulting system for M and t reads as follows: 

aa M = - (a _P)2 aat, 

apM= +(a-p)2apt. 
(4.2) 

Eliminating M yields a second-order equation for t: 

(a -p)a~pt + apt - aat = 0. (4.3) 

We now introduce the following transformation, de-
noted by (T): 

(a) v' = v/(v2 - e2), 

(b) c' = - e/(v2 - c2
), (4.4) 

(c) t' = (v2 
- e2 )t. 

It is clear that (T)2 is the identity; also, the pair of equations 
(4.1) (a) is obviously invariant under (T). Noting that 
e' = (fJ - a)/(4ap), t' = 4aPt, the second pair of equations 
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(4.1) (b) determines the transformed quantity M' as follows: 

4 aaM' = - [(fJ - a)2/a2p Ht + aaa t ), 

4 apM' = + [(fJ - a)2/ap2](t + papt). 

The Cauchy condition of integrability 
[ap(aaM') = aa(apM')) precisely coincides with Eq. (4.3) 
and is thus automatically satisfied. This completes the proof 
that (T) is an exact symmetry ofisentropic flow, with r = 3. 
Corresponding symmetries for the cases r = j, !, etc. may be 
deduced by application of the above-mentioned transforma
tion of Landau and Lifshitz. 

It is straightforward to show that (T) reduces, for self
similar flow, to the transformation (Ts) introduced in the 
preceding sections. Comparing Eqs. (3.14) and (4.4) (c) we 
observe that, as predicted, the ratio t ' / t =v2 

- 2- is the pro
duct of two Riemann invariants. 

V. CONCLUSION 

Self-similar solutions are widely used for solving prob
lems in fluid mechanics and it is thus desirable to have, as far 
as possible, a complete knowledge of the symmetries pre
sented by the self-similar ordinary differential equations. We 
have considered here the case of unidimensional flow of an 
adiabatic inviscid polytropic fluid. 

The list of symmetries will in the first place include all 
those which are already known to exist independently of the 
self-similar assumption: there are essentially three such non
trivial symmetries, valid for arbitrary entropy distributions, 
whose properties have recently been reviewed by Gaffet l .4.6; 

they are denoted by the symbols (T'), (1'), (T*). 
We present here an additional symmetry, denoted (Ts )' 

which applies to the self-similar flow of arbitrary poly tropes 
with arbitrary power-law entropy distribution. We have 
been able to obtain a generalization also valid for non-self
similar flow, in the isentropic case (Sec. IV). 

It is of interest to note that, should one generalize (Ts ) to 
non-self-similar flow, one would thereby [see Eqs. (3.14) and 
(4.4) (c)) be able to derive the product of two Riemann invar
iants explicitly, and thus would obtain the general solution 
of the corresponding Euler equations in closed form. 
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Stiickel and differential-Stiickel matrices are generalized so that the matrix elements may be 
functions of the derivatives of the dependent variable as well as the independent variable. The 
inverses of these matrices are characterized and it is shown that for significant classes oflinear and 
nonlinear partial differential equations, variable separation is accomplished via this generalized 
Stickel mechanism. 

I. INTRODUCTION 

In Ref. 1 the authors introduced a general definition of 
additive variable separation for a partial differential equa
tion 

(1.1) 

where E is a parameter, X1, ••• ,xN are the independent varia
bles, u is the dependent variable, and UI,i = (f,.ru, i = 1,2, .... 
A separable solution of (1.1) is a solution of the form 
U = ~f = 1 S (J)(xJ,E). Our definition is a straightforward ex
tension of Levi-Civita's definition for first-order equations.2 

We let nI be the largest number I such that aur,lH HUr,1 =1=0. 
To avoid discussion of degenerate cases we require nI > 0 
for each 1 (but nI is finite). 

Let the truncated differentiation operator DI be defined 
by 

DI = aXr + UI,I au + UI,2 aur,. + .,. + uI,nraUr,nr-" (1.2) 

In Ref. 1 we showed that every separable solution U of (1.1) 
satisfies the integrability conditions 

Hu Hu (DIDJH)+Hu u (DIH)(DJH) 
1."/ J'"J 1,,,,1' J'''J 

-Hu (DIH)(DJHu ) -Hu (DJH)(DIHu ) = 0, 
J'''J I,n, l.nl J'"J 

1<.1 <J<N. (1.3) 

If( 1.3) is an identity in the dependent variables u,u K,k' we say 
that {x I J is a regular separable coordinate system for H = E. 
In this case the separable solutions involve ~f = 1 nJ + 1 in
dependent parameters: U and the derivations U I,i' 1 <1 <N, 
l<i<nI can be prescribed arbitrarily at a given point xo. If 
conditions (1.3) do not hold identically then the separation is 
nonregular and separable solutions, if they exist, will involve 
strictly fewer parameters than the regular case. (The stan
dard examples of variable separation for the differential 
equations of mathematical physics all correspond to regular 
separation.) Multiplicative separation is handled in this 
framework by passing to a new dependent variable v = In u. 
There is a modified definition of variable separation for (1.1 ) 
when E =0, which we will not discuss here. 1.3 

It would be of great interest to know the general solution 
of ( 1.3) so that the mechanism of variable separation could be 
determined in all cases. However, the general solution is not 
even known for the Levi-Civita case n I = ... = n N = 1. (The 

solution has recently been worked out for Hamilton-Jacobi 
equations on pseudo-Riemannian manifolds.4) 

Historically, the fundamental mechanism for variable 
separation has been the Stickel matrix.4 However, the 
Stickel mechanism is not sufficient to encompass all types of 
separation given by solutions of (1.3). In order to describe the 
solutions of the integrability conditions for additive separa
tion of linear equations Lu = E and Lu = 0 the authors in
troduced differential-Stiickel (D-Stickel) matrices, a nontri
vial extension of Stickel matrices.3 Here, we further extend 
D-Stiickel matrices by permitting the matrix elements to be 
functions of the derivatives UI,i as well as the independent 
variables XI' (For ordinary Stiickel matrices this is a straight
forward extension. For D-Stiickel matrices it is more diffi
cult.) 

In Sec. II we define generalized D-Stiickel matrices and 
characterize their inverse matrices via a system of partial 
differential equations. This section is modeled on Ref. 3 (in 
which ordinary D-Stiickel matrices are treated) but Theorem 
1 leads to some complications. 

In Sec. III we present several classes of linear and non
linear partial differential equations for which we can charac
terize the possible mechanisms of variable separation, and 
we show that they all correspond to generalized D-Stiickel 
form. For all cases treated we have Hu u = 0 in (1.3) for 

1,"1 J.n} 

1 =l=J. (The cases where the mixed partial derivatives do not 
vanish are much more complicated.) Even with this restric
tion we do not yet know if generalized D-Stiickel form is 
sufficient to describe all variable separation or if additional 
mechanisms exist. 

All functions appearing in this paper are assumed to be 
locally real analytic. Furthermore, functions fIx K'U K,k) are 
assumed to be analytic as functions of the UK,k in the neigh
borhoodofuK,k = O. If we require that a nonzero/is inverti
ble we mean that/(xK,O) =1=0 for the {Xk J in some neighbor
hood on R N so that/-I(xK,uK,k) is also analytic. 

II. GENERALIZED D-STAcKEL MATRICES 

Consider a coordinate set X1, ... ,xN and let nl, ... ,nN be 
positive integers with n = ~r= 1 nI • Let S = (S(I,,),t(xI )) be an 
n X n nonsingular matrix with the properties 
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d i -
' 

. 
(1) S(I,,),/(xI ) = d i-I S(I,I),/(XI ), 1 = 1,2, ... ,nI ; 

XI 

(2) T
,
,(JoJ1=1=O, J = 1, ... ,N, j = 1, ... ,nJ> 

where T=S-I, i.e., 
u 
~ C" ( )T/,(Jol) _ ~(J,J) £.. ~(I,,),/ XI - 0(/,1) • 

/= I 

(2.1) 

(2.2) 

We call a matrix S with these properties a differentia/
Stockel matrix (D-Stiickel matrix). [Here the rows of S are 
designated by the index (I,lj, where 1= 1, ... ,N, i = 1, ... ,nI , 

whereas the columns of S are designated by the index 
1= 1,2, ... ,n. Row (I,z1 depends only on XI and is the i-I 
derivative ofrow (I, 1). The index notation for T is defined 
similarly but with rows and columns interchanged.] If n I 
= 1 for all I so n = N, then S is an ordinary Stickel matrix. 5 

Set H(J,J) = T,,(J,J). In Ref. 3 it is shown that for S a D
Stiickel matrix the system of equations 

aIP(J,J) = (P(1,nl ) - p(J,}))81 In H(J,J) 

) 
H(J,j - I) [,J + (P(I,nl) -p(J,j-l) R I' 

(J,J) 
\2.3) 

I, J = 1, ... ,N, h = 1, ... ,nJ , 

admits a full linearly independent set ofn vector valued solu
tions ( plJ,})}, / = l,oo.,n. Conversely if the n nonzero func
tions (H(J,J)} are such that (2,3) admits a linearly indepen
dent set of vector valued solutions then there is an n X n 
D-Stiickel matrixSsuch thatH(J'J) = T',(J,J). See Refs. 6 and 
7 for similar treatments of ordinary Stiickel matrices. 

The integrability conditions for (2.3) are 

auH( P,p) - a 1H( p,p)aJ In HI - aJH( P,p) a 1H J = 0, 

P =j::I, J, P = 1, ... ,np , (2.4a) 

auH(J,J) - a 1H(J,J)aJ In HI - aJH(J,J) aIlnHJ 

= H(J,j _ I) a 1 In H J - aIH(J,j - Il' j = 1, ... ,nJ , 

(2.4b) 

whereI #J,HI==H(/.nl)' andH(J,o) ==0. By Theorem 1 of Ref. 
3, conditions (2.4) are necessary and sufficient that the n 
nonzero functions (H(J'J) I can be expressed in the form H(J'J) 

= T I.(J,}) for T the inverse of a D-Stackel matrix S. 
When Eqs. (2.4) hold the partial differential equation 

N nl 

2: 2: \D~-IQI)H(/,,) =E (2.5) 
1=1 ;=1 

admits regular additive separation in the coordinates 
XI, ... ,xN, where E is a parameter (which could be zero), 
QI(XI,U1,;) is a function of XI' and a finite number of deriva
tives UI,I, UI ,2"",UI,QI with mI> 1, aUI.q,QI #0, and 

ao 

DI = ax, + 2: UI.i+1 au/., 
;=1 

(2.6) 

is the I th total derivative. Indeed the separation equations 
are 

n 

D~-IQl + 2:S(/,I),/(XI)A./ = 0, (2.7) 
/=1 

1 <.I<.N, 1 <.i<.nI , A.I = -E, 

2169 J. Math. Phys .• Vol. 26. No.9, September 1985 

where the A./ are the separation parameters. The separable 
solutions U = 1::'= I u(l)(xI,A./) are obtained by integrating N 
ordinary differential equations (of order m I) 

n 

QI(XI'UI,i) + 2:S(I,I)./(XI)A./ = O. 
/=1 

(2.8) 

The remaining n - N equations are redundant. The number 
of parameters in the solution U is 1: Iq I + n - N + I. 

Stickel and D-Stiickel matrices can clearly be general
ized to include dependent variables, thus incorporating a 
wider class of separable partial differential equations than 
(2.5). For this we consider coordinates XI, ... ,xN' let 
n = 1::'= 1 nI , where the n[ are positive integers, and let 
IJ 1>00.,IJ N be non-negative integers. Then a nonsingular n X n 
matrix S = (S(I, 'V(XI,UI.})), with the properties 

(1) S(1, 'V(XI,UI , j ) = D ~- IS(I,I),r(X/>uI •j ), 

i = 1,2, ... ,nI , 

(2) T I,(J.}) =1=0, J = 1, ... ,N, j = 1, ... ,nJ , 

where T=S-', 

(3) S(I.I),/ = S(/.I),/(XI,UI. I ,00.,UI,D1 )' 

with a"l.nIS(r,I)./#O for some I if IJI > 0, 

is a (generalized) D-Stackel matrix. 
A generalized D-Stackel matrix S can be used to con

struct partial differential equations that permit regular sepa
ration in the coordinates Xl' Set H(J,}) = T',(J,}). It is then 
easy to show that equations ofthe form (2.5) permit regular 
separation. 

Characterization of generalized D-Stiickel form in 
terms of differential equations satisfied by the H(J.J) is not 
particularly difficult. In analogy with the derivation of Eq. 
(1.3) in Ref. 3, we can easily show that 

D I P(J.}1 = (P(I,n/) -p(J.J))Dr lnH(J,Jl 

(2.9) 

I, J = I, ... ,N, j = 1, ... ,nJ , 

wherep(J.J) (as well as H(J.J)) depends only on the variables 
XI,UUUI,2"00,UI,,/, 1= 1, ... ,N, and SI = nI + IJ1 - 1 if [JI 

> 0, SI = 0 if IJ I = 0, admit a full linearly independent set of 
n vector valued solutions {p[J.J)}' 1= l, ... ,n if and only if 
the nonzero functions H(J.}) are obtainable from a general
ized D-Stiickel matrix S. 

The total differential equation (2.9) is equivalent to a 
sequence of partial differential equations in which the left
hand side assumes the form a,,1.1 PrJ,)), i = O, ... ,sl' (We make 
the convention that XI ==U 1,0 .) Indeed, equating coefficients 
ofuI •• /+ I on both sides of(2.9) we have 

a""'IP(J,J) = (P(I,nl) -p(J.fI)a"I."lnH(J,J1· (2.10) 

We can obtain the derivatives aUI,i p(J,J]' i = I, ... ,sl - 1 re
cursively from (2.9) and (2.10) through the relation 

a u/. , _ 1 = [aUf.J.DI] = aU/,IDI - DI a"/,;' Finally, ax/ 

= DI -l::~ I Ur.i + 1 au/.
" 

when applied to p(J.Jj' 

We can obtain integrability conditions for Eq. (2.9) by 
computingD ADI P(K.k)) = D I(D J P(K.k) ),1 ¥J, and equating 
coefficients of P(L,/) on each side of the resulting expression: 
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DIDJH(p,p) -DIH(p,p)DJ In HI -DJH(p,p)D/lnHJ = 0, 

P =1=1, J, P = 1, ... ,np , (2.11a) 

DIDJH(J,J) -DIH(J,})DJ In HI -DJH(J,J)D/lnHJ 

-H(J,j_I)D/lnHJ +DJH(J,j_l) = 0, 

j= 1, ... ,nJ' (2.11b) 

Here HJ==H(J,nJ)' H(J,o) =0. It is not entirely clear, however, 
that Eqs. (2.11) are the complete set of integrability condi
tions. For these we need to compute auJ)aul,I P(K,k)) 

= au (au P(Kk))' i = O, .. ·,sl' j = O, ... ,sJ. 1.1 J.) , 

Theorem 1: Conditions (2.11a) and (2.11b) are necessary 
and sufficient for complete integrability of Eqs. (2.9), hence 
they are the necessary and sufficient conditions for the exis
tence of a generalized D-Stiickel matrix 8 such that H(/,J) 
= T I,(J,}) =1=0. 

Proof: It is already evident that conditions (2.11) are nec
essary for the existence of a generalized D-Stackel matrix. 
To prove they are sufficient we consider the integrability 
conditions (I =l=J) 

DJ(DI P(K,k)) - DI(DJ P(K,k)) 
+-~ +-~ 

DIDJH(K,k) DIDJH(K,k) 
= - P(J,nJl H + P(/,n,) H ,(2.12) 

(K,k) (K,k) ......... 
where DID JH(K,k) is the left-hand side of expression (2,lla) if 
K=P=I=I,J or expression (2.llb) if K=J. The left-hand 
side of (2.12) is computed directly from (2.9). Clearly (2.12) 
vanishes for a complete set of solutions P if and only if 
fJlJJH(K,k) = O. The integrability condition 

(2.13) 

can be obtained from (2.12) by equating coefficients of 

UJ,SJ+ IUI,sl+ I: 
..... -
aUI"laUJ"JH(K,k) = O. (2.14) 

Furthermore, equating coefficients of uJ,sJ+ 1 and uI,sl+ I' 

respectively, we find the conditions corresponding to 
au (DIP), 

J,SJ 

- D/(au p) and DJ(au p) - au (DJ p): 
J'SJ l.s1 I.s] 

+-~ +- ~ 

Dlau H(Kk) = 0, au DIH(Kk) = O. 
JoSJ' l.s/· 

(2.15) 

Note that conditions (2.14) and (2.15) can be obtained direct
ly from (2.11) by equating coefficients of U J'SJ + 1 U I'SI + 1 , and 
uJ,sJ+ 1 and uI,sl+ I' respectively. 

We can now derive the conditions corresponding to 
auJ)DI p) - D/(auJ.} p) recursively from the above expres
sion through repeated application of the identity 

au =[au ,DJ ], j=1,2, ... ,sJ-1. (2.16) 
J.j J.J+ I 

From this result and (2.13) we can obtain the conditions cor
responding to 

(2.17) 

recursively through application of the identity aUl,i 

= [au .DI ], i = 1,2, ... ,sI - 1. At each stage of this pro-
1,1+ t 

cess the integrability conditions are linear combinations of 
(2.11), (2.14), (2.15), and their derivatives, hence they are im-
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plied by (2.11). Finally the conditions ax)axJ p) - ax/(aX} p) 
can be obtained from 

[axl,axJ ] = [Dxl - j~IUI,j+ laul,l' D J - j~IUI,j+ laUJ.J ]. 

Again the integrability conditions are implied by (2.11a) and 
(2.llb). Q.E.D. 

Now that we have succeeded in characterizing general
ized D-Stackel matrices in terms of the first column of their 
inverse matrices, we can extend the notion of a Stackel multi
plier to this situation. Suppose n nonzero functions 
H(J,J) (XI,U1,j) satisfy conditions (2.11), and hence determine a 
generalized D-Stackel matrix 8. A nonzero function 
fIx I'U I,j) such that the functions H(J,J) = H(J,J) 1/ also satisfy 
conditions (2.11) is a (generalized) D-8tackel multiplier for 
the system (H(J,J) J. 

Theorem 2: The following are equivalent characteriza
tions ofD-Stackel multipliersf: (l)/satisfies the equations 

DIDJ/-DIlnHJDJ/-D/lnHIDI/=O, 

I =l=J, HI = H(/,np' (2. 18a) 

(2) there exist N functions ql(xl,uJ,j), DltpJ = 0 for I =l=J, 
such that 

N nJ 
/(XK,UK,k) = L L (D~-ltpJ)H(J'J)' (2. 18b) 

1= Ij= 1 

Proof: It is obvious from Theorem 1 that (2. 18a) is equi-
valent to the definition of a D-Stiickel multiplier, Now sup
pose/is a D-Stackel multiplier, Then there is an nXn D
Stackel matrix S (for H(J,J) = H(/,}) 1/) such that 

1'1,(J,J)_ H 1'/ 
- (J,J) • (2.19) 

The elements in the first column of the D-Stackel matrix 8 
can be denoted 

- d j
-

I 
J 

8(J,J), 1 = d~ _ 1 tp (XJ,UI,/) 

for N functions tpJ. MUltiplying both sides of (2.19) by S(J,J),1 
and summing over the index (J,j) we obtain (2. 18b). 

Conversely, suppose / is defined by (2.18b) for some 
functions tpJ (x J ,U J,I)' From this expression and conditions 
(2.10) it is straightforward to verify that / satisfies Eq. 
(2.18a). Hence/is a D-Stiickel multiplier. Q.E.D. 

Although Theorem 1 is valid only when H(J,J) =1=0 for all 
(J,J1, Eqs. (2.11) make sense as long asH(/, nJi==HJ =1=0, even 
if some of the remaining H(/,J) vanish. We need to determine 
the significance of those solutions of (2,11) for which it is 
only required that HI =1=0. Furthermore it will be useful to 
determine the effect on the solutions of replacing each HI by 
gAxI,uJ,j)HJ' wheregJ is invertible in a neighborhood of the 
point (x~,O), so that g.i 1 will also be analytic in the U(/,J) in a 
neighborhood of the point. • 

To answer these questions it is useful to write Eqs. (2.11) 
in the form 

AIIH( P,p) = 0, P =1=1, J, 

AIIH(/,J) = BIIH(J,j_I)' H(J,o) = 0, I =l=J, 

where 
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AIJ =DIDJ -DJ InHIDI -DI InHJDJ> 

BI J = - DI + DI In H J, H J = H1J,nJl :;i:0, 

1 <:.J<.N, 1 <.j<.nJ, LnJ = n, 
J 

(2,21) 

We require that the H1J,J) and the other functions appearing 
in the lemmas depend only on the variables x I and U 1,1' 

1 <.I<.N, l<,i<sI' 
Suppose we are given N nonzero functions HJ satisfying 

A I JH p = 0 for P :;i:I, J, I :;i:J, and N nonzero functions gJ 
satisfying DIgJ = 0 for I :;i:J. Our task will be to construct a 
finite set of functions .7t'IJ,J) with H 1J, nJ) = gJHJ such that 
Eqs. (2.12) are satisfied. Initially the value of nJ is unknown. 

The construction process is based on the second equa
tion (2.20) which we rewrite as follows: 

DI(H(K,k-I)) = -AIKH1K,k), I:;i:K. (2.22) 
HK HK 

If H(K,k) is known we can construct H1K,k _ I) from (2.22) by 
quadrature. 

Lemma 1: Suppose the N nonzero functions Hp satisfy 
AIJHp = o for P :;i:I,Jand thefunctionHK,k (fixedK,k ) sat
isfiesAIJHK,k = O,K :;i:I, J,l :;i:J. Then theN - 1 equations 
(2.20) are compatible and have the general solution 

H1K,k_l) =H1K,k_l) +Jlk-I)(XK,UK.I)HK, (2.23) 

where H(K,k _ I) is a particular solution andjlk - I) is an arbi
trary function of XK,UK,;' The solution satisfies 

A I JHIK,k _ I) = 0, K :;i:I, J, I =/=J. (2.24) 

It follows that for each K we can always construct func
tions H1K,k _ I) through a recursive procedure using (2.22) 
such that the first equation (2.20) is automatically satisfied. 
At each step the solution H1K,k _ I) is arbitrary up to the addi
tive termj(k - I) (x K'U K,;)H K and we choose one ofthese solu
tions. Thus we generate an infinite sequence {H1K,k) = H~)}, 
1 = 0,1,2, ... , where nx -I = k (but nxis unknown) and 

AIXH~) = BIKH~+ I), I =/=K, Hx = H~). (2.25) 

Suppose there is a smallest finite positive integer nK for 
which functions.l(,) (XX,UK,j) exist such that 

(2.26) 

The following lemmas can be verified by straightforward 
induction using the properties 

(1) BIKF(xj,ud = 0, for all I :;i:K, 

<;:?F=j(xK,UX,j)HK (2.27) 

(2) AIK(f(XK,UK,j)Hif() = BIX(fH~+ I) -DKfHif(). 

(2.28) 

Lemma 2: EachH~K+ 5), S = 0,1,2, ... , is a linear combi
nation of the finite set {H~): 1 = O, ... ,mK -l} with coeffi
cients that are functions ofxK,uK,i' 

Lemma 3: Let {JYik)}, {h~)}, 1=0,1,2, ... , be two se
quences constructed by the procedure (2.22), (2.23) such that 
JYi~)=.7t' x = gJlK' where go is invertible and DIgO = 0 for 
I :;i:K. Then there is a sequence gl,g2,'" with DIg; = 0 for 
I:;i:K and expressionsL;,j(go,gI, ... ,g;_j_l) withLI,o = o for 
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1>1, L;,;_I =DKgO' and L;+I,j =L;,j_1 +DKgI- J 
- DxLI,j such that 

I-I 

JYi~ = gJl ~ + L (gl_j - L;,j)h 't, i = 0,1,2, .... 
j=O 

(2.29) 

Any such sequence {gil together with {h ~)} determines a 
new sequence of solutions {.7t'~)}. 

Let {H~)} be the solution sequence with property (2.25). 
Then setting h ~ = H~ in (2.28) choosing 
go = 1,g1, .. ·,gm

K
-I recursively such that 

-.I(J) =gmK-j -LmK.
j

, j=O,I, ... ,mK -1, 

we have .7t' ~K) = O. Thus there is a solution sequence 
{.7t'~)1 with .7t'~), ... ,.7t'~K-I) nonzero and all further 
terms zero. By Lemma 3, all other solution sequences are 
linear combinations of these m x nonzero terms. 

Lemma 4: The integer m x' if it exists, is unique. 
In particular, modifying H K, to gKHK with gx inverti

ble and DIgX = 0 for I:;i:K does not change mK. 
Based on the preceding results, given any solution 

{H1X,k) I ofEq. (2.11) we can determine the integers mx such 
that l<mK<nK. Then there is another solution {.7t'IK,k) I 
with m = l:~ = I m x nonzero terms such that each H1K,k) is a 
linear combination of the .7t'IK,k)' Thus the original solution 
is associated with an m X m generalized D-Stackel matrix. 

III. SEPARABILITY CONDITIONS 

Suppose we are given a partial differential equation 

H(xI,u,UI,,) = E, (3.1) 

which admits regular additive separability in the coordinates 
x I' (Unless otherwise specified we will adhere to the notation 
and conventions for separation listed in the Introduction.) 
That is, suppose the integrability equations (1.3) are satisfied 
identically in u, UI,,' What is the form of the separation and 
how can the separation equations be determined from (1.3)? 
In this section we will identify some classes of linear and 
nonlinear differential equations where the separation is 
achieved via generalized D-Stackel matrices. 

Our method of approach is exemplified by the following 
observation concerning (3.1). 

Lemma 5: Suppose auH = au au H = 0 for all I :;i:J 
1,1 J.} 

and au H HJ(XK,UKk ) is invertible for 1 <K<N, 
J'''J • 

l<k<nK - 1. Further suppose the {HJ I generate a D
Stackel matrix via the process (2.22). Then the differential 
equation H = E is regular separable if and only if H is a 
generalized D-Stackel multiplier. 

Proof: The integrability conditions (1.3) for H are, in this 
case, equivalent to 

(DIDJ -DI InHJDJ -DJ InHID/)H=O, I:;i:J, 

the condition that H be a D-Stackel multipler. 
Theorem 3: Suppose H takes the form 

N 

H = L HJ!XK,UX,k)9 J!xJ>uJ,nJ,uJ,j) + V(XK,UK,k)' 
J=I 

(3.2) 

where H J is invertible, D I 9 J = 0 for I :;i:J, and 
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a ~ flJ J :;'=0. Then the equation H = E is regular separable 
J,nJ 

if and only if the {HJ J are in generalized Stiickel form 
(mJ = 1) and H is a generalized Stiickel multiplier with re
spect to this form. 

Proof: In this case the integrability conditions (1.3) are 
equivalent to 

A]JHp = 0, / :;'=J, 1</, J,P<N, A]JH = 0, 

whereA]J is defined by (2.21). Q.E.D. 
Theorem 4: Suppose H takes the form 

N 

H = L HJ(xx)flJ AXJ,uJ.j)uJ.nJ + V(xx,UX •k )' 
J=l 

(3.3) 

where H J flJ J is invertible. Then the quasilinear equation 
H = E is regular separable if and only if the functions HJ 

determine an (ordinary) D-Stiickel matrix via the process 
(2.22) and H is a D-Stiickel multiplier with respect to this 
form. 

Proot The integrability conditions (1.3) for H = E are 

(1) A]JHp = 0, P :;'=/,J, 

(3.4) 

for all / :;'=J, where 
A AA A A A ......... 

A]J =DIDJ -DJ InHIDI -DI InHJDJ, 
A A A 

B]J = -DI +DI InHJ, (3.5) 

Note that 

DI In(HJflJ J) = DI In H J = aX1 In H J, (3.6) 

for / :;'=J. Using (4) and differentiating (2) with respect to 
uJ.nJ - 1 , uJ.nJ-l,,,,,UJ.l' recursively, we obtain 
au au v = O. Then differentiating (3) with respect to Ul,i 

1,11/- 1 J.} 

and uJ.j recursively, we obtain aUI .• auJ.J V = 0, / :;'=J. Thus we 
can write V uniquely in the form 

N 

V= Vo(xx) + L VJ(xx,uJ.j ), 1 <K<:.N, l<J<:.nJ - 1, 
J=l 

(3.7) 

(3.8) 

Differentiating (3) with respect to ul,/ we find 

A]J(aUI.,VI ) =B]J(aUI.'_I)VI' (3.9) 

where the right-hand side of (3.9) vanishes for i = 1. Then, 
using (2) we can verify the formulas 

A]J(HpflJ p) = 0, P :;'=/, J, 

A]J(HlflJ I) = B]J(au1.nr I VI + HlaUI.nl_l flJ I) 
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A]J(auI.l VI + Hlaul.,flJ I) 

= B]J(aU1.'_1 VI + HlaUI.,_1 flJ I)' 

l<:'i<:.nI - 1, 

where au VI - Hlau flJ 1=0. Here the truncated deriva-
A. 1,0 1,0 

tives DJ have been replaced by total derivatives DJ • These 
formulas agree with (2.lla) and (2.11b) for -KI = HI flJ I' 
-K(I.I) =aUI.IVI +H[aul.,flJ[, 1 <:'i<:.nI -1. It follows from 
(2.6) and Lemma 3 that the HI also generate solutions of 
(2.11) that are independent of the U X.k' since flJ I is invertible. 
Hence the integrability conditions (1.3) imply that H(I.I) de
termine a D-Stiickel matrix and that H is a D-Stiickel multi
plier with respect to this form. Q.E.D. 

Due to the property (3.6) it is not necessary to assume in 
Theorems 3 and 4 that the functions flJ I (XI ,U I.i ) are invertile 
in the strong sense of the Introduction; they may be permit
ted to vanish for U l,/ = O. 

Corollary 1: Ifin (3.3) we have flJ 1:;'=0 for all/then the 
functions HI(xx) determine an (ordinary) D-Stiickel matrix 
and H is an (ordinary) D-Stiickel multiplier with respect to 
this form. 

This result follows from Lemma 3. 
Corollary 2: Consider the differential equation 

Lf/! = Ef/!, where L is the linear nth-order partial differential 
operator (n > 1) 

N 

L = L H J(xx)c1';,J 
J=l 

Q. + .. ·+aN<" 

+ L Ha, ..... a)xx)·O':c:, .. ·,~~, (3.10) 
01>0 

with HJ:;'=O for each J. This equation admits regular multi
plicative separation in the coordinates x x if and only if 

N ( N-l ) 
L = l~l HAxx) a;J + o~of~(xJ)O':cJ ' (3.11) 

where axJ~ = 0 for / :;'=J and the {Hp J are in (ordinary) 
Stiickel form. 

Proot The equation Lf/! = Ef/! admits regular multipli
cative separation (by definition) provided the equation 
H = E, obtained by setting f/! = eU in Lf/!If/! = E, admits re
gular additive separation: 

N 

H= LHAxx)uJ.n + V(xx,UX •k ), l<k<n. (3.12) 
J=l 

Here V is an nth-order polynomial in the derivatives U X.k 

whose nth-order terms take the form 
N 

L HAxx)U~.I· 
J=l 

Equating coefficients of U~.l on both sides of the integrability 
conditions A]JH = 0, we find A]JHp = 0 for all P. Thus, 
{Hp J is in (ordinary) Stiickel form. Furthermore, from (2.7) 
we see that there can be no cross terms in the potential V. 
This means that in (3.10) we can require Ha' ..... ON = 0 if more 
than one a I is nonzero. Since V must be a Stiickel multiplier 
with respect to the Stiickel form {HpJ we obtain 
(3.11). Q.E.D. 

Having brought up multiplicative separation of linear 

E. G. Kalnins and W. Miller, Jr. 2172 



                                                                                                                                    

eigenvalue equations we might as well mention the additive 
separation case. 

Proposition: The equation Lu = Eu, where 
N nJ 

Lu = L L HU,})(xK)uJ,j +H(o)u 
J= Ij= I 

and HJ=H(J, nJ) #0 admits regular additive separation in 
the coordinates x K if and only ifaxJH( J,}l = 0 for I #J and 
a"JH(O) = 0 for all 1. 

The proof is a straightforward application of the inte
grability conditions to H = Lulu. Although additive sepa
ration is not very interesting for Lu = Eu, in the case of 
homogeneous equations Lu = 0 nontrivial D-Stackel addi
tive separation occurs even in coordinate systems for which 
there is no multiplicative separation.3 
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We propose a method for finding the Lax pairs and rational solutions of integrable partial 
differential equations. That is, when an equation possesses the Painleve property, a Backlund 
transformation is defined in terms of an expansion about the singular manifold. This Backlund 
transformation obtains (1) a type of modified equation that is formulated in terms of Schwarz ian 
derivatives and (2) a Miura transformation from the modified to the original equation. By 
linearizing the (Ricati-type) Miura transformation the Lax pair is found. On the other hand, 
consideration of the (distinct) Backlund transformations of the modified equations provides a 
method for the iterative construction of rational solutions. This also obtains the Lax pairs for the 
modified equations. In this paper we apply this method to the Kadomtsev-Petviashvili equation 
and the Hirota-Satsuma equations. 

I. INTRODUCTION 

In Ref. 1 we have formulated a procedure for calculat
ing the Lax pair and rational solutions of partial differential 
equations that possess the Painleve property. That is, for an 
equation with the Painleve property, a Backlund transfor
mation is defined in terms of an expansion about the "singu
lar manifold." This Backlund transformation obtains (1) a 
type of "modified equation" that can be expressed in terms 
of Schwarzian derivatives and (2) a Miura transformation 
from the modified to the original equation. By linearizing the 
Ricati·type Miura transformation (and the modified equa
tions), the Lax pair is found. Then, further consideration of 
the Backlund transformations for the modified equations 
provides a method for the iterative construction of "ration· 
al" solutions, and finds the Lax pair for the modified equa
tions as well. 

We recall that the partial differential equation is said to 
possess the Painleve property2-7 when the solutions of the 
partial differential equation (pde) are "single valued" about 
the movable, singularity manifold and the singularity mani
fold is "noncharacteristic." To be precise, if the singularity 
manifold is determined by 

(1.1) 

and U = u(z I, ... ,zn ) is a solution of the pde, then we require 
that 

00 

U = tp a L Ujtpj, (1.2) 
j=O 

where uo#O, q; = q; (ZI, ... ,zn), and uj = Uj(ZI, ... ,zn) are ana
lytic functions of (Zj) in a neighborhood of the manifold (1.1) 
and a (the leading-order exponent) is a (negative) rational 
number. The requirement that the manifold (1.1) be non
characteristic (for the pde) insures that the expansion (1.2) 
will be well defined, in the sense of the Cauchy-Kovalevs
kaya theorem. 8 Substitution of(1.2) into the pde determines 
that valuers) of a, and defines the recursion relations for up 

8' Permanent address. 

j = 0,1,2, .... When the expansion (1.2) is well defined and 
contains the maximum number of arbitrary functions al
lowed at the "resonances,,,2.9,10 the pde is said to possess the 
Painleve property and is conjectured to be integrable. Infor
mally, the resonances are the values ofj for which the uj are 
not "fixed" by the recursion relations (i.e., are arbitrary). 

The Backlund transformation is defined by truncating 
the expansion (1.2) at the constant level term. That is, we set 

U = uoljJ - n + u1tp - n + 1 + ... + Un , (1.3) 

and find, from the recursion relations for uj and the condi
tion that uj vanish forj> n, a system of equations for (tp, uj , 

j = O,I, ... ,n), where un will satisfy the (original) pde. This 
system of equations will, in general (depending on the values 
of the resonances), be overdetermined. Upon solving this 
system, it is found, for those equations considered, the tp 
satisfies an equation formulated in terms of Schwarzian de
rivatives3

: 

{tp;xJ = ~ (tpxx) _ ~ (tpxx)2 
ax tpx 2 tpx 

(1.4) 

This equation, or system of equations, we regard as a type of 
modified equation. By the invariance of(1.4) under the Moe
bius group, 

q; = (atp + b )I(c¢' + d), {tp;X J = {¢';x) , (1.5) 

the "modified" equations allow the Backlund transforma
tion (1.5). 

The above procedure may now be reapplied to the 
"modified" (or equivalent) equations to find different forms 
of Backlund transformations. These Backlund transforma
tions may take the form of discrete symmetries,I,5,6 reduc
tions,1 or, as we shall see, more complicated structures. The 
group of Backlund transformations for the modified equa
tions may be conveniently employed to iteratively construct 
sequences of rational solutions. Also, by linearizing the 
Miura transformation from modified to original equation we 
propose to calculate the Lax pair. 1,6 

In this paper we consider the Kadomtsev-Petviashvili 
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(KP) equation and the Hirota-Satsuma equations. The 
modified equations are derived, their (modified) Backlund 
transformations are calculated, and the sequences of rational 
solutions are found. 

II. THE KADOMTSEV-PETVIASHVILI EQUATION 

The Kadomtsev-Petviashvili equation 

a 
Uyy +- (Ut + UUx + Uxxx ) =0 

ax 
(2.1) 

possesses the Painleve property.2 The expansion about the 
singular manifold ('I' = 0) is 

00 

U = 'I' -2 L ~tpj, (2.2) 
}=o 

with resonances at 

j = - 1,4,5,6. (2.3) 

Therefore, subject to the "noncharacteristic" condition 
(tpx #0 when 'I' = 0), Itp,U4,US,U6 J are arbitrary functions 
of (x,t ) in the expansion (2.2). 

The Backlund transformation2.3 for Eq. (2.1) is 

U = Uotp -2 + Ultp-I + U2 , (2.4) 

which obtains 

Uo = - 12tp;, UI = 12tpxx , 
2 2 

U2 + ~ + 4 tpxxx - 3 'I' "; + tp~ = 0 , (2.5) 
tpx ~ tpx tpx 

tpxt + tpxxxx + tpyy + tpxx U2 = 0 . 

We note that the system (2.5) is not overdetermined since 
(U4 , Us, U6 ) may vanish without restriction. From (2.4) and 
(2.5) it is found that 

a2 

U = 12 ax2 In 'I' + U2 , (2.6) 

2 2 

U
2 

+ ~ + 4 tpxxx - 3 'I' "; + 'I' ~ = 0, 
~ ~ tpx tpx 

(2.7) 

and 

a (tpy) a (tpt { J1tp;) 0 - - +- -+ tp;x +--2 = , 
ay tpx ax tpx 2 'I' x 

(2.8) 

where 

{tp;x J = ~ (tpxx) _ J.. (tpxx)2 
ax tpx 2 tpx 

(2.9) 

In terms of our procedure, Eq. (2.8) is the "modified" equa
tion formulated in terms of the Schwarzian derivative (2.9) 
and Eq. (2.7) is a "Miura" transformation from Eq. (2.8) to 
Eq. (2.1). Equation (2.8) is invariant under the Moebius 
group 

'I' = (a'" + b )I(e", + d) , (2.10) 

where ad - be#O. 
To investigate the group of Backlund transformations 

for Eq. (2.8) it is convenient to study various forms of "modi
fied" equations that are equivalent to (2.8). To begin we let 

V = tpxx/tpx, W = tpy/tpx, Z = tp,ltpx , (2.11) 

and find, from (2.8) and (2.11), the system of modified equa
tions 
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W +- Z+--+V __ V2 =0 a (W2 1) 
y ax 2 x 2 ' 

(2.12) 
a a 

Vy =-(Wx + VW), Vt =-(Zx + VZ), 
ax ax 

where 

Wt + WZx =Zy +ZWX • (2.13) 

Equations (2.12) and (2.13) are overdetermined. Equation 
(2.13) arises from the condition Vyt = Vty . This system al
lows singularities of the form 

V - Vo€" , W - WoE {3, Z - ZoEY , 

where 

(i) a = - 1, {3 = r = 0 , Vo = 0, - 2Ex ; 

(2.14) 

(2.15) 

(ii) a = {3 = r = - 1, Vo = Ex, W~ = 3~ ; 

(2.16) 

(iii) a = - 1, {3 = - 2, r = 0 , (2.17) 

Vo = 2Ex, Wo = Ey , Zo = 4Ex . 

For (2.16) and (2.17) the resonances are 

j = - 1,0,2,2,2,3 

and 

j = - 2, - 1,1,2,3,4, 

(2.18) 

(2.19) 

respectively. The expansion about the singularity (2.16) con
tains the arbitrary functions (E,Zo, V2, W2,Z2, { V3, W3 J). The 
Backlund transformation is 

V= VoE- 1 + VI' 

Z=ZoE- I +ZI' 

where 

(2.20) 

Vo = Ex, Wo = aEx ' a2 = 3, Zo = HEx, (2.21) 

(2.22) 

(2.23) 

a ( ( H 2) Ey Et ) Hy +- a Hx +- +2-H-2a- =0, 
ax 4 Ex Ex 

and 

a (EY) a (Et 1 (Ey)2) - - +- -+ {E;XJ +- - =0. (2.24) 
ay Ex ax Ex 2 Ex 

To simplify the above let 

V = Exx/Ex, W = Ey/Ex, Z = Et/Ex , 

and find 

(i) a(V+ Vd= w- WI' 

(ii) VI - V=H +a(W+ WI)' 

(iii) Z - ZI = Hx + (V + VdH, 

John Weiss 

(2.25) 

(2.26) 
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,where the auxiliary function H satisfies (2.23). Now (2.26) 
constitutes a somewhat awkward Backlund transformation 
(BT) for Eqs. (2.12) and (2.13), which can be simplified by 
identifying (2.12) with (2.8) through 

V = "'xxl",x' VI = qJxx1qJx , 

W = "'yl",x, WI = qJylqJx , 

Z = ""/",x, ZI = qJ,lqJx . 

(2.27) 

Thus, after simplification, eliminating H in Eq. (2.26) obtains 
theBT 

"'y = a"'xx + A "'x , "', = - 4",xxx - 2aA",xx + B",x , 

(2.28) 

where (""qJ) satisfy (2.8) and 

a2 = 3, A = qJylqJx + a(qJxxlqJx) ' 
(2.29) 

B = ~ _ 2 (qJxxx + a qJxy) . 
qJx qJx qJx 

That (""qJ) satisfy (2.8) is found from the conditions (qJy, 
= qJty' "'YI = "',y), respectively. Having found (2.28) we dis
continue consideration of the system (2.12) and instead con
sider the system in (A,B ) obtained from (2.28) by the condi

tion, "'y, = "',y, 
Ay +..!.... (aA x + J.. A 2 +B) = 0, ax 2 

(2.30) 
By + BAx - 4Axxx - 2aAAxx = aBxx + ABx + A, . 

Now, the expression 

il =B +A 2 = ~_ 2{qJ;X)- 2a..!.... (qJy) + (qJy)2 
qJx ax qJx qJx 

(2.31) 
is invariant under (2.10). This suggests defining the system in 
(A,il): 

A +- aA --+il =0, a ( A 2 ) 
y ax x 2 

(2.32) 

a ( A 3 ) ily -A, =- 4Axx +--2aAAx +ailx -Ail . ax 3 
Note that Eqs. (2.30) or (3.32) are "properly posed" in com
parison to Eqs. (2.12) in that they are not overdetermined 
and have the same order as Eq. (2.1) or Eq. (2.8). From the 
Miura transformation (2.7) and the above, 

2 2 
_ U = ~ + 4 qJxxx _ 3 qJ xx +!...L 
222 
~ ~ qJx qJx 

= B + 2aAx + A 2 = il + 2aAx . (2.33) 

By construction (2.28) constitute a Lax pair for Eqs. (2.30). 
The Lax pair for (2.32) is found by substituting for B in (2.30) 
using (2.31). 

Equations (2.32) allow two Backlund transformations: 

(i) A = 2a :!2.. + A I' {J = - 12 az2 In '" + il2 , 
'" ax 

(2.34) 
where 
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A I = !Ii - a "'xx, il2 = A + t/l; + 4 "'xxx _ 3 rp2xx , 

"'x'" x "'x f/l; "'x f/l; 

and", satisfies (2.8). 

(ii) A = - 2a(qJx1qJ) +A I , il = il2 , 

where qJ satisfies (2.8) and 

il = ~ - 2 {qJ;X) - 2a ..!.... (!!!..L) + (!!!..L)2 
qJx ax qJx qJx 

(2.35) 

(2.36) 

(2.37) 

Equations (2.35) reobtain the Lax pair for (2.32), where the 
identification (2.33), 

- U2 = ilz . (2.38) 

Equations (2.37) provide (2.29) and, with (2.35), obtain (2.28). 
Now consider the BT/Lax pair (2.28). We have the fol

lowing. 

Lemma: For fixed (A,B) let ("'1,"'2) be two linearly inde
pendent solutions ofEqs. (2.28), then 

'" = "'Ixl",lx (2.39) 
will satisfy Eqs. (2.28) with 

A~A', B~B', 

where (A,B ),(A ',B ') satisfy Eqs. (2.30) and 

A ' = A + 2a("'2xJ"'2x) , 

= B - 2aA - "'2xx A _ 12 "'lxxx . 
x "'lx "'2x 

Proof By direct calculation, which we omit. 

(2.40) 

To investigate the iterative application of the BT (2.28) 
we define a double sequence 

qJj + I.y = aqJj + I.xx + AjqJj + l.x ' 

(2.41) 

"'j + I.y = a"'j + I.xx + Aj"'j + I.x , 

qJj+ I., = - 4q'Jj+ I.xxx - 2aAjqJj+ I.xx + BjqJj+ I.x , 

"'H I., = - 4"'H l,xx - 2aAj"'j+ I,xx + Bj"'j+ I,x , 

where 

Aj = qJj,y +aqJj,xx =A
j

_
1 

+2aqJl,XX, 
qJj,x qJj,X qJj,X 

B
j 

= qJj,' - 2 (qJj,XX + a qJj,xx ) , 
qJj,x qJj,X qJl,x 

Bj =Bj _ 1 - 2aAj,x -AJ +AJ-I . 

Then, by the lemma, it is consistent to set 

qJj + I = "'l.x 1 qJj.x . 

Now let 

Ao=Bo=O 

or 

John Weiss 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 
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CPly = acplxx' CPI, = - 4cplxxx . (2.48) 

By (2.43) and (2.45), 

(2.49) 

and by (2.33), forj> 1, 

2 a j-I u2 · = -B. -2aA. -A. =2a- L AI' 
J 1 l,X 1 ax I = 1 

az j-I 

U -12-1 II (j-l) 2j- 2 n CPI,x , 
ax 1 

(2.50) 

az a2 
{ j-2.} ~ = 12-2 1ncpj + U2 = 12-

2 
In ifJj-lx II cp\-'.,-l) . 

ax 1 ax 'I' 

(2.51) 

In effect, to iterate (2.28) two solutions are "interpolated" to 
produce one new solution at each step. From N linearly inde
pendent solutions at one level, fixing one solution as the de
nominator in (2.46) produces N - 1 solutions of (2.41) and 
(2.42) at the next level. However, from the linearity of(2.48), 
it is possible to generate an infinity of linearly independent 
solutions. For instance, to find rational solutions, let 

and 
n 

cp!n) = L bjx j , 
j=O 

where 

(2.52) 

(2.53) 

bj _ 2, y = aj(j - 1 )bj , bj _ 3,' = - 4j(j - 1)(j - 2)bj , 
(2.54) 

abj_ I " = - 4jbj,y . 

This obtains 

cp? = 1, cpl = x, cP i = x 2 + 2ay, 

cP ~ = x 3 + 6ayx - 24t , 

cP j = X4 + 12ayx2 - 96tx + 36y2 , 

cP ~ = x 5 + 20ayx3 
- 960tx2 + 180y2x - 288ayt. 

Using the identity 

(2.55) 

An identical procedure can be applied to any linearly 
independent set of solutions of Eqs. (2.52). 

Finally, the KP equation (2.1) is invariant under the 
Gallilean transformation 

x' = x + ay + f3t, y' = y - 2at , 

t '= t, u' = U - a 2 
- f3 . 

(2.60) 

(2.61) 

Also, Eqs. (2.8), (2.30), and (2.32) are invariant under (2.60), 
where 

A---.A + a, B---.B - 2aA + f3, fJ---.fJ + a 2 + f3, (2.62) 

which is consistent with their definitions (2.29) and (2.31). 
Obviously, (2.60) preserves the form of the rational solutions 
and may be applied directly to, say, (2.55)-(2.59). 

III. THE HIROTA-SATSUMA EQUATIONS 

The Hirota-Satsuma equations 

u, = !uxxx + 3uux - 6wwx , w, = - Wxxx - 3uwx 
(3.1) 

have the Painleve property6 about singularities of the form 

'" '" 
(i) U = ifJ- 2 L ujifJj, W = ifJ- 1 L wjifJj, (3.2) 

j=O j=O 

with resonances 

j = - 1,0,1,4,5,6 ; 

'" '" (ii) U = ifJ-2 L ujifJj, W = ifJ- 2 L wjifJj, 
j=O j=O 

with resonances 

j = - 2, - 1,3,4,6,8 . 

The Backlund transformation about (3.2) is 

a2 
W 

U = 2 -2 In ifJ + U2 , W = _0 + WI , 
ax ifJ 

where, as found in Ref. 6, 

ifJ, + ifJxxx + 3ifJx U2 = 2ifJx l1 , 

Wo = ifJxH, 

ifJ,IifJx -HifJ;x} =i H2 + 11 , 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

jcp!) = cP (j - I) , (2.56) 11; = (A 2 + 112)H2, (3.10) 

(3.11) and letting 

CPI = cP~ , 
a first application of(2.41), (2.42), and (2.46) finds the appro
priate set of solutions at the next level. That is, 

(2.57) 
cP~ = cpi / cpj, cP~ = cpU cPj . 

Then, with 

CP2 = cP~ = l/cpj , (2.58) 

Eq. (2.46) obtains 

cP~ = 4cp: - cpi/ cP~, cP~ = 4cpi - 2cp: cPj / cP~ , 
(2.59) 

etc. 
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WI = - !wox/ifJx - MA 2 + 112)1/2, 

and 

a ( H3 3 ) H, +- Hxx +-+l1H+- [ifJ;x}H =0. 
ax 4 2 

(3.12) 

In Ref. 6 we have found the Lax pair for (3.1) by "lineariz
ing" the Miura transformation, (3.7) and (3.11), from the 
"modified equations" (3.9) and (3.12). To review, we let 

W = ifJxxiifJx , (3.13) 

and find the "modified" equations 

W =~~(W _ W
3 

, 2ax xx 2 
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Ht + ~ (Hxx + J... H 3 + {}H 
ax 4 

+ ~ (Wx - + W2)H ) = 0 , (3.15) 

where 

{}; = (A 2 + {}2)H2. 

The Miura transformations are 

- 2U2 = Wx + ! W 2 + ! H 2 - ~ {} , 

- Uu l = Hx + WH + ~ (A 2 + {}2)1/2. (3.16) 

Then letting 

W +H = 2(Ex/E), W -H = 2({3x/{3), 
(3.17) 

{} = A sinh a, a = 1n(E/{3) , 

obtains the Lax pair from (3.14H3.16) (see Ref. 6). 
We now proceed to study the Backlund transforma

tions of (3.14) and (3.15) when 

The relevant equations are 

t/lJt/lx - ! {t/l;x J = i H2 

and 

(;).~(~ n 
(3.18) 

(3.19) 

( 

~ xx _ ~3 + ~ (Hx + ~H)H ) 
X 3 2' (3.20) 

-H -~-~(w -~)H xx 4 2 x 2 

Equations (3.20) allow the following singularities: 

W- WcfP -I, H-HcfP -I, (3.21) 

(i) Wo = - 2rpx, Ho = 0 ; (3.22) 

(ii) Wo = 2q;x, Ho = 0 , ± 4({Jx ; (3.23) 

(iii) Wo = rpx, - 3rpx' H~ = rp; . (3.24) 

When 

j = - 1,1,2,3,3,4 (3.26) 

and the Backlund transformation is 

W = rpx/rp + WI' H = a(rpx/rp) + HI' (3.27) 
where 

(3.28) 

aHI + WI = - rpxx/rpx , (3.29) 

~ - J... {rp;xJ = ~a (Hlx - rpxx HI - aHi), 
rpx 2 2 rpx 

(3.30) 

and 

Hit + ~ (Hlxx + J...H~ + ~(WIX - J... Wi)HI) = O. & 422 

(3.31) 

We note that Eqs. (3.29H3.31) imply that (WI,HI) satisfy Eq. 
(3.20). Now, consistent with Eqs. (3.19) and (3.20), we define 
the variable t/l so that 

(3.32) 

(3.33) 

(3.34) 

Note that Eqs. (3.33) and (3.34) define an equation for t/l 
formulated in terms of the Schwarzian derivative. 

We find from (3.29) and (3.30), using (3.32) and (3.33), 
that 

~ = _ rpxxx + ~ rp~ _ ~ t/lxxx _ ~ rpxx t/lxx , 
rpx rpx 4 rp; 2 t/lx 2 rpx t/lx 

(3.35) 

A = J... t/lxxx + ~ rpxx t/lxx + ~ rp;x . 
t/lx 2 t/lx 2 rpx t/lx 4 rp; 

These equations may be written in the form 

t/lt = At/lxx + Bt/lx, t/lxxx = - At/lxx + (C - B )t/lx , 

(3.36) 

where 

A=rpxx/rpx, C= -rpJrpx-{rp;xJ, B=!A2_~C. 

(3.37) 
Wo=rpx' H~=rp;, 

the resonances are 
(3.25) The compatibility condition (t/ltxxx = t/lxxxt) of the linear 

equations, (3.36), for t/l obtains the equation for rp, 

a (rpt ) a ax rpx 2 

( 
~ (~+ {rp;xJ) - i. {rp;XJ2 ) 

2- -+ {rp;xJ =- 2 ' 

at rpx ax + 6{rp;XJ(;~ + {rp;xJ) - (;~ + {rp;xJ) 
(3.38) 

which is formulated in terms of the Schwarzian derivative. 
The equivalent condition (rptxxx = rpxxxt) obtains, from 
(3.35), that t/l satisfies Eqs. (3.33) and (3.34), which is distinct 
from (3.38). Therefore (3.35) defines a Backlund transforma
tion between two equations formulated in terms of the 
Schwarzian derivative. 

n=rpJrpx + {rp;xJ, W=rpxx/rpx, (3.39) 

the Miura transformation (3.16) is 

- 2u2 = Wlx + ! (Wi + Hi) = - ~ n , 

- 3awl = ~ a(HIx + WIHI) = n - ~(Wx -! W2). 

Letting (3.40) 
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Rather than consider Eqs. (3.38) and (3.34) separately 
we will define the new variables 

V = CPxxlcpx' W = rpxxlrpx , (3.41) 

and find from (3.35) the equations 

V = ~ 0 (~+ V) 0 { - V + l.. V 2 
- .l W 

t ax ax x 2 2 x 

_.l W2_.l wv-.l V 2} 
2 2 4 ' 

(3.42) 

Wt=~(~+W) 
ax ax 

o {~ (Wx - ~ W
2
) + ! (W + V)2} . 

These equations allow the following singularities: 

V-Voc l
, W-WoE-1 (3.43) 

[where for simplicity E = x + I(t), j is resonance] 

(i) Vo = 0, (()o = 1, j = - 1,1,2,3,3,4; 

(ii) Vo= -2, Wo= -1, j= -1,1,2,3,3,4; 

(iii) Vo = 4, 

(iv) Vo = 2, 

(v) Vo= 2, 

Wo = - 3, j = - 2, - 1,3,3,4,5 ; 

Wo = 2, j = - 5, - 1,3,3,4,8 ; 

Wo = - 2, j = - 1,1,2,3,3,4; 

(vi) Vo = 2 , Wo = - 3, j = - 2, - 1,3,3,4,5 ; 

(vii) Vo = - 2, Wo = 2, j = - 1, - 1,3,3,4,4; 

(viii) Vo = - 6 , Wo = 2, j = - 5, - 1,3,3,4,8 . 

(3.44) 

The Backlund transformations for (3.42) are of the form 

V= VoE- 1 + VI' W= WoE-I + WI' (3.45) 

For (i), (ii), and (v), with resonances at j = - 1,1,2,3,3,4, 
(3.45) obtains a system of five equations for the five un
knowns (E, Vo, Wo, VI' WI)' For (vii) there are six equations 
in five unknowns. We consider each in tum. 

For BTl, we have 

V= VI' W=ExIE+ WI' (3.46) 

where E satisfies (3.38), 

Ex = lIcpAI~ , 

~ = i2.. + ~ (CPxx) _ cp ;x _ rpxx CPxx 
Ex rpx ax cpx cp; rpx CPx ' 

(3.47) 

VI = CPxxlcpx, WI = rpxxlrpx , (3.48) 

and both (E,rp) and (cp,rp) satisfy (3.35). Note (3.47) defines a 
Backlund transformation for Eq. (3.35), 

(E,rp)++(cp,rp) , 

while (3.46) defines the BT 

(cp,rp)++(cp,rp') , 

where 

rp~ = Erpx' .!Ii.. = i2.. + Ex CPxx . 
rp~ rpx E CPx 

For BT2, we have 
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(3.49) 

(3.50) 

(3.51) 

V = - 2(ExIE) + VI' W = Ex IE + WI , 

where (E,rp) satisfy (3.35): 

VI = ExxlEx' WI = rpxxlrpx . 

Letting 

then 

cp' = - liE, 

rp~ = Erpx, rp; = Erpt - rpxExx - 2rpxxEx , 

where (cp',rp') satisfy (3.35). 
For BT5, we have 

V = 2(ExIE) + VI' W = - 2(ExIE) + WI' 

where 

VI = CPxxlcpx' WI = ExxlEx 

obtains (cp,E) satisfying (3.35) and, with (3.54), 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

cp~ = cCPx' cp; = cCPt + 4cpx EExx + 2CPxx EEx - 2cpx~ , 
(3.59) 

rp' = - liE. (3.60) 

Finally, for BT7, we have 

V= - 2(ExIE) + VI' W= 2(EJE) + WI' 

where 

VI = ExxlEx' WI = rpxxlrpx = - ExxlEx , 

E,IEx = HE;XJ . 
Note the restriction 

rpx = Ex-I. 

With (3.54), 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

cp' = - liE, rp~ = crpx = CIEx , (3.65) 

where (cp',rp') satisfy (3.63). As expected BT7 is a reduction of 
(3.35) (to the KdV equation4

) which is preserved by (3.61). 

The Backlund transformations, BTl, BT2, BT5, and 
BT7, form a group under composition that properly restricts 
to (3.35); that is, maps solutions into solutions. The following 

identities are easily verified [where (::) = BT(~)]: 

(i) BTl 0 BTl = BT2 0 BT2 = (1 0), o -1 

(ii) BT5 0 BT5 = (~ ~) = I , 

(iii) BTl 0 BT2 = BT2 0 BTl , 

(iv) BT7 0 BT7 = I, 

and subject to the restriction on the domain ofBT7, 

rpx = cp; I , 

we also have 

(v) BTl 0 BT2 0 BT7 = I . 

(3.66) 

(3.67) 

(3.68) 

Furthermore, BT5 preserves the KdV restriction, (3.67), 
while BTl and BT2 do not [preserve (3.67)]' The Backlund 
transformation 

K=BT5 0 BT7 (3.69) 
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generates a sequence of KdV solutions4 

(3.70) 

where (9'0,1/10)' (9'j,1/Ij) satisfy (3.63) and (1/Iox = 9' o~ I), (1/Ij,X 
= 9' ;,/). For instance, 

9'0 = 1/10 = x (3.71) 
obtains a sequence of rational KdV solutions.4 

In general, the (9'j,1/Ij) are distinct in that K n=l=I for any 
n > O. Note that 

K = BT5 0 BT7=1=K' = BT7 0 BT5. (3.72) 

Also, 

BTl 0 BT5 =1= BT5 0 BTl, BT2 0 BT5 =1= BT5 0 BT2 . 

(3.73) 

Application of the group of transfonnations generated 
by (BTl, BTI, BT5) to (3.70) produces a "lattice" of solutions 
of the Hirota-Satsuma equations (3.35). It can be shown that 
(BTl, BT2, BT5, BT7) map rational solutions into rational 
solutions [of(3.35)]. Therefore, from (3.70) and (3.71), ration
al solutions of the Hirota-Satsuma equations are fpund. 

Direct calculation obtains a few solutions: 

(3.77) 

( 

X
S

) ( 20) (4 (X
6

-30tX
3

-180t
2

)) 

(
9'0) = (x) BTl (:2) BT5 20 BT2 -7 BT5"9 X

S 
• 

1/10 \x - - - 2 - X3 + 30t - 15 2 --
x2 15 x3+30t 

(3.78) 

From (3.74) and (3.75), 

(BT5 0 BT2)2 0 (9'0) = (BT2 0 BT5f 0 (9'0), (3.79) 
1/10 1/10 

and, from (3.76) and (3.77), 

Do (BT5 0 BTW 0 (::) = (BTl 0 BT5)2 0 (::) , 

where 

and 

D=(16 0) 
o i ' 

(3.80) 

(3.81) 

(3.82) 

The periodicities (3.79) and (3.80) are not verified in gen

eral [for arbitrary (:~) ] . Determination of relationships of 

the fonn (3.79) and (3.80) when (~) belongs to the KdV se-
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quence, (3.70), may provide a method for "classifying" the 
Hirota-Satsuma solutions. 
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Geometrical interpretation of the solutions of the sine-Gordon equation 
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The sine-Gordon equation is known to possess solutions that correspond to solitons, that is, 
localized entities that maintain their shape after collisions, and have certain properties 
characteristic of elementary particles. Although the algebraic structure of these solutions is well 
known, their geometric interpretation as surfaces of constant negative curvature has not been 
previously illuminated. We discuss these surfaces herein. Curves drawn on these surfaces along 
the asymptotic directions at each point simulate solutions of the nonlinear wave equation 
rfJ= - rfJtt = sin rfJ· 

I. INTRODUCTION 

The sine-Gordon equation 

rfJxx - rfJtt = sin rfJ (1) 

has many applications in physics, such as pulse propagation 
in one-dimensional media in optics,l the theory of supercon
ductivity,2 and dislocation movement in metal crys4l!S.3 It 
was exhaustively studied about ten years ago, when it was 
discovered that it belongs to a special class of nonlinear wave 
equations possessing "soliton" solutions. As this name im
plies, the wave equation admits as solutions localized entities 
of unique form, which do not spread out as time passes, and 
moreover, pass through each other without being altered in 
shape (except for a phase shift) in a manner simulating that of 
one-dimensional billiard-ball collisions in classical mechan
ics. In 1976, it was pointed out by the author4 that the 
"breather" solitons, which the equation possesses, behave 
also like elementary particles and have an inherent time de
pendence which gives the soliton a dual nature; that is, the 
localized pulse is always accompanied by a plane wave when 
viewed in a moving frame. These solutions have the form 

rfJ = 4 tan-l(~ cos at), a2 + b 2 = 1, (2) 
a coshbx 

in the rest frame of the soliton. 
A Lorentz transformation of the above gives 

rfJ = 4 tan-l(~ cos a(rt - pyx)), r = (1 _ P2)-1/2. 

a cosh b(rx - Prt) 
(3) 

When two or more such entities collide, a phase shift appears 
in the plane wave factor, although the solitons are otherwise 
unaltered. Thus the particles possess an inherent dualism 
reminiscent of that of elementary particles in quantum the
ory. Moreover, when a soliton is trapped in a "well," i.e., 
boundary conditions are imposed at finite points in the one
dimensional medium, the particlelike aspect disappears as 
the soliton can form only a standing wave, periodic in space 
and time. (See Ref. 4, especially the part "Standing Wave 
Solutions," p. 1385.) Because of these properties ofthe solu
tions of the sine-Gordon equation, it has value as a model for 
teaching students about the dualism of wave and particle 
that is evident in quantum theory. 

a' Address starting September 1985: Department of Physics, St. Cloud State 
University, St. Cloud, Minnesota 56301. 

The sine-Gordon equation in the form 

a 2{J) az{J) . 
-- - -- = sm (J) cos (J) 

au2 av2 
(4) 

has been used in the study of surfaces of constant negative 
Gaussian curvature,S K, which may be taken as - 1. The 
above equation arises when one writes the metric in the 
"asymptotic form" natural for constant negative curvature 
surfaces: 

ds2 = cos2 
(J) du 2 + sin2 

(J) dv2
, (5) 

where (u,v) are coordinates such that u = const, v = const 
represent the lines of principal curvature of the surface, and 
(J) is the angle between the u axis and the asymptotic direc
tion on the surface. The asymptotic direction is that direc
tion in which the normal curvature is zero. The stipulation 
that the Gaussian curvature be - 1 leads immediately to Eq. 
(4). Mathematicians have usually taken (4) as the canonical 
form, while physicists have used (1). It is evident that if 
rfJ = 2w these equations are identical. 

The algebraic structure of the many-soliton solutions of 
(1) has been presented in various forms, by various authors.6 

The particular representation used by Hirota is in some ways 
the most convenient. From his equations one can write down 
explicit formulas for the one-, two-, three-, etc. soliton solu
tions of (1). (I am referring to the breather solitons, which in 
Hirota's terms, correspond to his N = 2,4,6, etc. cases.) It 
will be shown below that the two-breather solution behaves, 
at t~ ~, as a single soliton, that is, as if we are in the rest 
frame of one of the solitons and we are observing the second 
soliton approach, pass by, and recede as t varies from - ~ 

to + ~. The solitons have equal "mass," so no recoil is 
evident, and only a phase shift in the particle's time-oscilla
tory factor cos(bt ) indicates passage of the other soliton. 

The geometrical nature ofthe surfaces, imbedded in or
dinary three-dimensional space, which corresponds to these 
solutions of (1) or, if you wish, (4), seems not to have been 
elucidated. [Although it is possible that a visualization of the 
surface corresponding to a single breather may have been 
presented in the older mathematical literature during the 
past century, it is in any case not widely known to physicists. 
The many-soliton surface probably was not even considered 
by mathematicians, since the existence of these solutions of 
(4) was not known until 1973.] 

The purpose of this paper is to give explicit formulas for 
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imbedding the single-breather soliton in three-space so as to 
visualize why such entities exist as solutions of the sine
Gordon equation and how a many-soliton solution can be 
visualized as generated by bending the single-soliton surface. 
We will show why the sine-Gordon equation possesses the 
many-soliton nature, and why it is probably unique in differ
ential geometry in this regard. 

II. IMBEDDING THE SINGLE-SOLITON BREATHER IN 
EUCLIDEAN THREE-SPACE 

We will use the older notation of differential geometry 
with (u,v) as the curvature coordinates on a surface of con
stant negative curvature, with the understanding that in 
modem soliton theory the crucial equation 

a 2tV ~tV • 
-- - -- = sm tV cos tV (4) 
au2 av2 

has the interpretation of a nonlinear wave equation, with 
(u,v) being space and time variables (x,t ), and the asymptotic 
angle tV is to be interpreted as the dependent variable with 
physical meaning. Certain parameters of the solutions are 
designated by (a,h,k) in Darboux' treatise and in modem 
soliton theory are denoted by (K,tV), with the stipulation 
~ + tV2 = 1 imposed. 

The method described by Darboux and attributed to 
Enneper is too lengthy to be described in detail here.7 The 
outcome of their reasoning is the conclusion that spherical 
surfaces cutting the K = - 1 surface at 90· angles must have 
their centers along a straight line, which is designated as the 
X axis. This preferred axis would for the ordinary pseudo
sphere (a tractrix of revolution) be simply an axis of rota
tional symmetry. Darboux does not concern himself with 
this (degenerate) case; nor shall we, since it represents a soli
ton tV = 2 tan -I e - U , that is, time independent in its rest 
frame. Other time-independent (i.e., v-independent) solu
tions involving elliptic integrals are also known and not dealt 
with here (for a pictorial representation of these axially sym
metric surfaces, the reader is referred to Eisenhart8

). 

Darboux then sets up a cylindrical coordinate system 
(X,A , t,b) in ordinary three-space in which the non-axially 
symmetric K = - 1 surfaces are to be imbedded. We cite his 
findings as follows: the imbedding coordinates are 

X= {Z cos tV - f rdU} :2' (6) 

A = [(1 +zr)1/2/a2] sin tV, (7) 

and 

t,b=a2f~, a2+b 2= 1, (8) 
1 +zr 

where tV, of course, is a solution ofthe equation 

a 2tV a2tV . -- - -- = sm tV cos tV, (4) 
au2 av2 

and z(u) and ZI(V) are solutions of the auxiliary equations 

To obtain the usual breather soliton in my present nota
tion one must rewrite, in (9) and (10), the parameter a as 
( - 2a2

), and 2h as a4
• Then these equations become simply 

Z,2 = Z4 - 2a2r + a4
, whereby z = a tanh au, (11) 

and 

(12) 

SOZI =btanbv. 

Darboux' results indicate only that a solution of the 
equation tVuu - tVvv = sin tV cos tV may be represented by 

cos tV = (z' - ziJ/(r - ~ - 1), (13) 

where z and Zl satisfy (9) and (10). In the special case dealt 
with here, it is easy to show that (11) and (12) lead to the 
expression for tV: 

tV = 2 tan-I((a/b) cos bv/cosh au) (14) 

with a2 + b 2 = 1. 
This is recognizable as the usual breather soliton in 

modem work on the sine-Gordon equation.9 Inserting (14) 
into (6H8) yields 

X = 2z { b 2 + zr } _ u (15) 
a2 1 +~ -r ' 
(1 +zr)1/2 2(b 2+zr)1/2(a2_r)1/2 

A = (16) 
a2 1 +zr -r 

t,b = v - tan-I(b tan bv), (17) 

where z = a tanh au and z I = b tan bv. 
A profile of the surface can be obtained by setting t,b 

equal to some constant value, say t,b = O. Then v = 0 and 
Zl = o also. 

The t,b = 0 profile is then given as 

A = [2b /(1 - r)] [(a2 - r)1/2/a2], (18a) 

(18b) 

Consider the case a = b = 11'\12 = 0.707. Then the t,b = 0 
profile is 

A=2(1-2r)1/2/(1-r), 

X = [2z/(1 - r)] - '\12 tanh- I('\I2z), 

(18c) 

(18d) 

o < Z < 11'\12. The asymptotic angle tV on the t,b = 0 section is 

tV = ± 2 tan- l (l _ 2r)1/2. 

The profile is a self-intersecting curve, symmetric about 
X = 0 and tending toward the X axis, as X - ± 00. 

The quantity tV, which in differential geometry is an 
asymptotic direction on a surface, plays the role of the wave 
function in the nonlinear sine-Gordon wave equation. Thus, 
Fig. 1 can be construed, in a certain sense, as a "snapshot" of 
the wave taken at time t = O. The wave function goes from 0 
to 11'/2 and back to 0 as 

z = a tanh au = (1I'\I2)tanh(u/v'2) 

and 

(9) varies (u plays the role of distance x). We wish to emphasize 
that a snapshot of a solution of a wave equation normally 
displays the wave function (J versus distance x. If one follows 

(10) the behavior of tV along the looped curve in Fig. 1, the depen-
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x 

w-O 

FIG. 1. Profile", = 0 of a = b = l/v'l surface. 

dence of (i) on u is displayed implicitly. 
It is evident that a surface having two parts is represent

ed by Eq. (15HI7). Let us pursue this further by looking at 
the cross section X = O. The polar equations expressing A. 
and", parametrically in terms of ZI (rather than v) are. for 
a = b = 1Iv'1. with Z taken as zero. 

A. = 2(1 + ~)1/2/(1 + ~)1/2 (19a) 

and 

I( 1 v ) '" = v - tan- V2 tan v'1 

= v'1 tan- I (v'1zJ!- tan- I ZI' (19b) 

where Z I may take on any value from 0 to 00. 

However. the equation 

2 { b 2 + ~} 1 -I( Z ) 0 X::;:"2z --tanh - = • 
a 1+~-zZ a a 

with a2 = b 2 = ! has a second solution besides the obvious 
Z = 0 solution. Again taking Z I as a parameter we have 

4z{ (~ + ~ )/( 1 + ~ - zZ) J - v'1 tanh -1(v'1 z) = O. (20a) 

A. = 4(1 + ~)1/21! + ~)1/2(! _ zZ)1/2/(1 + ~ - zZ). (20b) 

'" = v'1 tan -1(v'1 ZI) - tan-I ZI' (2Oc) 

Again. ZI may take on any value from 0 to 00. 

A sketch of the X = 0 cross section with a2 = b 2 = ! is 
given in Fig. 2. 

The figure suggests a five-pointed star or a five-lobed 
rose depending on whether one considers ABCDE··· or 
PQRST ... (it is evident that the figure shows only a portion 
of the non-axially symmetric surface; it actually continues 
around the X axis. which is perpendicular to the paper. an 
infinite number of times). 
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FIG. 2. Cross section X = 0 of a = b = 1Iv1 surface. 

For certain choices of b. the star/rose closes on itself. 
and the asymptotic angle (i) has the same values when", at
tains the same values (mod 21T). For instance. if b = ~. ~. ;.1. 
.... the figure has threefold. fourfold. fivefold. and sixfold 
symmetry (reminiscent of ring-shaped organic compounds). 
However. only the "even" values b = ~. a .... yield strict peri
odicity in (i). as a function of angle "'; that is. if one follows an 
asymptotic curve around the X axis as the curve wends its 
way over the surface. the angle (i) will be reversed in sign if 
b = 3' or ;. when", = 21T. 

Zeros of Hirota's f and g functions give rise to tan((i)/ 
2) = o. 00 so that (i) = 0.1T. This condition implies that the 
asymptotic curves lie parallel to v = const curves; this in 
turn implies a cuspidal edge in the surface. These can be 
inferred also- from Fig. 2. As U-+ ± 00. the asymptotic 
curves on the inner part of the surface encompassing the X 
axis spiral around this axis in such a way that {t)-+Q. The 
values U-+ ± 00 yield singular points analogous to those of 
the pseudosphere. The X value tends to infinity also at these 
points, as is evident from (18d). 

As mentioned above. the surface whose asymptotic di
rections satisfy (14) has two parts. one part bounded by 
ABCDE· .. and PQRST .. '. which bears a resemblance to a 
chain of "apple cores" joined end-to-end along the cusps QB. 
SD. and so on around the X axis; and the other part. bounded 
on the outside by the rose curve PQRST ...• and which ex
tends all along the X axis out to infinity. tapered to a peak at 
X = ± 00 so that the Gaussian curvature is everywhere 
-1. 

For arbitrary a.b the", = O. v = 0, ZI = 0 profile is 

(i) = 2 tan-I((a/b )lIcosh au) (21) 

or 
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(22) 

This is a looped curve similar to that shown in Fig. 1. To 
reiterate, the 1/J = const profile reflects the spatial depen
dence of the soliton. The X = 0 cross section brings out the 
time dependence, that is, the v dependence of 0), as it varies 
from 0 at the cuspidal edges, to O)max or - O)max at the inner
most points of the star curve. It should be emphasized that 
although the v dependence is periodic in (14), the surface 
representing this soliton intersects itself as it whorls around 
the X axis [except for certain special choices of (a,b) which 
cause it to close]. Thus, it is convenient to visualize the sur
face as extending from 1/J = - 00 to 1/J = + 00, around the X 
axis. (Mathematically this is certainly pennissible, although 
an engineer accustomed to dealing with actual surfaces 
might object to a self-intersecting surface of many sheets.) 

It should be pointed out that this imbedding of the sur
face of constant negative Gaussian curvature - 1 in ordi
nary Euclidean three-space can be explicitly verified. One 
starts with the Euclidean metric in cylindrical coordinates 

dr =dX2 +d)" 2 +)., 2d~, (23) 

substitutes the expressions (6), (7), and (8) for X, )." 1/J, and 
finds that a metric involving u and v is obtained of the fonn 

ds2 = cos2 
0) du2 + sin20) dv2, 

where O)(u,v) is a solution (14) of the sine-Gordon 
equation (!). The algebra involved is lengthy, but straightfor
ward, and gives one confidence that the imbedding is really 
correct. 

III. MANY-SOLITON SOLUTIONS 

The fonnulas giving 0) as a function of (u,v) allow one to 
describe the surface in a natural manner. Every solution of 
the equation 

a 20) a20) . 
-- - -- = sm 0) cos 0) (4) au2 av2 

describes a surface of constant negative curvature that can be 
imbedded in ordinary three-space. 

Geometrically, it seems plausible that bending the sin
gle-soliton surface (14) will yield another type of solution. 
Gauss pointed out that bending a surface does not change its 
intrinsic curvature K. In the present context, this means that 
if the Gaussian curvature was originally .:.-. 1, it is still - 1 
after bending. (For the reader unfamiliar with the concepts 
of differential geometry, this means that although the princi
pal curvatures KI and K2 change, their product 
K = KIK2 = - 1 does not.) 

In order to shed light on this question, we examine the 
solution of (4) that represents a two-soliton solution. We 
mean here two-breather solutions, each breather soliton pos
sessing the dualism inherent in solutions of the type (14). 
Following the prescription given by Hirota,IO one writes 

0) = 2 tan -I(g/f). (24) 

The auxiliary functionsg andfused by Hirota satisfy certain 
(nonlinear) partial differential equations whose solutions can 
be cast into a standard fonn consisting of certain sums over 
products of purely exponential functions involving certain 
parameters, designated by the symbols (K,OJ). These constant 
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parameters eventually tum out to be identical with param
eters designated as (a,b ) in our discussion above involving the 
differential-geometric interpretation of the soliton solutions. 

To obtain breather solitons, the exponentials must be 
combined pairwise; the procedure is straightforward, but 
complicated algebraically. The two-breather solution (Hiro
ta's N = 4 case) is (using a,b instead of K,O)) 

f = - b'a cosh(bt) cosh(a'x) 

+ iba' cos(b't) cosh(ax), (25) 

g = a'a 1).,1 cosh(bt) cos(b 't) + j).,2 sinh(bt) sin(b't)} 

- ib'b Ipi cosh(ax)cosh(a'x) + P2 sinh(a'x)sinh(ax)} , 
(26) 

with the constraints a2 + b 2 = 1, a,2 - b ,2 = 1. 

The constants ).,1' ).,2 and PI' P2 depend on the a's and 
b 's; specifically, 

).,1 = (b'2 - b 2)1(b,2 + b 2), 

).,2 = 2ib'b /(b,2 + b 2). 

(27a) 

(27b) 

Analogous expressions can be written for PI andp2' One 
finds, as t_ + 00, that the ratio (g/f) simplifies to 

tan!!!" = ¥. _ - a' sin(b't - 6) . 
2 f b' cosh(a'x) ' 

(28a) 

and as t_ - 00, 

tan!!!" = ¥. _ - a' sin(b't + 6) 
2 f b' cosh(a'x)' 

(28b) 

The phase shift is found to be 

6 = tan- l ((b,2 - b 2)/2b'b). (29) 

It seems very difficult to write down explicit fonnulas 
giving the X,)." and 1/J coordinates of the surface described by 

tan(0)/2) = g/f, (30) 

with the g,f given by complicated many-soliton expressions 
such as (25) and (26). Even if the methods used by Darboux or 
Enneper were feasible, it seems likely that physical interpre
tation would be awkward. 

Instead, we note from the asymptotic behavior at 
t_ ± 00 (in geometrical tenns, v- ± 00) that the surface is 
identical with the star/rose surface discussed in Sec. II. To 
visualize the surface, we imagine it to be an infinitely many
sheeted surface whose asymptotic angle 0) has the fonns 
(28a) and (28b) when the v coordinate approaches ± 00. For 
values of v which are not large, the periodic behavior is lost, 
and a perturbation of the surface produces nonperiodicity in 
the v coordinate. Interpreting v as a timelike coordinate t, 
this perturbation represents in soliton theory the distur
bance produced as a second soliton approaches, passes 
through, and recedes. The soliton seen at t_ ± 00 is the 
soliton at rest in the frame of the observer. It suffers a phase 
shift when the moving soliton "collides" with it. (There is no 
recoil.) 

The single-soliton surface described by (14) is capable of 
being defonned, that is, bent into the double-soliton surface 
implied by (30) using Hirota's f and g fonnulas. By the 
theorem of Gauss-the theorema egregium-the curvature 
K = K IK 2 = - 1 remains invariant under bending. The sin-
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gle-soliton surface, under bending, deforms in a manner 
analogous to that of an accordion; the perturbation intro
duced into the many-sheeted surface (14) generates the two
soliton surface described by (25), (26), and (30), which, of 
course, is again a surface of Gaussian curvature - 1. 

Thus, it becomes clearly understandable why a simple 
solution of 

a 2{J) a2{J) • 
-- - -- = SIn (J) cos (J) (4) 
au2 av2 

can generate more complex solutions under deformation, 
that is, bending. When the above equation is interpreted as a 
nonlinear wave equation 

aV)_~¢=sin¢, (1) 
ax2 at 2 

¢ = 2w, this geometrical property (invariance of Gaussian 
curvature) finds algebraic expression in the many-soliton 
formulas of Hirota, Ablowitz, Caudrey, and Takhadzhyan. 

IV. DISCUSSION 

One might ask whether there are other types of surfaces 
dealt with in differential geometry that have properties simi
lar to the surfaces of constant negative curvature, in that 
their defining equations might have solutions that display 
soliton behavior. Minimal surfaces have average curvature 
~(Kl + K2) equal to zero, but their Gaussian curvature varies 
from point to point on the surface. The asymptotic angle (J) 

always equals 1T/4 (tan (J) = 1) everywhere on a minimal sur
face. It is natural to use a metric of the form 

(31) 

where q is a function of both u and v, in general. It can be 
shown that most, if not all, minimal surfaces satisfy the equa
tion 

(32) 

The minus sign in the exponential on the right is crucial. This 
equation is the natural analog, for minimal surfaces, of Eq. 
(4), which represents the defining equation of KlK2 = - 1 
surfaces. One obvious difference between (4) and (32) is that 
the latter is not a wave equation. Furthermore, inspection of 
various minimal surfaces such as catenoids or Enneper's 
minimal surface reveals that, although they have negative 
curvature everywhere (as they must, since an asymptotic di
rection does not exist wherever the Gaussian curvature is 
positive), they do not have the unique attributes under a 
bending deformation required for generating entities that 
could be construed as solitons, in any sense of the word. 

Therefore, although minimal surfaces are in certain 
ways complementary to constant (negative) curvature sur
faces, they are, in another sense fundamentally and intrinsi
cally different. Other negative curvature surfaces, such as 
ruled surfaces, an example of which is the hyperboloid of a 
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one-sheet, do not appear to have the necessary attributes. 
They can be bent, but nothing simple and mathematically 
beautiful happens. We conclude that the sin~ordon equa
tion is unique. 

V. CONCLUSION 

The rationale for this study of the sin~ordon equation 
is that it provides, in one dimension, a model for understand
ing the nature and behavior of elementary particles. The 
wave function, which in differential geometry is an angle 
representing the asymptotic direction at a point on a surface, 
is related to the arc tangent of a product of two factors. In the 
rest frame, one factor, sech(ax), gives the wave its localiza
tion in space; the other factor, cos(bt), gives the wave an 
inherent time dependence. (This is the origin of the phrase 
"breather soliton.") As mentioned in the Introduction, a 
Lorentz transformation can always be carried out since the 
sin~ordon equation is invariant under such a transforma
tion of the .variables (x,t). The effect of this is to give a Lor
entz contraction to the spatial factor, and to convert the time 
factor to the form of a "plane wave." The dualism appears, 
almost magically, when the soliton is seen in a moving frame. 
Second, these disturbances behave exactly like particles 
moving in a one-dimensional space in so far as they always 
retain their original shape after colliding. This is the canoni
cal property of any sort of soliton. Third, previous work has 
shown that sin~ordon solitons form purely standing
wave type entities when trapped in a one-dimensional enclo
sure. Their sharp, spatial localization disappears when 
boundary conditions are imposed. 

The behavior of the asymptotic angle (J) in terms of its 
functional dependence on curvature coordinates (u,v) pro
vides a simulation of the solutions of the sin~ordon wave 
equation. The differential geometry of surfaces of constant 
negative curvaturell is worth studying for this reason. 
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We develop the harmonic analysis for spinor functions which are defined by the matrix elements 
of the unitary irreducible representations ofE(3) with the representation space on the translation 
subgroup. 

I. INTRODUCTION 

This paper is a sequel to our previous paper I (called 
hereafter Paper I). Paper I treated the harmonic analysis on 
the (simply connected) twofold universal covering group of 
the Euclidean group in three-space, proving the explicit 
Plancherel formula. In this paper this covering group is, for 
the sake of simplicity, named the Euclidean group in three
space (E(3 I). Miller introduced spinor functions through the 
group representations ofE(3). However, no h~onic analy
sis on spinor functions, to the best of our knowledge, has 
been attempted. This paper fills this gap. 

Spinor functions are the vector-valued, generalized 
spherical Bessel functions and they are solutions3 of the 
Helmholtz, or reduced wave, equation. Aside from the im
portance of spinor functions, there are at least two obvious 
motivations of this paper in contemporary physics. The har
monic expansion is an effective tool to study high- (larger 
than four-) dimensional theories, i.e., Kaluza-Klein and su
pergravity theories.4 The harmonic analysis also plays a ma
jor role in the formalisms of the stochastic quantum mechan
ics and stochastic quantum field theory.s-7 

Section II contains the resume of the group E(3). Section 
III outlines the construction of unitary irreducible represen
tations (UIR's) of E(3). Section IV presents the necessary 

I 

III. THE UIR OF E(3) 

i(02 + b 2 _ a2 - b 2)12 

(02 + b 2 + a2 + b 2)/2 

i( -ob+ab) 

The dual group R 3 of R 3 consists of the unitary char-
A 

acters X P:a ~ e1p
• ° for ae R 3. We identify R 3 with the mo-

mentum space. Then the group SU(2) acts on P 3 as well as on 
R 3. The SU(2) orbits of a given pep 3 are the spheres 
{Jp = {pe p3:11P1l =p>Oj. Thus we can characterize the 
partition of P 3 into orbits by choosing the following set K 
representing the standard momentum p: 

p3 = U {J rp)==. U {Jp' (5) 
peK p>O 

where K = {P = (0,0.,0): p>O j. 
Hence there are only two stability groups (little groups) 

Gp = SU(2), for pe flo, 

Gp = SO(2), for pe{Jp IP>O), (6) 

where SO(2) is the twofold covering group of SO(2), the 

summary of spinor functions by the matrix elements of 
UIR's of E(3). Section V deals with the harmonic analysis 
involving spinor functions, deriving, among others, the gen
eralized Parseval's formula. 

II. THE GROUP E(3) 

The group E(3) is the semidirect product space 
R 3 X "SU(2) relative to the homomorphism 7J ofSU(2) into 
the group of automorphisms of R 3. For simplification we 
skip the bold-faced notation of vectors. The matrices 
± Ae SU(2) determine the same rotation 7J(A ) given by 

A (r. O')A -I = (7J(A )r). 0', (1) 

where 0' stands for the Pauli matrices 

eF
l = (~ ~), q2 = (~ 0- '). ~ = (~ 0_.). (2) 

The multiplication law for E(3) is 

{rl,Ad {r2,A2j = {rl + 7J(A 1)r2,AIA2j· 

If 

A =(~b :). 
with ao + bb = 1, then 7J(A ) has the expression 

I 

ob +ab ) 
i( -ob+!b) . 

aa-bb 

(3) 

(4) 

group of rotations around the z axis, and it is isomorphic to 
the multiplicative group of complex numbers eir/t12, 
O<tI<41r. Thus its UIR's are one dimensional and of the 
form 

([
ei

r/t
/2 0]) r s 

0 e-ir/t/2 = eisr/t, (7) 

where 2s = O. ± 1. ± 2 ..... 
The UIR's associated with the trivial orbit {Jo = (O j are 

of no interest in the present work. The UIR's 1P,s) of E(3) 
associated with an orbit (J pIP> 0) are given by 

[u p,s(a,A )/Hp) = eiP'O(r S t SU(2))(p,A )/(A -Ip ). 
(8) 

where t denotes "induced." 
The carrier space of 1P,s) is HIP,s). the Hilbert space of 

Lebesgue square-integrable functions on the manifolds flp 

with the inner product 
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(j,g) = i f(p) g(p)dw(p), f,geHIp,s), 
np 

(9) 

where dw(p) = sin 0 dO d<p for 

p = (p sin 0 cos <p,p sin 0 sin <p, P cos O)e IIp. 

Further details are given in Ref. 8. 

IV. SPINOR FUNCTIONS 

We first determine the matrix elements of the operator 
U p,s(r,A) with respect to the orthonormal basis {h ::'(O,<p)} 
of H(p,s). For fixed u the functions {h ::'(O,<p )},m 
= - u, - u + 1, ... , + u, form a canonical basis for the irre

ducible representations D (u) of SU(2). In the following we 
write U(r,A) instead of U p,S(r,A). Since U(r,A) 
= U (r,!) U (O,A ), it suffices to calculate the matrix elements of 
U(r,!) and U(O,A ), respectively. The latter are nothing but 
those ofSU(2) 

(h ~,U(O,A)h::') = T~m(A). ~u.u. (10) 

By definition, the matrix elements of U (r,!) are8 

(h ~,U(r,!)h::') 

=[v,nl p,slu,m](r) 

=..J4ii ufu ;_/[(2U+ 1)(2/+ 1)]112 C(/;O;u,slv,s) 
/=Iu-ul (2v+ 1) 

XC(/,n - m;u,mlv,n)j/(pr) Y7 m(Or,<pr), (11) 

where C ( . ; . I • ) are the Clebsch-Gordan coefficients of 
SU(2) and thej/(pr) are spherical Bessel functions. The 

J~::(pr) = IOU - U[v,nlp,slu,m]((O,O,r)) 

are called generalized spherical Bessel functions.9 In parti
cular,j~~(pr) = j/(pr). 

The [v,nl p,slu,m](r) for fixed v are called v-spinor func
tions, which have 2v + 1 components 

t:,:,~(r) = ([v,nl p,slu,m ](r)), 

n = - v, - v + 1, ... , + v, (12) 

for some u and m. They are solutions3 ofthe Helmholtz, or 
reduced wave, equation. In the following we often call them 
spinor functions instead of v-spinor functions. 

By the group property U (r,A ) = U (r,l) . U (O,A ) 
= U(O,A)· UtA -lr ,1)weobtainthematrixelementsofE(3) 

{v,nl p,slu,m j(r,A) 
U 

=(h~,U(r,A)h::') = L [v,nlp,slu,m'](r)T::'·.m(A) 
m'= -u 

r d 3r r dA {v,nl p,slu,m }(r,A ) {v',n'l p' ,s'lu',m'}(r,A ) 
JR' JSU(2) 

= (W/p2). ~(p - p'). ~s.s' • ~u.u· . ~u.u· . ~m.m· . ~n.n·· 

(14) 

It is well known that the matrix elements T::'.n(A) defined 
for 2u = 0,1,2, ... ; m,n = - u, - u + 1, ... , + u satisfy the 
orthogonality relations 

i T~.m(A). T~~m·(A IdA 
SU(2) 

(15) 

where dA is the normalized Haar measure on SU(2). Making 
use of(13H15), we can easily obtain 

L,d
3
r
n
t_u [v,nlp,slu,m](r) 

X [v,nl p' ,s'I u',m'](r) 

= (W/p2). ~ (p - p'). ~s.s • • ~u.u· . ~m.m·' (16) 

V. HARMONIC ANALYSIS OF SPINOR FUNCTIONS 

We first construct the Hilbert space Hu-L ~(R 3), the 
elements of which are vector-valued functions 

u 

tft(r) = = L IJin(r). en' (17) 
n= -v 

where en is the column vector with a one in row n and zeros 
everywhere else. The vector tft(r)e Hu if 

L, IJit(r)~(r)d3r = L, nt-u IlJin(rW d
3
r< 00, (18) 

where the superscript t denotes "transposed" and the bar on 
IJi (r) signifies its complex conjugate. The inner product is 

(CP,IJi)= r CPt(r)~(r)d3r 
JR' 

= L'nt_uCPn(r)~n(r)d3r. (19) 

We remark that Hu is the ordinary state space of a single 
nonrelativistic particle with spin v. 

We shall establish a generalized Fourier transform of 
elements in Hu' We define the unitary (left) regular represen
tation VofE(3) in Hu by 

U 

= L T~.n· [v,n'l pslu,m](A -Ir). (13) [U(a,A)1Ji ](r) = TU(A )1Ji(A -I(r - a)), (20) 
n'= -v 

Equation (13) shows X ~f~~~ (r) transforms like a spinor field of 
weight v; in fact, under the action ofSU(2) it transforms like 
the eigenvector h::' of the irreducible representation D (u). 
Furthermore, the components of X ~f;;~~ (r) satisfy the Helm
holtz, or reduced wave, equation. 

The matrix elements {v,nl p,slu,m j(r,A ) satisfy the orth
ogonality relations 
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or in components 
u 

[U(a,A)lJim](r)= L T::'n(A)lJin(A-I(r-a)). (21) 
n= -v 

We apply the Fourier transform Y to IJin(r) 

(y. IJin)(p)=Wn(p) = ~ r eip.rlJin(r)d3r. 
(21T) JR' 

(22) 

The inverse Fourier transform Y- I is given by 
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(Y- 1 • ~n)(r)=Cfln(r)~ r e-ir'P~n(p)d3p. (23) 
(217") Jp' 

Then obviously we have 

r ICfln(rWd 3r= r l~n(PWd3p. (24) 
JR' Jp' 

Ihe regular representation U in (20) induces in 
Hv(R 3)~v(P3) 

A A . A 

[U(a,A )CfI 1(P) = eta 'PTV(A )CfI(A -lp), (25) 

or in components 
v 

[U(a,A )~m ](p) = eia .p L T:;'n(A )Cfln(A -lp). (26) 
n= -v 

A A 

Clearly U and U are unitarily equivalent via U = y-l U y. 
Similarly, as in Paper I, we set 
A A 

CflP(p) = CfI(p), for pE np' (27) 
Then we have 

A A V A 

[U(a,A )CfI~ ](p) = eia .p L T:;'n(A )CfI~(A -lp). (28) 
n= -v 

We also have 

r l~n(PWd3P=i"" p2dpr 1~~(pWdw(p), (29) 
Jp' 0 J~ 

where dw(p) is the invariant Haar measure of np' Making 
use of (24) and (29), we can derive 

i,Cfl
t
(r)CfI(r)d

3
r= L"" P2dPnt_vLpl~~(PWdW(P)' (30) 

We now turn to v-spinor functions. Equations (16) and (19) 
lead to 

< 
(p,.) (p,.) - {: • {: X v;u,m ,X Vju/,m' - U u.,,· Urn,m'· (31) 

Exploiting (31) we ca~ define a generalized Fourier trans
form for functions in H v (P 3

) 

I "" " 
X L L L ~\!,':.~. t:.:.~(p), (32) 

s= -/2,,=Om=-u 

or in components 
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I 00 U A 

X.f:_12[;O m~-" CfI~;':!,m • X~;':!,m(P)' (33) 

where I is the smaller of u and v, and 

~(p,.) = <~ (p,.) 
v,n;u,m v,n ,X v,n;",m . 

From (33) we can easily derive 

r l~v,n(PW d 3p Jp' 

= L"" P2dP'~12~omt_"ICfI~:';;!,mI2. (34) 

Combining (30) and (34) we can write the generalized Parse
val's formula 

r CfI~(r)~v(r)d3r 
JR' 

= L"" p2
dp 

min(u,v) v 00 U A 

X L L L L CfI ~:,;~!,m W ~:';;!,m . 
S = - min(u,v} n = - v 2u = 0 m = - u 

(35) 
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Consider a differential equation Y = V(X(t ))Y(t), whereX(t) is a random function. Sufficient 
conditions for asymptotic stability of the solution in terms of a generator of the stochastic process 
X (t ) are given. The results are illustrated by several examples. 

I. INTRODUCTION 

The main objective in this paper is to study the behavior 
of the solution Y(t) to Y= V(X(t))Y(t), where X(t) is 
a stochastic process and V(x) is a real-valued function. A 
motivation comes from the dynamic reliability discussed by 
Ladde and Siljak. l We are mainly interested in finding con
ditions for convergence of Y(t) in some sense defined below, 
as t- 00. In particular asymptotic stability of the stochastic 
solution is discussed. For probabilistic facts we refer the 
reader to Doob.2 

Before making any statements it is instructive to consid
er several examples that will illuminate the nature of the 
problem. 

II. EXAMPLES AND RESULTS 

Example 1: Let X (t) be a two-state Markov process with 
values a, - a for some a > 0, and infinitesimal generator 

A= [
-A. 

A. ], for some A.,f-t > 0, 
-f-t f-t 

then 

Y(t) = Y(o)exp(f V(X(S))dS). 

One can analyze Y (t ) in two ways: pathwise or in the mean by 
conditioning on X(O) = x. The first case is easy to handle 
because X (t) has a stationary measure m = [JAo/(A. + JAo),A./ 
(A. + JAo)], which means A T m = O. Take, for simplicity, 
V(x) = x, then by the ergodic theorem (see Ref. 3, p. 121) 

1. r X (s)ds- f xdm(x) = a(JAo -A.) . 
t Jo JI-a,al JAo +A. 

If one assumes that A. - JAo > 0, which means that the intensi
ty of passing from {a} to { - a} is greater than that of pass
ing from { - a} to {a} or equivalently the tendency of 
staying at { - a} dominates staying at {a}, then one gets 
pathwise asymptotic stability because Y (t )-+0 almost surely 
as t-oo. This is not surprising when taking into account the 
fact that in the long run Y(t) should be more likely to ap
proach Y(O)e-althan Y(O)eal

• 

On the other hand, for X (t) with n + 1 possible states 
XO, ... ,xn and a generator A = (alj)' i, j = O, ... ,n,it is known 
(see Ref. 3, p. 299) that 

M(xi>t) = Ex,Y(t) = Y(O)Ex,exp(f V(X(S))dS). 

X (0) = xi> i = O, ... ,n, 

satisfy 

a: = (A + IV)M, 

where IV is an (n + I)X(n + 1) matrix with V(xi ) on 
diagonal and 0 elsewhere. For a diffusion process X (t ) with 
the generator L, the above reads 

aM - = (L + V)M, M(x,O) = fIx), 
at 

and the solution 

M (x,t ) = EJ(X (t ))exp(f V(X (S))dS) 

= exp[t(L + V)lf(x) 

is given by the generalized Feynman-Kac (FK) formula (see 
Ref. 4, p. 314), which for X (t ) = Brownian motion with the 
generator L = !..;j and V replaced by - V reduces to the 
standard FK formula. 5 

Taking in our example n = 1, V(x) = x, Xo = - a, 

[
-A. A.] 

Xl = a, and A = f-t _ f-t one has 

M ( ± a,t) = Y (O)et ± I, 

A. ± = H - fJL + A.) ± ~4A.f-t + (A. - f-t - 2an, 
whence to get asymptotic stability we must assume A. + < 0 or 
equivalently 0 < a < A. - f-t. Notice that pathwise asymptotic 
stability requires only 0 <A. - f-t. In general, the stability 
should be expressed in terms of V(x) and the generator A of 
the Markov process X (t ). 

Example 2: Let X (t) = B (t) be a Brownian motion 
V(x) = x, Y(O) = 1, X (0) = x, then the mean value of Y(t) 
solving Y(t) = B (t )Y(t) is given by 

M (x,t) = Ex exp(i' B (S)dS) = E exp(f (x + B (S))dS) 

= exp(xt + t 3/6)-00, 

as t_ 00. The last equality comes from the fact that by the 
FKformula 

aM = (1. ~ + X)M, 
at 2 ax2 

which easily checks. 
To get the asymptotic stability one needs a drift term for 

Brownian motion of order t 2. Namely, consider the diffusion 
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processX(t) with the generator L = !(~/ax2) + 2at(a/ax), 
or equivalently X (t) = B (t) + at 2, then, by the above, 

M(x,t) = exp[xt + (a/3)t3 + t 3/6]-o as t-+-f$), 

as long as 2a < - 1. In general, if X (t) = u(t)B (t) + p(t), 
and u(t»O, 

M (x,t lEx exp(f X (S)dS) 

= E exp(f (x + pIs) + u(s)B (s))ds) 

= exp(xt + fp(S)dS+ f u(V)[f Uu(U)dU]dV). 

so knowing P and (j it is possible in some cases to check 
whether M (x,t J---+O as t-+- f$) . 

Example 3: Let X (t ) = B (t ), 

{

I, x>O, 
V(x)=sgnx= 0, x=O, 

- 1, x<O, 
then 

Y/t) = Y(o)exp(f V(B (S))ds). B (0) = o. 

Notice that T = f~ V(B (s))ds = time spent by the Brownian 
particle in the positive half-line minus time spent by the 
Brownian particle in the negative half-line. Due to symmetry 

-AO Ao 

PI - (AI + pIl 
A= 0 P2 

0 

Al 

- (A2 + P2) 

, 
o 
o 

A2 

of Brownian motion one could expect that Y(t )--Y(O) as 
t-+- f$) because T should go to 0 almost surely. Quite the op
posite is true. Since X is the time up to time t spent by a 
particle in the positive half-line it enjoys arcsin law (2/1r) 

Xarcsin../x/t with the density (ll1r) [lI.Jx(t - x)], O<x<t, 
therefore conditioning on X one gets 

i l 1 
EeT = E(eTIX=x) dx 

o 1T.JX(t - x) 

= e2x
-

1 dx;;.-el12
, i l 1 1 

o 1T.JX(t - x) 3 

and thus there is no stability. 
Remark 1: If V(x)<O then Y(t) is decreasing [Y(O) > 0] 

and always has a limit as t-+-f$), which is 0 whenever 
f'!, V (X (s))ds = - f$). When this happens almost surely 
then also ExY(t)-o for each x as t-+-f$). In terms of the 
diffusion process X (t ), path wise asymptotic stability means 
that the probability of terminating the process at time t, 
while traveling along a given path {X(s)IO<s<t J, which is 
equal to 

exp (f V(X (s))ds ). 

goes to O. In other words the longer the particle survives the 
smaller the chance of ever being killed. 

Now let X (t) be a birth-death process withxO, ... ,xn pos
sible states, whose generator is the matrix 

Pn-I - (An - I + Pn - d An - I 

0 Pn - Pn 

and stationary measure m = (mo, ... ,mn ) with 

n Ao ... Ak _ 1 
m;=l+ L ' 

k = I P 1""P k 

and 

m; = (Ao,A1" •• A;_ d[PIJ.l2"'P{ 1 + ktl A:~'~~: I )] - I 

i= 1, ... ,n 

(see Ref. 6, p. 154). 
Theorem 1: The solution Y(t) of Y(t) = V(X(t))Y(t) 

has the following properties. 
(i) Y(t)-+-O a.s. (almost surely) as t-+-f$) whenever 

itO V (x; )m; = !rXo ..... Xnl V(x)dm(x) < O. 

(ii) Ex Y(t)-o as t-+-f$) whenever real parts of the eigen
values of A + IV are negative. 

(iii) V(x;) <A; -A;_I + It; -1t;+1> 

i = O, ... ,n, A _ I = 0, It n + I = o. 
Proof: Property (i) generalizes Example 1. Property (ii) is 

the classical condition for stability of a linear system. To 

2190 J. Math. Phys .• Vol. 26. No.9. September 1985 

I 
show (iii) we apply the logarithmic norm estimate7 to the 
linear system (a / at)M = (A + IV)M and get 

11M II" 11M (O)ilev(A + IVll, 

where 
n 

lI(bo,· .. ,bnJlI = L Ib;l, 
;=0 

vlB ) = the logarithmic norm of (n + 1) X (n + 1) 

matrix (b;j) 

= sup [bkk + i b;.], 
O<I<n ;=0 

;".,k 

and require vIA + IV) <0, which is equivalent to (iii). 
Remark 2: Property (i) extends to n = f$) provided 

which ensures the existence of stationary measure m. Prop
erty (iii) can also be considered for n = f$) provided that 
(aM /at) = (A + IV)M has a solution satisfying 
~;""= 0 1M (x;, t) I < f$) while (ii) extends with no additional as-
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sumptions. The next theorem discusses the case of a time
homogeneous diffusion process X (t) with the generator 
L = a(X)(c?/aX2) + b (x)(c?/ax2). 

Theorem 2: The solution Y(t) of Y(t) = V(X(t))Y(t) 
satisfying Y(O) = y,X(O) = xispathwiseasymptoticallysta
ble, i.e., Y(t J-O almost surely as t-oo whenever the follow
ing conditions are met. 

(i) There exists a positive eigenfunction ¢'(x) = e-h(x) 
and a negative eigenvalue A solving 

(L + V)¢ = A¢. 

(ii) lim - h (X(t) + x)lt>A almost surely. 
,-'" 

Proof: Define u(x,t) = u(x,O) = ¢,(x), then 

au 
-=(L+ V-A)U, 
at 

whence by the FK formula 

tP(x) = Ex tP(X (t ))exp(f (V (X (s)) - A )dS) 

= EtP(x +X(t))exp( -At + f V(x + X (S)}dS). 

On the other hand, 

exp[ - h (x +X(t)) -At ]exp(fv(X + X (S)}ds) 

is a positive martingale (see Ref. 8, p. 168) whose expected 
value is tP(x) < 00. Therefore it is convergent almost surely as 
t-oo (see Ref. 2, p. 354). Since the exponential of the first 
factor tends by (ii) to 00 a.s., therefore the second factor tends 
to 0 a.s., which concludes the proof. 

Example 4: Let X (t ) = B (t ) by a Brownian motion and 
assume that e - h is the eigenfunction corresponding to the 
ground state of the SchrOdinger equation, i.e., 

( 1 d
2 

V()) -h E -h - -- - x e = - e 
2 dx2 

and 

( 
1 d

2 
) -E= infspectrumL , - 2" dx2 - V(x) >0. 

If - V(x) = ((h ')2 - h ")-Ixla for large x, for some 
0< a < 2, then h (x) -Ixl l + a/2 (see Ref. 9, p. 487). Conse
quently one gets 

(~2t log log t)1 +a/21 X + B (t) II +Q12t -1-0 a.s. 
~2t log log t 
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by the law of the iterated logarithm and thus Y(t J-O a.s. by 
our theorem by taking A = E and noting that (ii) holds. 

Remark 3: The harmonic oscillator, i.e., V(x) = - kx2, 
cannot be handled by our theorem because then h (x) = x 2 

and (ii) does not hold. However, in this case the exact solu
tion is known: 

u(x, t) = Ex exp( - k fB 2(S)dS) 

= exp{ - JkT2x2 tanh t{fkJ 

~cosh t{fk 

This satisfies 

au =(~~ -kx2)U, 
at 2 ax2 

and for B (0) = 0, k = ! reduces to 

1 = E exp( - ~ r'B 2(S)dS), 
~cosh t 2 Jo 

i.e., the one-dimensional Cameron-Martin formula (see Ref. 
5, p. 261). Obviously we have here asymptotic stability in the 
mean. 
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In this paper we show the paradoxical consequences which appear in Schild's solution, as seen 
from a noninertial frame (NIF). We propose a treatment for the noninertial frame which resolves 
the ambiguities. 

I. INTRODUCTION 

Schild's solution for the electromagnetic two-body 
problem can be described from an inertial frame (IF) as two 
charges qp and qe which describe concentrical circular tra
jectories of radius a and b, at the same circular speed tV, so 
that the simultaneous positions seen from this frame are dia
metrically opposite. When the coordinates of one charge are 
(xO,a,O,O), the coordinates of the other one are (XO, - b,O,O). 
We take the center of the circumferences as the origin of 
space coordinates (Sec. II). 

Ifthis situation is observed from a rotating frame turn
ing around the same axis and with the same angular speed as 
that of the two charges, then the description of the solution 
will be as follows: there are two electric charges at a distance 
a + b from each other; they interact electrically and remain 
motionless without any constraint. This situation demands a 
consideration of the observed facts. 

The incompatibility between Maxwell's equations 
which provide an electric field of Coulombian type and those 
of Lorentz, which would demand the absence of a field due 
to the static equilibrium, cannot be solved with Schild's hy
pothesis of the time-symmetric, half-advanced-half-retard
ed field (Sec. III). 

To resolve this incompatibility the implicit anholonomi
city at the basis linked to the noninertial frame (NIF) has to 
be taken into account in the particular way of calculating the 
four-potential and the electromagnetic tensor (Sec. IV). 

It is convenient to emphasize that the location of ad
vanced and retarded positions is very different in each frame. 
Even being stationary in the IF, the charge system does not 
have the property of maintaining the same point distribution 
of charges at any instant (this would happen ifthere were two 
charged rings instead of two point charges), but the recog
nized situation in the rotating frame is static. 

II. SCHILD'S SOLUTIONS 

Schild's solution 1 requires the accomplishment of the 
condition 

- meve/tV~ 1 - Ve 2 

= [qeqp/(fJ + vevp sin fJ)3] [(Ve + Vp cos fJ) 

X(1 - Ve 2)(1 - Vp 2) + (VefJ + vp sin fJ) 

X (fJ + vevp sin fJ)], (1) 

and a formally identical expression which is obtained by 
changing the subindex e for p and vice versa, where Ve 
=tVXb, vp =tVXa, me and mp are the masses of the 

charges qe and qp' respectively, and fJ is the advanced or 
retarded angle. 

To arrive at this condition the following expression has 
been used for the four-potentiaI2

: 

AJl±(x)= ±qpzJl/pJ",±=o, (2) 

where # represents the four-vector position of qp and where 
r/J ± = ° is the advanced or retarded condition 

r/J± = JxJl-zJlJ =a2+b 2+2abcosfJ-fJ 2/tV2 (3) 

and p is the scalar 

p = (xa 
- z").ia· (4) 

III. THE OBSERVER IN THE NONINERTIAL FRAME 

In the NIF, the rotating basis associated with the parti
cle system, obtained from Frenet's formulas, is related to the 
Cartesian one of the IF, where we describe the solution by 

(5) 

where Latin subindices indicate the basis in the NIF, Greek 
subindices indicate the basis on the IF, and where 

- rtVr sin qJ 

cos qJ 

- rrsin qJ 

° 

rtVr cos fJ 

sin qJ 

rr cos fJ 

° 
(6) ~) ° . 

1 

The commutation coefficients for this basis are the same 
as used by Corum3 

n gl = -! rtV2y2, (7a) 

n~=y2~ (~ 

n i2 = -! rtV2y2, (7c) 

according to the definition Iea,eb]=Veaeb - Vebea 

=n~bec' 
From the point of view of the NIF, and disregarding any 

kind of information about the noninertiality of the frame, an 
observer would deal with the following system of particles 
(which corresponds to Schild's solution for an observer that 
turns at the same angular speed): 

are 

x a = (xO,b,O,O), z" = (XO, - a,O,O), 

xa = (1,0,0,0), za = (1,0,0,0), 

xa = (0,0,0,0), za = (0,0,0,0). 

The advanced and retarded positions of the particle mp 

z"± = (XO - er, - a,O,O), 
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where ± indicates the advanced or retarded position, and E 

is a value factor of + 1 for the advanced position and - 1 
for the retarded position, so that in the expression 

Fob = !(F at + Fob ), 

terms with odd powers of E will be eliminated. Here, Tis the 
time (in the NIF) which light takes for traveling the spatial 
distance a + b, and in units c = 1, is just a + b. 

So, 

2"± = (X
O 

- E(a + b), - a,O,O), 

Z"± = (1,0,0,0). 

The scalar p, which appears in the denominator of(2), in 
the NIF will not coincide with the same one of the IF, be
cause it does not have the same meaning. Let us remember 
that the scalar p represents the spatial distance which sepa
rates the advanced and retarded positions of a body from 
another at a determinate instant. On the other hand, we can 
not apply the matrix hI' 0 to the vector (x I' - Z 1'), because 
there is a double choice for the point where the value of the 
matrix terms have to be calculated. 

The calculation of p in XO = 0 gives the result 

p=E(a+b). 

In this way we find that 

A a± = E(qpzo± /p) = E~ [qp/E(a + b)]. 

Therefore, 

A o± = qp/(a + b), 

A / = 0 (i = 1,2,3). 

(8) 

(9a) 

(9b) 

The four-potential obtained is that of Coulomb. The val
ues of Fob can, also, be calculated from 

FaT, = ± (qp/p3) [roZb - rbzo)(l - rzc) 

(10) 

If we call r" = (XO -2"), then we have (rmz" - r"zm) = 0 for 
all n,m. The only Fm .. not null will be those where (rmz" 
- r"zm) is not null. Then we will only have terms with 

m = 0 and n = 0, as only component 0 is not null in xm and 
zm. So the only Fm" not null areFoI and its opposite, because 
F m" is an antisymmetric tensor 

F 01 = FOl = - qp/(a + b )2, (11) 

which is the electric field produced by a static charge qp at a 
distance a + b. 

The Lorentz equation for inertial frames 

m.!*o = qeF : xb (12) 

is erroneous with this expression for Fob' 

IV. THE CORRECT PLANNING IN THE NIF 

The anholonomicity makes it necessary to add the terms 
of anholonomicity Ul:C to the Fab values, calculated in (10). 
Thus, 

Fob = Fab + Ul'toA d , (13) 

but it has also to be kept in mind that the four-potential 
cannot be calculated as in an IF; it is necessary to transform 
it by matrices hI' 0 and to consider that scalars depend on the 
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retarded time; somehow this fact has to be taken into ac
count. Corum4 presents the problem ofthe change of the IF 
to a rotating frame with cylindrical symmetry, which does 
not make it necessary to worry about what the situation is in 
the retarded instant because this situation is not only dyna
mically stationary but its aspect is the same in any instant. 

The process we follow from an NIF makes it clear from 
the very start that the observer has deduced from the incon
sistency of the former results that they are found in an NIF. 
That means that Maxwell's and Lorentz's equations are in
compatible, in the sense that the expression (12) is not ade
quate for a noninertial frame. 

At this stage we may say that this observer tries a possi
ble description in his frame and that, as a test of validity, has 
to prove that the equations he obtains correpond to known 
solutions (in this case that of Schild I). 

First we shall construct the matrix hI' 0 at any given 
point. We shall apply it to A I' at the point z I' , for any x I' 
(remember that z I' are the components of the space-time 
four-vector for mp and x I' those of me) and we shall haveAa 

as a function of the polar components ofxl'. Finally, we shall 
calculate Fob deduced according to an anholonomic basis. 
We shall see that, if the terms of anholonomicity are added to 
the result, the expression (1) calculated from an IF is repro
duced. 

The matrix ho I' shall be (6) and hI' 0 its inverse; q; is 
equal to tlJ • xO. 

Now, rand q; are variable values in relation to which the 
derivatives will be calculated. We also assume that the de
nominator that we have in (2) is a scalar, and therefore it does 
not depend on the frame. A different value had been calcu
lated beforehand because it had either forgotten or disre
garded that we were in an NIF, and we had given to it a 
significance that it did not have. But it is not a constant 
scalar because it is a function of r or 1'. From now on, Tis the 
time of advance or retard. 

From (3) in '" ± = 0, one obtains 

aT r + a cos tlJ1' 
-= 
ar l' + TV p sin tlJ1' 

We also have 

ar = rtlJ2y3. 
ar 

From (2) one obtains 

A I' = tlJZl'qp/rp(tlJ1' + tlJ2arsin tlJ1')i",± =0, 

which, transformed by hI' 0 , gives 

(14) 

(15) 

(16) 

Aa=hl'°AI', (17) 

where the Latin index in A O indicates components of the 
four-potential in the directions of the anholonomic tetrad 
basis, that is to say, the projections of the four-potential 
which, in this way, are referred to basis (5). 

These projections are 

A 0 = qp y( 1 + vptlJr cos tlJ1')I(1' + tlJar sin tlJ1'), (18) 

A I = - EqpVp sin tlJ1'/(1' + (l)Qr sin tlJ1'), (19) 

A 2 = - qp y(tlJr + vp cos tlJ1')lr(1' + tlJar sin tlJ1'), (20) 

A 3 =0. (21) 
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Let us remember that the variation in X3 has not been 
taken into account because the solution is coplanar by hy
pothesis, but also and especially because, since x3 = 0 and 
x3 = 0, no Fp.3 will appear in the equations of motion. 

Now, if we want to write Ao.A 1.A2(A3 = 0) we will take 

A" =g"bAb, 

with the metric of this NIF, which is3 

g"b = diag(l, - I, - r'l, - I), 

and therefore 

(22) 

(23) 

Ao=A o, AI= -At, A2= _r'lA2. (24) 

To facilitate the calculation of derivatives, we first cal
culate the derivative of the present expression for A" with 
respect to r 

.£.. ('1' + tVar sin tVT)-1 = - ('1' + war sin tVT)-3 ar 
X [(r + a cos tVT)( I + tV2ar cos tVT) 

+ tVa sin tVT( '1' + tVar sin tVT) ] . 

(25) 
Now let us calculate derivatives of A; if we now situate 

ourselves on the point r = b, r = re' and tVT = 8, then 

A 0,4 =tV2qprep-3 [vep2r/(1 +vevp cos 8) 

+ p2Vp cos 8 - pVevp 

X sin 8(ve + vp cos 8) - (I + vevp cos 8) 

X {(Ve + Vp cos 8)(1 + VeVp cos 8) +pvp sin 8 J]. 
(26) 

On the other hand, 

A 1,0 =0. (27) 

Therefore, 

'" FOI = -A 0,1 + W~oA". (28) 

The only n ~o non-null is the opposite to (7a) and so 

POI = qpretV2p-3[ - v.p2r/(1 + vevp cos 8) _p2vp cos 8 

+ pv.vp sin 8 (ve + vp cos 8) 

+ (I + vevp cos 8 fIve + Vp cos 8) 

+vppsin8(1 +VeVp cos 8) 

+ fev. p2(1 + VeVp cos 8)]. (29) 

The term suppressed by the presence of n?o is that one 
which came from deriving r with respect to r. 

Since A 2,0 = A 0,2 = A 2,3 = A 3,2 = 0, we have 
A A A A 

F02 = F03 = 0 and also F23 = O. Finally, FI2 is 

P12 =A2,1 -A,,2 + W~IAo + W~IA1' (30) 

but it is not necessary to develop it further as it does not 
appear in the equations of motion. 

Equations (12) are the following: 

fora = 0, 
"0 "'0'1' 'call 11 meX = qeF IX, Identl y nu , 

fora = I, 
'" '" - mexl = qeFloi0 + q.FI~2, (31) 
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fora.= 2, 

'" mex2 = q.F2
1xI, identically null, 

but (31) being x2 = 0, they are reduced to 
.,22 '" 1 • 0 - me'e V.tV = qeF OX, 

or 

- mev./tV~l - Ve 2 

= [qpqe/(8 + VeVp sin 8 )3] [8vp(sin 8 - 8 cos 8) 

+ Vp cos 8(1 + Ve 2 + VeVp cos 8) + Ve 2Vp cos 8 

(32) 

+ Ve + VeVp 2(1 + Ve 2 + VeVp cos 8) + Ve 2vp8 sin 8 ], 

(33) 

which is exactly (I). 
This shows that 

p1
0 = (FlO + F I

2ue)re, (34) 

so we see that, in the NIF, the same relation between the 
parameters of the problem contemplated on the IF can be 
obtained. 

Adding the terms of anholonomicity amounts to includ
ing two components of F p. v in one component of P b' This 
is justified if we keep in mind that in the frame where the two 
charges remain static, there is not only an electric fi~d in the 
direction of the segment which joins the charges (F 10), but 
actual components of the electromagnetic field as well: the 
components FlO (electric field) and F 12 (magnetic field, on the 
termF'2 vel of the tensor FP. v calculated in the IF where the 
charges are in motion. 

Therefore, we have followed the following steps. 
We have seen that the inertial form of Lorentz's and 

Maxwell's equations are incompatible. 
We have tried a possible description in the reference 

frame where we are and verified if the equations correspond 
to the well-known solution in the IF. 

We have constructed the matrix h" p. for any given 
point. 

We have transformed the four-potential. 
The four-potential and so the electromagnetic field ten

sor in the NIF are obtained; therefore, the derivatives are 
taken accordingly with the anholonomic basis which we had 
chosen. 

We have fixed point values. 
We have added to F"b values the terms of anholonomi

city which correspond to the basis used. 
We have verified that the equations of motion are com-, 

patible with well-known solutions. 

v. ENERGY OF THE SYSTEM 

We can observe that in the NIF the energy correspond
ing to the two masses me and mp of charges qe and qp, at rest 
and separated by a distance a + b, is 

P"= [mex"+qeA"] .. + [mp.i"+qpA"h +2q.qp 

(35) 

according to1 and in which A" represent the four-potential 
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on q, and A and A are, respectively, points ofthe line of the 
universe of qe and qp' Thus, 

XbZb = 1, 

and on the other hand, 

f 8'(xlf(x)dx = 1'(0), 

they cause the integral term to be 

d(xQ-z") I =xQ-¥=O 
dxo "'±=O • 

One can obtain 

po = me + mp + 2qeqp/(a + b ), pi = p2 = p3 = 0, 

(36) 
from (8). 

But if we take into account the effects of noninertiality, 
even though the integral term is not modified by this consi
deration, we will have the following result: AQ = hI' Q A I' , 

-0 . 
A =£i)qerp(l +vevp cos 0)/(0 +vevp smO), 

AI =/(EI), A I =/(E'), 

and therefore they do not take part in the time-symmetric 
case 

p3=0, 
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whereL 12 is the non-null component of the angular momen
tum in the IF according to Schild. I 

VI. CONCLUSION 

We have seen a possible treatment in an NIF for a prob
lem in special relativity without making use of an infinite 
series of inertial frames. Formally the expressions are the 
same; noninertiality is deeply related to the concept of an 
anholonomic basis and inertial forms of Lorentz's and Max
well's equations are not modified. Nevertheless, in the Max
well equations the anholonomicity terms are explicit, a fact 
unusual in special relativity because inertial frames are in 
general more convenient and in these frames the use of a 
coordinate basis makes null the anholonomicity terms. 

The calculation of the energy in the NIF also explains 
the noninertiality effects due to P 2 being non-null and to the 
term proportional to L 12£i) which appears in po. 
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Time-independent wave propagation is treated in media where the index of refraction contains a 
random component, but its mean is invariant with respect to translation in some direction 
distinguishing the wave propagation. Abstract splitting operators are used to decompose the wave 
field into forward and backward traveling components satisfying a coupled pair of equations. 
Mode-coupled equations follow directly from these after implementing a specific representation 
for the abstract splitting operators. Here we indicate a formal solution to these equations, 
concentrating on the diffusion regime, where we estimate the forward- and backscattering 
contributions to the mode specific diffusion coefficients. We consider, in detail, random media 
with uniform (random atmosphere) and square law (stochastic lense) mean refractive indices. 

I. INTRODUCTION 

Time-independent scalar wave propagation in random 
media can be described by the 3-D Helmholtz equation with 
a random-valued refractive index nIx). [Throughout we sup
press the dependence of random-valued functions, e.g., 
n(x)=n(x,ro), on the probability space variable ro.] We con
centrate on propagation in a distinguished direction, chosen 
along the x axis in a Cartesian coordinate system, (x 1,x2,x3)' 
with (XI,x2)=Xl , x3==.x, for the case where the mean of the 
refractive index, (n(x)=ii(xl ), is independent of x. (Here 
( ) denotes the average over the statistical ensemble.) In 
particular, we are interested in the random atmosphere 
(where ii is constant), and stochastic lenses [where ii(xl ) in
creases from large IXll asymptotic value(s) to a maximum 
near Xl = 0]. The Helmholtz equation is naturally written 
here as 

d 2 

dx 2 1/1 + SI/I = 0, (Ll) 

where S = S (x)==.J 1 + k 2(X). Here ..:11 = a 2/ axi is the 
transverse Laplacian, and k (x)=kn(x) is the position-depen
dent wave number, where k > 0 is arbitrary. We have in mind 
cases where the random fluctuations, {3 (x)=k (X)2 - k (Xl)2 
with k (Xl) = kii(xl ), are "small," and {3 (x) is a stationary 
process so one has ({3 (x) {3 (x + I5x) = R (l5x), where 
R ( y) = R ( - y). 

The approach implemented here is to somewhat arbi
trarily split the wave field 1/1 into right (x-increasing), 1/1 +, 

and left (x-decreasing), 1/1-, propagating components that 
satisfy a coupled set of equations. Such procedures are useful 
in relating various unidirectional propagation approxima
tions, associated with the zeroth-order decoupled solutions, 
to the exact solutions expressed as Bremmer-type series. I 
Here we implement "reference" splitting in terms of natural
ly chosen deterministic, unbounded, abstract, self-adjoint 
operators (cf. Refs. 2-4) such that 1/1 + and 1/1 - are decoupled 
when the random fluctuations are set to zero. In Sec. II, we 
detail this procedure and rearrange the coupled 1/1 ± equa
tions so that afirst-order smoothing approximationS can be 
conveniently applied to obtain a closed equation for the 
mean, (1/1 +), of 1/1 +. Using the representation provided by 
the splitting operator eigenfunctions, one obtains explicit 

mode-coupled equations. Since we are primarily interested 
here in the slow decay of ( 1/1 +) induced by small-amplitude 
stochastic fluctuations in nIx) (the diffusion regime), a long
range Markovian approximation is applied to these to obtain 
estimates of the forward- and backscattering contributions 
to the mode-specific decay rates (termed, here, diffusion co
efficients).6 We continue to detail specific applications of this 
general procedure to the random atmosphere in Sec. III, and 
to the stochastic square law medium (lense) in Sec. IV. Con
cluding remarks are made in Sec. V. 

II. REFERENCE SPLITTING APPLIED TO RANDOM 
MEDIA 

Reference splitting3.4 of the wave field 1/1 into right, 1/1 +, 

and left, 1/1-, traveling components with respect to an x
independent operator, So, on L 2(Xl) (described in detail be
low), is given by 

1/1 ±(x) = .!.[I/I(X) =F is 0-
112 ~ I/I(X)] (2.1) 

2 dx 

(where here, and in the following, we suppress all Xl depen
dence).Notethat 1/1=1/1 + + I/I-,andthatthe 1/1 ± satisfy the 
coupled set of equations 

~ 1/1 ± =F is ~/21/1 ± 
dx 

= ± (i12) SO-1I2(S(X) - So)(l/1+ + 1/1-). (2.2) 

Naturally, here, So is chosen to be deterministic (i.e., 
nonrandom). A scalar choice So = k (Of, after ignoring ± 
coupling in (2.2), produces a parabolic-type approximation. I 
Equations (2.2) could be iterated about this approximation 
but instead we prefer to start with a "more complete," but 
abstract, choice of splitting associated with 

So = (S(x) =..:11 + k (XI)2, (2.3) 

for which S (x) - So= {3 (x), i.e., the random fluctuations. 
Notice that So is a deterministic, unbounded, self-adjoint 
operator on the spaceL 2(Xl ). Its spectral theory for uniform 
or focusing media is naturally represented in terms of an 
(assumed) complete set of guided-mode eigenfunctions, and 
radiation-mode "weak" eigenfunctions.4 For a random at-

2196 J. Math. Phys. 26 (9), September 1985 0022-2488/85/092196-05$02.50 @ 1985 American Institute of Physics 2196 



                                                                                                                                    

mosphere, where Ie is constant, one simply takes the Fourier 
transform with respect to Xl in (2.2) and (2.3), corresponding 
to expanding with respect to a complete set of (trivial) trans
verse plane wave radiation-mode eigenfunctions. It is con
venient to introduce a generic mode label K for the So eigen
functions IftK(xd, with So eigenvalues AK• Also f. dK will 
denote a sum/integral over eigenmodes. 

Here we treat only the explicit choice of boundary con
ditions: 1ft +(x = 0) specified and deterministic, and 
1ft -(x = 00) = O. Equation (2.2) is then readily integrated, 
and expressed in abstract operator form, as 

1ft + = t/J + + 1l12)S 0- 1/2G 0+ {3(1ft + + 1ft -) , 

Ift- = (i12)SoIl2G O- {3(Ift+ + 1ft-I, 

where 

t/J +(x) = exp[iSl(2 x] Ift+(x = 0), 

(G 0+ f)lx) = f dx' exp [is ~12(x - x')] fix') , 

and 

(2.4a) 

(2.4b) 

(G 0- fllx) = r"" dx' exp [is ~/2(X' - xl] fix') . 

Equation (2.4b) can be solved formally for 1ft - to give 

Ift- = (i12)So- I12G O- {3(l-(i12)So- I12Go- {3)-IIft+. 

(2.5) 

If (2.5) is substituted into (2.4a), this results in a closed equa
tion for 1ft +, which, after some simplification, reduces to 

1ft + = t/J + + (iI2)S 0- I12G 0+ {3 

X(1-(iI2)S0- 1/2Go-{3)-IIft+. (2.6) 

Equation (2.6) could be iterated to obtain 1ft + in terms of 
the boundary condition t/J + , but since {3 is not spatially con
fined, the expansion contains secular terms (with respect to 
x).s Since we are not primarily interested in short distances 
x = 0 (1), but rather {3 2X = 0 (1), for {3< 1 (the diffusion re
gime6

), a resummation of this series is required.s However, 
the lowest order of the resummed expression for (1ft + ), the 
mean of 1ft +, can be obtained, in a certain statistical approxi
mation, more succinctly by a different approach indicated 
below. 

We start with the differential form of(2.6), which is obtained by substituting (2.5) and (2.6) into (2.2) for 1ft +. After taking 
the mean of this equation, one obtains 

-4-!e- isVz"(Ift+(x)) = -lSo I/2e- isl(Z"({3(x)S0-1I2[(G o+ + G o-){3(1- (i12)S0- 1I2G O- {3)-IIft+](X) 
dx 

(2.7) 

This, of course, is not a closed equation for ( 1ft + (x), but such can be provided by making afirst-order smoothing approxima
tion, S which replaces 1ft + on the right-hand side (rhs) by (1ft +). One then obtains, for the "slowly varying," nonrandom 

is I/Z" 
function u+(x) = e - 0 (1ft +(x), the equation 

~ u+(x) = _..!..S 0- 112 (" dx' de - isl(Z"{3(x)e + is A12,,]S 0- 112 [e - IsA
12

"'{3 (x')e + isA/Z",] )u+(x') 
dx 4 Jo 

-..!..s <> 112 L'" dx' de - is
A/z"{3(x)e - is A12,,]S 0- 112 [e + IsA

12
"'{3(x')e + IsA

12
",] )u+(x') + 0 ({33) . (2.8) 

4 " 

The second term in (2.8) can be thought of as a backscatter
ing correction to the first, forward-scattering term. It is a 
straightforward matter, using (2.7), to write out explicitly 
higher-order terms, but here we concentrate on the 0 ( {3 2) 
ones. 

To proceed further, it is convenient to express (2.8) in the 
natural representation provided by the So eigenfunctions, 
IftK (Xl)' One then obtains a coupled set of equations for the 
corresponding components, u/ (x), of u + , where 
u+(x) = j dK uK+(x) IftK(x1 ). Specifically, one has 

~u + IX) = -..!..A -112.f dK' .f dK" A -1/2 
dx K

\ 4 K 4-- 4- K' 
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x { L" dx' exp [i(A !f2 - A ,!!2)(X - x')] • 

+ i"" dx' exp [i(A !f2 + A ,!!2)1x - X')].} 

X RK.K' ,K"(lx - x'l) exp [i(A !!.2 - A ,!!2)x'] 

xuKt(x') + O({33), (2.9) 
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I 
where the correlation functions RK,K',K" (18xil=( {3KK'(X) 
X {3K'K" (x + 8x), are 0 ({3 2), {3K,K' = f dX1 'II!, {3lftK" and we 
have exploited the stationarity of {3. In cases of interest here, 
there will be coupling of propagating (AK > 0) to evanescent 
(AK < 0) modes. For the latter, we must use the convention, 
A !/2 = ilAK 1112, to ensure that the evanescent components of 
1ft + are exponentially decreasing to the right. Henceforth, 
we implicitly concentrate on propagating modes assumed to 
be far removed from the cutoffmodeKc ' whereAK = O. 

The details of the manipulations, from here o~, depend 
on the specific n for the medium under consideration. For 
the random atmosphere, we show that RK,K',K" a:.8K,K"' For 
the stochastic lense, we pick boundary conditions so that 
u+(O) corresponds to a single low-order propagating guided 
mode K*. Then, in the u~ equation (2.9), we neglect 0 ({3 3) 
terms, which include coupling terms K" =FK*, since an itera
tive solution of(2.9) shows that such uKt are 0 ({3 2). Thus, in 
both cases, we shall be dealing with a decoupled form of(2.9), 
where K" = K [and we shall neglect 0 ({3 3) terms]. 

Such decoupling affects the important simplification of 
reducing the kernel of(2.9) to the convolution type. Ifwe also 
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neglect the backscattering term S: dx', then Laplace trans
form techniques can be used to simply solve the resulting 
equation. If the backscattering term is retained, then 
Weiner-Hopf techniques7 may be useful, assuming suffi
ciently fast decay of the correlations. Here, however, we con
centrate on the diffusion regime P<I, p 2x = 0(1), where, 
clearly, u / will vary little over the characteristic 0 ( 1 ) corre
lation length( s) of the R K,K',K' This motivates the long-range 
Markovian approximation to the decoupled form of (2,9), 
which replaces u/ (x'), on the rhs, with u/ (x). Neglecting 
o ( P 3) terms, and letting x~ 00 in evaluating the coefficient 
on the rhs [a good approximation, since x = 0 ( P - 2)], yields 
a "corrected" diffusion approximation 

(2.10) 

and the mode K diffusion coefficient rK can be decomposed 
as the sum, rK = rt +~, ofa forward-scattering part 

Loo ... 1/2 112 

vI = 1 A - 112 t dK' A - 112 dx ei(AK -A K )xR (x) 
I K 4 K K' K.K.K , 

o 

(2,Ila) 

and a backscattering correction 

LOCI ... 1/2 1/2 

.J> = 1 A -112 t dK' A -112 dx ei(AK +A K )xR (x). 
rK 4 K K' K,It.K 

o 

(2.11b) 

Often in forward propagation approximations, one is 
interested in the short-wavelength (high "k") regime. Here 
we elucidate the corresponding behavior of the low-mode 
(high So eigenvalue) diffusion coefficients. Let us assume that 
AK = ii~ k 2 + aK k + PK + O(l/k), as k~oo, where aK, 
PK = O(I),andiim =max ii(x1 )(notingthattheaK areidenti
cally zero for the random atmosphere case). Then one has 

A 112 _ A 112 = ate' - aK + __ 1_ 
te' K 2- 2- k nm nm 

[ 
a;.-a;] (1) 

X Pk' -PK + 4ii~ +0 k2 ' 

and 

so 

A II2 +A II2 =2ii k+ K K +0-a,-a (1) 
te' K m - k ' nm 

(2.12a) 

(2. 12b) 

d '~AK +AK)xR ()_ K,te',K + 0 _ L
OO 

• 1/2 1/2 R (0) ( 1 ) 
xe KK'K X x_ k k 2 ' 

o "bnm 
(2.13) 

and, thus, one concludes that 

~/r! = O(l/k), as k~oo . (2.14) 

III. THE RANDOM ATMOSPHERE 

For the random atmosphere k is constant, and since 
So =.:11 + k 2, it is natural to apply to (2.7) and (2.8), the 
transverse Fourier transform 

fA 1 f d /P,,,"!() (x,p)=- x1e X, 
21r 

(3.1) 
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i.e., to use the representation based on the So-plane wave 
eigc:.nfunctions, IPp(X1) = (21r)-le - ip."" with eigenval~p 
= k 2 _ p2, where p2 = p.p. Note that (F(So)j) 
= F (k 2 - p2)}; and that the Fourier transform produces con
volution integrals associated with the products ... P ... P ... u + 

[represented by the f. sum/integrals in (2.9)]. Stationarity of 
P ( ), here, implies that 

Rp,p',p·(lx -x'/) = (P(x, p - p')P(x', p' - p") 
A 

= 21r~ (p - p")R (x - x', p - p'), (3,2) 

where ~ ( ) is the Dirac delta function, and this results in the 
following simplified form for (2.9): 

_ 81T{k 2 _ p2)1/2 ~ u+(x, p) 
dx 

= f dxt f dp'(P - p,2)-1/2 exp{i[(P - p'2)1/2 

- (k 2 - p2)1/2](X - x')}R (x - x', p - P')] u+(x', p) 

+ Loo dx' f dP'[(P_p'2)-1/2exp{i[(P_p'2)1/2 

+ (p _p2)1/2](X' -x)}R (x -x', p - P')] 
xu+(x', p) + 0(P 3

). (3.3) 

We remark that the exact decoupling, with respect to p, 
manifested in (3.3) also occurs for all higher-order terms ob
tained from a formal expansion of (2. 7). It suffices to observe 
that the integrand of the multiple convolution integral terms 
in this expansion involve factors 

A 

= 21r~( PI - p" + I)R (X2 - XI' P2 - P3; 

... ;x" -xl,p" -P,,+I)' (3.4) 

where 

(.ft P(Xi))=R (X2 - XI;X3 - XI;''';X" - XI) 
.=1 

A 

using stationarity of P ( ), and R denotes the (n - 1 )-fold 
multiple Fourier transform of R with respect to the trans
verse variables. Of course, the delta-function factor 
~ (PI - p" + I) is responsible for the above-mentioned decou
pIing. 

The long-range Markovian approximation to (3.3) has 
the solution [cf. (2.10)] 

u+(x,p):::::exp[ - (rt + r!)x]u+(O, p), (3.5) 

where the forward- (back-) scattering contributions, r{(r!), 
to the diffusion coefficients, for wave number p, are obtained 
simply from (3.3) by replacing u+(x',p) with u+(x,p), and 
letting X~oo in the coefficient S~dx' ... (S: dx' ... ). Explicitly, 
one finds that 
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4k(fc2 - p2)1/2rt = 100 

dY( 2~ J dq) exp('1·q
) 

x[(I_lp~2qI2)-1I2 exp{ -i(1~ +0(;3)Y}R(y,q)] 

= 100 

dYR~k(Y' -lP) , (3.6a) 

4k (k 2 ~ p2)1/2r: = 100 

dy e
2iky (2~ J dq) exp('1·q

) 

x [( 1 - Ip ~2qI2) -112 exp { _ f (2
p2

2
; q2 + 0 (k\ )Y}R (y,q)] 

_fOOd 2ikYR b_( -YP)-~Rb_(OO) ~ food 2ikY~Rb_ ( -YP) = Jo ye p.k y, k - 2k p.k' + 2k Jo ye ()y p.k y'---';-' (3.6b) 

where R t;£ are inverse Fourier transforms, !ith respect to the q variable, of the corresponding expressions in the square 
parentheses [both of which are products of R (y,q) and a slowly varying function -1]. Some care must be taken here in 
determining large-k behavior since straightforward expansion, with respect to 11k, of functions appearing in the square 
parentheses, can lead to divergent q integrals. :.rhe difficulty here is that an even function R (y,x l) may have a slope discontin
uity at Xl = 0, which leads to slow decay of R (y,q) = 0 (q-2), as q-+oo. In any case, it is clear that 

f 1 foo ( 1 ) fR (0,0) ( 1 ) 
rp = 4P Jo dy R (y,O) + 0 Jc3 ' r: = sJc3 + 0 k4 ' (3.7) 

which should be compared with similar results in Refs. Sand 9. 

IV. THE STOCHASTIC SQUARE LAW MEDIUM (LENSE) 

A square law medium is described by n(Xl )2 
= 1 - B 2xi, where B is a constant, and here we assume that 

the random fluctuations have the form 10 

7l(x) = n(x)2 - n(Xl )2 

= - L 7li(X}xi - L 7lij(X}xi Xj . (4.1) 
i=l~ 'j=l~ 

The centered random variables tli and 71 Ii are associated with 
random misalignment and random focusing "width," re
spectively. This choice of nIx), though unphysical for large 
Xl' provides a reasonable model for the propagation oflow
order modes in certain optical fibers. 10 

The orthonormal eigenfunctions and eigenvalues of the 
self-adjoint reference splitting operator, So =.1 1 

+ k 2( 1 - B 2xi), are naturally enumerated as 1ft m,m, (x 1) 
= Iftm,(xl)lftm,(X2), where 

Iftm(Y) = c~!m)1I2 (k:r/4 

X Hm(k 1/2B 1/2y) exp ( - ~By2), 

and Hm is the mth Hermite polynomial4
, and Am m = k 2 

- 2kB(ml + m2 + 1). The only other model specifi~ input 
required for the coupled equations (2.2), or the equations 
following, is the matrix elements of P (x) = k 271(X) with re
spect to So eigenfunctions. Because of the special form of 
(4.1), these are obtained simply and explicitly from the iden
tities 
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LOOoo dy Iftm(y)ylft,,(y) = (2kB)-1/2{(n + 1)1/2 

X£5 m ." + I + n I/2
£5m ." _ I)' (4.2a) 

L+ooOO dylftm(y)y21ft,,(y) 

= (2kB)-I{(n + 2)1/2(n + 1)1/2£5m."+2 

+ (2n + 1)£5m." + n1/2(n - 1)1/2£5m .,,_2) . (4.2b) 

From (4.2), it is clear that random misalignment provides the 
dominant coupling in the high-k regime. In the absence of 
misalignment, and if the 71 Ii are independent of x, then clear
ly one can make a (generally) new choice of transverse Xi axes 
such that there will only be coupling between modes (m,n) 
and (m',n') for even m - m' and n - n'. 

Here we consider only the behavior of the right propa
gating mean field, u + , for the special choice of initial condi
tions corresponding to a single right propagating mode 
(m,n) = (0,0), i.e., a Gaussian beam, at x = 0. Thus one has 
u';;-,,(x = 0) a:: £5m•o£5",o' Furthermore, we restrict our atten
tion to the long-range Markovian approximation of the first
order smoothed equation (2.9), after neglecting terms 0 (P 3), 
which implies that [cf. (2.10)] 

u~(x):::::exp[ - (r~ + r&}x]u~(O). (4.3) 

Here the forward- and backscattering contributions r~, 
yhoo to the (O,O)-mode diffusion coefficient can be determined 
from the correlation matrix elements 
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Roo,m"m"oo (8x) 

= (/3oo,m"m, (x) /3m,m"OO(x + 8x) 

= (2kB)-' L R;(8x)8m,,1 8mj'0 
i= 1,2 

+ (2kB)-2[R I2,12(8x) + 2R 12,2d8x) 

+ R21,21 (8x)] 8 m ,,18m,,1 

+ 2(2kB )-2 L Rii,ii(8x)8m,,28mj'0 
i= 1,2 

+ (2kB)-2[Rll,1l(8x) + 2R ll ,22 (8x) 

+ R22,22 (8x)] 8m,,08m,,0 , (4.4) 

where {i,jj = {l,2j, Ri(8x) = e(77i(X)77i(X + 8x), and 
Rij,kl(8x) = k 4(77ij(X177kl(X + 8x)(soR ll ,22 = R22,11 and R 12.21 
= R21 ,12)' It is clear that one can make the decompositions, yfu 
= yfu(mis) + yfu(width), too = too (mis) + Y'oo(width), into 

contributions associated with random misalignment and ran
dom width, respectively. Then one obtains from (2.11), 
yfu(mis) = _1_ (1 _ 2B) -112 (1 _ 4B) -112 

8k 3B k k 

X l'" dx exp{l[(k 2 - 4kB )1/2 

- (k 2 - 2kB )1/2]xj [RI(x) + R2(x)] 

1 l'" . =-3- dxe- iBx [RI(x) +R2(X)] 
8k B 0 

X [ 1 + 3: - 3t::X + 0 ( ;2)] , 
Y'oo(mis) = _1_ (1 _ 2B) -112 (1 _ 4B) -112 

8k 3B k k 

X l'" dx exp{tk [( 1 _ ~)'/2 

+ (1 - Z:)1I2]X} [Rdx) + R2(x)] 

= ~ [R,(O) + R2(0) + _1_ [fR ; (0) + tR i (0) 
16k B 2k 

+9BR I(0) + 9BR2(0)j +0(;2)]' 

as k_OCJ , 

(4.5) 

where R ;(0) denotes the (right-sided) derivative of Ri(x), at 
x = 0, and similarly, 

f ( 'd h) 1 loo d - 21Bx [R () Yoo WI t =--4-2 xe 1212 x 
16k B 0 ' 

+ 2R 12,21 (x) + R21 ,21 (x) + 2R ll,ll (x) 

[ 
4B 4tB 2 ( 1 )] 

+2R22,dx )] 1 +R-Tx + O Ti 

+ 16k14B2 [ 1 + z: + 0 (k12)] l'" dx 

X [Rll,ll(X) + 2R ll ,22 (x) + R22,22 (x)] , 
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too (width) 
': 5 2 

= (1/32k B ) [ R 12,12 (0) + 2R 12,21 (0) + R 21 ,21 (0) 

+ 3R ll,ll (0) + 3R22,dO) + 2R ll,22 (0) 

+ O(l/k)], as k-OCJ . (4.6) 

Note that the dominant terms in Re yfu( ) are clearly posi
tive (assuming monotonically decreasing correlations). Simi
lar expressions are readily calculated for diffusion coeffi
cients for other modes. One should compare the structure of 
yfu with results of Besieris II for a related stochastic lense 
problem from a parabolic-type approximation. 

v. DISCUSSION 

By exploiting a powerful albeit abstract splitting tech
nique, we have simply and succinctly obtained equations 
which provide a practical basis for the perturbative analysis 
of wave propagation in random media. The emphasis here is 
not on a detailed or rigorous analysis of the statistical as
sumptions, the diffusion limit or convergence of perturba
tive expansions. Rather, we simply elucidate the effects of 
randomness on the wave field and, in particular, the back
scattering contribution to the diffusion coefficients. 
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To formulate general results concerning the validity of the Rayleigh hypothesis, we first introduce 
a definition of the foci and antifoci of an analytic curve. Then, we state two lemmas on the 
properties of an analytic or harmonic function satisfying given conditions on an analytic curve. 
This allows us to predict the behavior of the analytic continuation of the field in electrostatics. The 
use of a conformal mapping permits the generalization of this method in electromagnetics and 
acoustics. As a consequence, we are able to predict the limit of validity ofthe Rayleigh hypothesis. 

I. INTRODUCTION 

At the beginning of the century, the Rayleigh method 
had been the first attempt at solving the problem of diffrac
tion by gratings. I This method has been used for many other 
problems of electromagnetism and acoustics. Rayleigh made 
an assumption, the so-called Rayleigh hypothesis, which re
mained unquestioned for almost 50 years, but provoked con
siderable controversy thereafter. At present, there is no 
doubt that the Rayleigh hypothesis is neither always valid, 
nor always invalid. The interested reader may consult recent 
reviews in this field. 2.3 

However, the controversial aspect of the Rayleigh hy
pothesis has not died down, due to a second question: in what 
conditions may the Rayleigh theory be used to determine the 
field diffracted by a scattering object, even though the Ray
leigh hypothesis fails? In this paper, we are not concerned 
with this second question. Our aim is to establish a math
ematical property which allows us to state a very simple and 
general result concerning the validity of the Rayleigh hy
pothesis in electromagnetism and acoustics, when the profile 
of a diffracting object is given by an analytic curve. To this 
end, we first deal with the Neumann and Dirichlet problem 
in electrostatics, since it has been shown that the validity of 
the Rayleigh hypothesis in electromagnetism or acoustics is 
linked with the properties of the analytical continuation of 
the field in the corresponding problems of electrostatics.4 

II. DEFINITION OF THE FOCI AND ANTI FOCI 
OF AN ANALYTIC CURVE 

The notion of foci is well known for conics. Here, we 
propose a generalization of this notion to analytic curves. 
Moreover, we introduce the notion of antifoci. 

First, let us recall the definition of an analytic curve r: 
let Dt be a domain (open connected set) of the complex t 
plane and ICDt a real interval. An analytic curve r is the 
image of I through a transformation 

z=~(t), (1) 

~ being a nonconstant analytic function defined in D t • 

Now, if there exists a point to E Dr> such that to 
E Dr> satisfying 

~'(to) = 0, 

~ '(to) #0, ~' being the derivative of~, 

(2) 

(3) 

the images Zo = ~ (to) and Zo = ~ (to) of to and to will be called 
the associated focus and antifocus of r, respectively. 

For instance, let us consider the case of a parabola given 
by the function 

z = ~(t) = 2t + it 2. (4) 

Its focus Zo will be obtained by setting 

~'(to) = 2 + 2ito = 0, (5) 

which means that to = i, thus 

~=~ ~ 

~=-li m 
Finally, the antifocus is symmetrical to the focus with re
spect to the directrix of the parabola. 

More generally, it can be verified that the notion offo
cus given here identifies with the classical one in the case of 
conics (except for a circle!). When the analytic curve r is 
given by the equation 

G(xJ') =0, (8) 

where G is an analytic function of the variables x and y 
(z = x + iy), it can be shown that a focus Zo is obtained by 

(9) 

where x I and y I are complex numbers satisfying the system 

G (x,y) = 0, (10) 

aG + i aG = 0, with aG #0. (11) 
ax ay ax 

In addition, the associated antifocus is given by 

Zo = XI + fYI' (12) 

We shall set 

Zo = Xo + iyo, Zo = Xo + iyo, 

where xo, Yo, xo, Yo, the Cartesian coordinates of the focus 
and the antifocus, are real. 

We define a focal line as the image ~ (L ) of a curve L (a) 
joining to to to in Dt , (b) symmetrical with respect to the real 
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axis, and (c) intersecting I. For example, in the case of a 
parabola, the segment [zo, zo] is a focal line. 

A domain D will be called a focal domain if 
(a)DCDz = ~ (Dr) and (b) whenever D contains an antifocus 
zo, it includes an associated focal line. 

It is interesting to notice that with the new variables 

z = x + iy, (13) 

z=x-iy, (14) 

the focus is given by 

H(z,z) =0, (15) 

(16) 

with 

aH =0 and aH ~o az az r , 

H (z, z) = G (x,y). 

It is worth noting that a system of parametric equations simi
lar to (1) may be deduced from (10) by integrating the system 
(Hamilton'S canonical equations!) 

dx aG 
Tt= -a;' (17) 

dy aG -=-, 
dt ax 

(18) 

with arbitrary initial conditions. 
With the new variables defined in (13) and (14), these 

equations become 

dz = 2i aH , (19) 
dt az 

dz = _ 2i aH . (20) 
dt az 

III. LEMMAS 

Lemma 1: An analytic curverbeing given, letF (z) be an 
analytic function in a focal domain D and Zo an antifocus in 
D. If, for zernD,F(z) is real, thenF'(zo) = O. 

Proof: The function 

O(t)=F~(t)) (21) 

is analytic in the connected component of ~ - I(D ) which con
tainsto, to' 1ft e I, 0 (t ) isreal, thus 0 '(t ) isreal, too, and there
fore, from a well-known symmetry property, 

o '(to) = 0 '(to). (22) 

But, 

o '(to) = ~ '(to)F'(zo), (23) 

o '(to) = ~ '(to)F'(zo), (24) 

and from (2) and (3) 

F'(zo) =0. (25) 

Lemma 2: An analytic curve r being given, let u(x,y) be 
a harmonic function in a focal domain D and Zo an antifocus 
in D. If, for z e r, u(x,y) (or its normal derivative) vanishes, 
then Zo is a saddle point of u(x,y) 

au (- -) au (- -) 0 - xo,yo = - xo,yo = . 
ax ay 

(26) 

Proof: D can be supposed to be simply connected with-
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out loss of generality. There exists an analytic function F(z) 
such that 

u(x,y) = Im(F(z)) [or u(x,y) = Re(F(z))] , 

where F(z) fulfills the conditions of Lemma 1. Hence 
F'(zo) = 0, which is equivalent to (26). 

IV. EXAMPLES OF APPLICATION 

(1) Let D be a domain intersecting an analytic curve r 
and containing an antifocus zoo Let F be analytic in D and 
real on r. Then, an analytic continuation of F cannot be 
made along a focal line up to the associated focus zo, unless 
F'(zo) =0. 

Such an analytic continuation can be deduced from the 
symmetry property of F~ (t)). 

(2)Let us consider a Jordan domain f1 with analytic 
boundary r and a conformal mapping Z = t/J (z) of the exteri
or of r on the exterior of the unit circle C (Fig. 1). We have 
locallyt/J (z) = exp(iF(z)), whereFisrealonr.Moreover,F'is 
analytic and different from 0 outside f1 + r. This entails 
that the foci of r located in f1 are singularities of the analytic 
continuation of t/J along the focal lines. 

(3) A third example consists of the homogeneous Dir
ichlet and Neumann problems for the Laplace equations. 

Now, we shall restrict ourselves to the case where r 
separates the space in two complementary regions f1 1 and 
f12• These regions are unbounded if r goes to infinity, but 
one of them, f12' is bounded (the interior region) if r is a 
Jordan curve. 

We consider a harmonic function u(x,y) defined in f11 

and which satisfies a homogeneous Dirichlet or Neumann 
condition on r. If f1 1 contains an antifocus zo, then the con
tinuation of u across r along a focal line will not be possible 
at the associated focus Zo if (au/ax)(xo.Yo)=I=O or (au/ 
ay)(xo.Yo) =1=0. 

Indeed, if this continuation were possible, u(x,y) would 
be harmonic in a focal domain containing Zo and zo, a fact 
which entails that the partial derivatives of u with respect to 
x and y vanish at the point (xo.Yo). 

V. VALIDITY OF SOME EXPANSIONS OF THE FIELD 
USED IN ELECTROMAGNETICS AND ACOUSTICS 

We consider the Helmholtz equation 

V2u(x,y) + k 2U(X,y) = 0, in f1 l' (27) 

with the homogeneous Dirichlet or Neumann conditions on 
r [notations of Sec. IV, example (3)]. 

It has been showns that the use of a conformal mapping 
Z = tP (z) which maps f1 1 on the upper Z half-plane or on the 

8
~--L. z 

.fl o· FIG .. 1. A property of the conformal 
Ii ,mapping. 

r C 
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exterior of the unit disk allows one to define an equivalent 
problem in the Z complex plane, where v(X, Y) = u(x,y) satis
fies the Dirichlet or Neumann boundary conditions on the 
real axis or the unit circle and a new Helmholtz equation 

1 

dz 12 V 2v(X,Y) + k 2 dZ v(X,Y) = O. (28) 

We have already seen that the continuation of 4J in 112 is 
singular at a focus Zo of r. This entails that even though 
v(X,Y) is regular in the upper half-plane, we can expect a 
singularity of the continuation of u(x,y) in 112 at the focus 
since dZ /dz is singular at this point. Of course, this rule is 
not general since we have no information about the value of 
v(X, Y} at the image of the focus. 

It is clear that our criterion gives a means to locate some 
of the singularities of the conformal mapping. Other singu
larities may well exist in the complementary domain. On the 
other hand, we emphasize that the criterion does notguaran
tee a singularity at the focus in 112 , 

The location of the singularity of the analytical continu
ation of the field in {J2 allows one to predict the validity of 
some expansions of the field used in electromagnetics and 
acoustics. The most famous of these expansions has been 
used by Lord Rayleigh to represent the field diffracted by a 
grating.' The reader interested in the study of the validity of 
Rayleigh's hypothesis may refer to recent reviews in this 
field (for instance, see Ref. 3 and included references). 

Here, we first deal with the more general case where ris 
a modulated two-dimensional surface extending to infinity 
(Fig. 2), obtained by deforming a mirror placed on the Ox 
axis. An incident wave ui propagating in 11 1 is impinging on 
r. The equivalent of Rayleigh's hypothesis is to assume that 
in 11 I' the diffracted field ud = u - ui (where u denotes the 
total field) can be expressed in the form of a sum of plane 
waves 

ud = fO co a(a}exp(iax + ipy)da, (29) 

withP = ~ k 2 - a 2 or i~a2 - k 2, the time dependence of the 
field being in exp( - i(J)t }. 

Let us show briefly the great interest of this kind of 
representation of the field. Indeed, the right-hand member of 
Eq. (29) obviously satisfies the Helmholtz equation and the 
outgoing wave condition at infinity. So, if this representation 
is valid everywhere above r, it can be used to express the 

Jl 
I 

y 

FIG. 2. Validity of the plane wave expansion in the problem of modulated 
surface. 
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third condition of the boundary value problem, viz., the 
boundary condition on r. This gives a very simple tool to 
solve the diffraction problem. It is not so for other rigorous 
methods which can lead to the solving of integral equations 
or differential systems of infinite order. 

It can be demonstrated that the integral in the right
hand side of(29) actually represents ud above the top YM of r 
(the demonstration of this property and those used in the 
following can be found in Ref. 3 for the particular case of 
diffraction gratings). Below YM, the integral is equal to the 
diffracted field or its analytic continuation in 112 , provided it 
converges. Obviously, this integral cannot converge below a 
focus (except if this focus is not a singularity ofthe continu
ation of u). Indeed, since exp(ipy) behaves like exp - lalY 
when lal---+oo, this integral cannot converge at a point of 
ordinate Y' if it diverges at a point of ordinate Y > y'. 

So, it can be expected that the expansion of ud given by 
(29) cannot represent the diffracted field in 11 1 if a focus is 
located above the bottomYM of r. This means that a method 
using this integral to express the boundary condition on r 
fails, at least from a theoretical point of view. Finally we can 
state the following rule: The plane wave expansion given by 
the right-hand side of (29) in general cannot represent the 
diffracted field in 11, when a focus of r in 112 is located above 
the bottom of r. 

It must be remarked that, in the particular case where r 
is a periodic curve, a profile of a diffraction grating, similar 
criterion have been given by some authors using conformal 
mapping6

•
7 or the steepest descent method.8

•
9 

For instance, let us consider the curve r given by 

Y = 2a/cosh x, with a > 0, (30) 

located above the Ox axis. 
From Eqs. (10) and (11), we deduce that the foci are 

given by the equation 

sin2 v + 2a sin v-I = 0, where v = ix. (31) 

There exists an infinity offoci. From the point of view of 
the validity of the Rayleigh expansion, the most important is 

Zo = iyo, (32) 

with 

Yo = (2a.JT+(i2' + 2a2)1/2 - arcsin(.JT+(i2' - a). (33) 

This focus is located on the imaginary axis (yo---+ - rr/2 
for a---+O) and crosses the real axis for a = 0.280 548 ... (the 
corresponding antifocus being located in {J d. 

So, we can expect a failure of the plane-wave expansion 
method for larger values of a. The study of the other foci does 
not modify this conclusion. 

Now, let us consider a second kind of curve: the Jordan 
curve (Fig. 3). In that case, it can be shown that, if an incident 
wave propagates in (J I' the field outside a circle of radius PM 
centered on 0 can be represented by a series 

co 

ud(P) = L a,.H~)(kr)exp(inO), (34) 
- co 

a,. being complex coefficients, H~) Hankel functions, and 
(r,O) the polar coordinates of a point P. 

Considerations similar to those described for modulated 
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surfaces demonstrate the following rule: The expansion giv
en by the right-hand side of (34) in general cannot represent 
the diffracted field everywhere in fl 1 when a focus of r in fl2 

is located between the two dotted circles of Fig. 3, of radius 

PM andpm· 
Let us apply this rule to the curve r given by 

X4 + y4 = 1. (35) 

To find thefociofr, we use Eqs. (15)and(16), and remarking 
that (35) becomes 

H(z,z) = i2(Z4 + 6rz2 + z4 - 8) = 0, (36) 

it turns out that 12rz + 4r = 0, i.e., 

z=o, (37) 

or 

(38) 

Putting (37) into (36) shows that Z4 = 8, and the asso
ciated foci are given by 

3/"4 • 
Zo = 2 exp(zn(1T/2)), n = 0,1,2,3. (39) 

These foci are located in 111 and have no interest for our 
problem'"':'" Now, Eqs. (36) and (38) lead to the equation 
z4 = - I, which means that the second set offoci is given by 

Zo = exp[i(1T/4 + n1T/2)], n = 0,1,2,3. (40) 

We are led to an amazing conclusion: four foci are just locat
ed on the circle of radius Pm = I, which means that the ex
pansion (34) actually can represent the field in fl l' but di
verges just below the points of r located on the two axes of 
coordinate and placed on the circle r = Pm . 

It is worth noting that Eqs. (19) and (20) allow one to 
find parametric equations associated with Eq. (35), using el
liptic functions. 
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FIG. 3. Validity of a simple representation of the field for a Jordan curve. 

VI. CONCLUSION 

Introducing the notion of focus and antifocus has al
lowed us to state in a very simple and general form a property 
of the singularities of the continuation of the field. As a con
sequence, we can predict the theoretical limits of some sim
ple expansions used to solve a large class of boundary prob
lems in electromagnetics and acoustics. 
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We examine the sine--Gordon equation with a perturbation A..1 V. We derive necessary conditions 
on..1 V such that the perturbed equation has solutions with finite energy, analytic in A, and which 
reduce to the static soliton when the perturbation is removed (A-<l). Several examples illustrating 
these conditions are presented. 

I. INTRODUCTION 

The study of integrable nonlinear equations with addi
tional interactions is an important topic in the theory of ex
tended object dynamics. Such additional interaction terms 
occur naturally when the theory is quantized and quantum 
corrections are included, or when finite-temperature effects 
are considered. An important question in such cases refers to 
the "stability" of the integrability property, i.e., the ease with 
which a perturbation destroys the integrability of the origi
nal equation. 

Soliton systems with nontrivial additional interactions 
have been studied by several authors. These studies show 
that a static soliton often can be forced to become time de
pendent by an additional interaction and that a meaningful 
perturbation should be built not on the original static soli
ton, but on a modified, time-dependent unperturbed solu
tion.) 

The purpose of this paper is to present some comments 
about the conditions for the existence of perturbative solu
tions. We examine the perturbed sine--Gordon equation 

t/J t/J 
2 • t/J ,a..1 V - +m sm = -/1.--

tt xx at/J ' ( 1) 

with A..1 V the perturbing potential. For A = 0, Eq. (1) pos
sesses the well-known static solution (soliton) 

t/Jo(x) = 4 tan-I emx. (2) 

The question we address is the following: What condi
tions must be imposed on ..1 V so that Eq. (1) possesses solu
tions analytic inA, which reduce to t/Jo(x) in the limitA-<l? In 
the following, we present two theorems dealing with this 
question. Each theorem gives a necessary condition on ..1 V 
for the existence of solutions of the type discussed above. We 
also present examples which illustrate these theorems. 

II. THEORY 

We are interested in solutions t/J (x,t ) of (1) which satisfy 
the following criteria: (i) they are analytic in A and reduce to 
t/Jo(x) in the limitA-<l; and (ii) they lead to finite energy. 

Criterion (i) implies that t/J (x,t ) can be expanded as 

t/J (x,t) = t/Jo(x) + At/J)(X,t) + .. " (3) 

with t/Jo(x) and t/J)(x,t) obeying, respectively, 

- t/JOxx + m2 sin t/Jo = 0, (4) 

(CPr - ~ + m2 cos t/Jo)t/J) = - a..1 VI. (5) 
at/J ~=~o 

Next we turn to criterion (ii): the energy 

f+ 00 [1 1 ] E = dx -:-t/J ~ + -:-t/J; + m2(1 - cos t/J) + A..1 V (6) 
- 00 2 2 

can be expanded in powers of A as 

E = Eo + AE) + .. " 
where Eo is the soliton energy 

Eo=8m 

and E) is given by the expression 

E) = f-+ 0000 dx[ t/JOxt/J1x + m2 sin t/Jo· t/J) +..1 V(t/Jol]. 

(7) 

(8) 

For E) to be finite, the integrand must tend to zero as 
x_ ± 00; therefore 

lim 4me - mlxl(t/J)X =+= mt/J)) + ..1 V ± = O. (9) 
x_± 00 

In deriving this result, we used Eq. (2) and defined 

..1 V ± = lim ..1 V(t/Jo). (10) 
x_± 00 

Since t/Jo tends to constants for x_ ± 00,..1 V ± are con
stants. Equation (9) has the solution 

t/J)-( - (..1 V ± 14m)x + c ± )em1xl + f± (x_ ± 00), 
(11) 

wherethec ± are functions oft only and thef± are functions 
of x and t satisfying 

lim e-mlx~ ± (x,t) = O. 
x---+± 00 

(12) 

The asymptotic form of (5) for x- ± 00 is 

2 ~ 2 a..1V ± (a -0. +m )"') = ---
t x ~ at/J' (13) 

where we defined 

a..1V ± _ lim a..1VI 
at/J - x~±oo at/J ~=~. 

(14) 

If we combine Eqs. (11) and (13), we find that 

d 2 1 
-c± = =+=-..1V±, 
dt 2 2 

(15a) 
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(15b) 

We are not insisting that tPl be square integrable. How
ever, from Eq. (11), the function 

- [(.d V(tPo)) ] tPl = tPl - - 2m x + 2c cosh mx + f =tPl - F, 

(16) 

with 

lim c=c±, lim f=f±, 
X-to ± co X-to ± CIO 

(17) 

is square integrable. It satisfies the equation 
2 -.2 2 -

(0 t - u;, + m cos tPO)tPl 

= - o.d VI - (0: - ~ + m2 cos tPo)F. (18) 
otP ~=~o 

Let f/!k' tV" be the normalized eigenfunctions and eigen
values of the stability equation 

( - ~ + m2 cos tPo)f/!" = tV! f/!". (19) 

Then we can expand 

(20) 
" 

(21) 

J+ 00 [ o.d VI g = dx ---
" - 00 otP ~=~o 

+ (0: - ~ + m2 cos tPo)F ]f/!,,(X). (22) 

As is well known, the stability equation possesses a zero 
eigenvalue (tVo = 0) whose eigenfunction is proportional to 

tPOx' 

f/!o = AtPox . 

The corresponding go is obtained from (22) as 

go =A (.d V+ -.d V_I + go, 

(23) 

Let us examine the integrand in Eq. (23) for x-+ ± 00; 
using Eqs. (12)-( 17), we find that 

(integrand)-+ ± m.d V ± (x-+ ± (0). 

Therefore go is finite, and perturbation theory works to first 
order, only if 

.d V + =.d V _ = O. 

This is the content of the first theorem. 
Theorem I: The modified sine-Gordon equation (1) has 

a finite energy solution analytic in A which reduces to the 
static soliton tPo only if 

lim .d V(tPo) = lim .d V(tPo) = o. (24) 
x--+± co x--+± 00 

The above condition is necessary, but not sufficient. Of 
course, the important part of Eq. (24) is the equality of the 
two limits; their value always can be adjusted to zero by 
adding a constant to.d V. 
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The condition (24) arises also as the necessary condition 
for the existence of a time-independent correction tPI; indeed, 
for tPl independent of t, Eq. (5) becomes 

( _ ~ + m2 cos tPO)4>1 = _ o.d VI . 
otP ~=~o 

The equation has solutions if the right-hand side is or
thogonal to the zero-eigenvalue eigenfunction of the opera
tor on the left-hand side. This eigenfunction is proportional 
to tP Ox; therefore one needs the condition 

J+ 00 o.d VI 
0= dxtPOx -- =.dV+ -.dV_, 

- 00 otP ~=~o 
which is the same as (24). 

The second result we wish to present depends on the 
boson transformation method of constructing solutions to 
nonlinear equations. For the present case, it is sufficient to 
examine the Yang-Feldman equation corresponding to Eq. 
(1): 

tP (x,t) =f(x,t) + J d 2y G(x - y,t - ty) 

X [ - m2 sin tP - A 0:; -p.2tP l 
In this equation,fand G obey 

(0 2 + p.2)f = 0, 

(iJ2 + p.2)G (x,t) = 8(x~(t). 

(25) 

In order for a perturbative solution ofEq. (25) to exist, p. 
must be chosen so that the quantity in the square bracket 
contains no term linear in tP. If .d V contains a quadratic 
(mass) term, this implies that p.2 is a function of A. On the 
other hand, the solution of (25) will depend on x through the 
combinationp.x, and therefore an expansion inA will involve 
powers of x and will become nonperturbative for large Ix I. 
This is the content of our second theorem. 

Theorem II: If the perturbing potential .d V contains a 
quadratic term, the modified sine-Gordon equation (1) has 
no perturbative solution. 

The analogy between this purely classical result and 
Haag's theorem in quantum field theory is amusing. 

The remainder of this paper is devoted to examples illus
trating the above theorems. 

An example satisfying the conditions of both theorems 
is provided by the potential 

.d V = ~m2(t - cos tP f 
Equation (1) has the static solution 

tP = - 2 cot-I(/f+Y sinh mx), 

whose expansion in powers of A is 

tP = tan-1emJC+A tanhmx 
coshmx 

12 2 h2 )tanhmx 
-/I. (1 + tan mx + ... 

4coshmx 

The coefficients of the expansion are well behaved, 
bounded functions, of x. The energy associated with this so
lution is 
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E=4m[1 + [(1 +A)/j,f] sin- I~A/(l +A)], 

and has also a good perturbative expansion 

E=8m[l +¥ +M2+ ... J. 
An example which violates the assumptions of Theorem 

I is given by the double-sine--Gordon equation,2 for which 

AV = !m2(1 - cos (~/2))2. 

The static solution of Eq. (1) is 

tan (~/4) = - 2/(j,f sinh mx). 

Clearly, the solution has no perturbative expansion inA. 
Furthermore, the classical energy 

E=8m[2+ A In(8-A+8~I-A/4)] 
~1-A/4 A 

has no perturbative expansion either. However, the limit 

limE= 16m 

exists and is twice the soliton mass. Finally, we present an 
example which violates the conditions of Theorem II: 

A V = - !m2 sin2 ~. 

Notice that the "mass" (coefficient of the bilinear term) 
is now given by 

f.l = m~I-A . 

The solution is 

~ = 4 tan - II (~ 1 - A + sinhz f.lx + sinh f.lx)/ Jl=Y J . 

The expansion in powers of A looks like 
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~ = 4 tan-I emJe 
- 2 [mx - tanh mx]A + O(A 2). 

1 + e2mx 

For x very large and negative, the second term dominates the 
first for any value of A and perturbation theory breaks down. 
On the other hand, the energy 

E=4mlJl=Y + (lIj,f)sin- I j,fJ 

has a good expansion in powers of A: 

E=8m{l-!A-~2+ ... J. 
This is consistent with the fact that energy considerations 
did not enter in the proof of Theorem II. 
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Earlier results for coherent propagation of electromagnetic waves in pair-correlated random 
distributions of scatterers (of radius a and physical parameters E' ,Jl') with minimum separation of 
centers b>2a small compared to wavelength (21T/k) are generalized to obtain polarization, 
refraction, and absorption terms to order k 2. The development includes multiple scattering and 
multipole coupling by electric and magnetic dipoles, as well as quadrupoles to appropriate order. 
The correlation aspects are determined by simple integrals of the statistical mechanics radial 
distribution functionl for impenetrable particles (spheres, cylinders, and slabs) of diameter b. For 
slab scatterers, in terms of the exact Zernike-Prinsf, the correlation integrals are expressed as 
algebraic functions of the volume fraction w; the resultant bulk values reduce to those of one 
particle at full packing, w = 1. Similar results are obtained for spheres in terms of the Wertheim
Thiel solution of the Percus-Yevick approximation ofl at the unrealizable bound w = 1. 

I. INTRODUCTION 
We use earlier forms for the coherent electromagnetic 

field (the ensemble average) in correlated random distribu
tions l ,2 of scatterers (with radius a, volume v, and physical 
parameters E', Il') to obtain additional explicit terms of the 
associated bulk index of refraction (7]2 = Ell) and bulk pa
rameters (E, Il) for minimum separation (b>2a) of centers 
small compared to wavelength (A. = 21T/k). The results are 
limited to applications specified by the average number p of 
centers per unit volume and by the statistical mechanics ra
dial distribution function I(r) for impenetrable particles of 
diameter b. 

The earlier explicit approximations for spheres, cylin
ders, and slabs (m = 3,2,1, respectively) consist of essentially 
two terms. I The leading term, corresponding to refraction 
(or polarization) and absorption, is independent of k (at least 
explicitly) and exhibits distributional aspects only in the vol
ume fraction w = pv occuped by scatterers. The second 
term, corresponding to incoherent scattering losses, depends 
as well on (ka)m and on the low frequency limit of the struc
ture factor Jr(W) with W = w(b /2a)m as the volume frac
tion of cocentered (electromagnetically transparent) statisti
cal particles. The present sequel provides (kaf corrections 
which include additional correlation integrals ff(W) and 
multipole coupling between electric and magnetic dipoles as 
well as quadrupoles. The development for m = 3 (spheres) is 
relatively detailed because no comparable results exist, but 
for m = 2 and 1 (normal incidence on parallel cylinders and 
parallel slabs), we need only reinterpret recene acoustic re
sults. If Il' or E' equals unity, then 7]2 equals E or Il, as ana
lyzed for the simpler one-parameter optical cases.4 

Using existing statistical mechanics results5- 14 forf, the 
packing functions Jr m and ff m can be evaluated numeri
cally,9,lObut simple closed forms are available for all butff2. 
The closed forms for m = 1 (polynomials in W) are exact, 
and those for m = 3 and for Jr2 (ratios of polynomials) are 
approximate. For W = w, the explicit approximations of the 
bulk values for slabs reduce to the single particle values at 
w = 1 (full packing) as required physically. For spheres, al-

though only w:S; 0.63 is realistic,14 the behavior of the ap
proximations at the unrealizable w = 1 is the same as for 
slabs (which appears consistent with the implicit statistical 
mechanics and multiple scattering approximations), We also 
find that the correction and scattering loss terms of 7] for the 
extreme case of perfectly conducting spheres vanish at the 
unrealizable bound. For cylinders, only w:S; 0.84 is realis
tic, IS but we use the unrealizable bound to infer the first two 
terms of a consistent form of ff2 for large w. 

The present approximations for larger kb than before, 1,2 
plus recent asymptotic results l6 for large kb, provide rela
tively simple forms that display the explicit dependence on 
all parameters for many practical applications. In these 
ranges of kb, the results help delineate the fundamental 
physical processes, and obviate elaborate machine computa
tions. 

Sections II and III introduce notation, list available re
sults for spheres,I,4,17-20 and outline the scope of the paper. 
The development is based on representation theorems l ,2,21 
for E and Il, and an approximation for 7] obtained from the 
ensemble average of the functional equation relating the 
multiple and isolated scattering amplitudes of particles in an 
arbitrary configuration. 20 The theorems follow from the first 
of the system of hierarchy integrals of the ensemble, and the 
approximation from essentially the second. Replacing the 
average scattering amplitude with two particles fixed by that 
with one fixed, analogous to Lax's procedure22 for the effec
tive exciting field, truncated the system and led directly to a 
determinate functional equation2,1 for 7]. Lax's original in
terpretation,22 comparison of the iterated expansion of such 
truncated systems with the average of the successive scatter
ing series,23 and Keller's procedures24 not based on hierar
chy integrals, provide insight for the closure approximation. 
Analytical aspects, essentially as for the analogous statistical 
mechanics problems,s are unresolved. 

See Refs. 1 and 2 for detailed derivations of the forms we 
analyze, as well as for simplifications introduced to delineate 
relations to earlier results of Rayleigh,25 Reiche,26 Foldy,27 
and Lax.22 Such simplifications were not used in the subse-
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quent analytical developments,l-4 nor are they used in the 
present sequel which derives the corresponding (ka)2 terms 
for the two-parameter electromagnetic cases. 

In the following, we use (1 :45) for Eq. (45) of Ref. 1, etc., 
and modify the earlier notation slightly to suppress numeri
cal factors or emphasize key parameters. 

II. PRELIMINARY CONSIDERATIONS 

For a slab-region distribution and a normally incident 
wave cJ»e - iwt (representing either the electric or magnetic 
component) we write 

t1» = iikz, k = 21T/A = 21TTJoIAo, 1/~ = Eo Po, (1) 

with 1/0 as the index of refraction of the embedding medium. 
The corresponding bulk values 

K = k1/b/1/0 = k1/, 1/~ = Eb Pb' 1/2 = Ep (2) 

specify propagation of the ensemble averaged I field ('II). Us
ing (1:113) for 1/ and (1:45) and (1:46) for E and P, and the 
known scattering amplitude for an isolated particle, we ex
press the bulk relative values in terms of w,f, x=ka, and the 
particles' relative parameters 

E' = Ep/Eo, P' = pp/Po, 1/'2 = E'p', 
(3) 

E' - 1=8e , P' - 1=8m , 

which may depend implicitly on w. These are complex in 
general, but to facilitate discussion we call the 8 's decrimants 
and use the term depolarization (electric or magnetic) as if 
they were positive. 

Essentially as before, I we work with 

(4) 

as well as with C = B -I for a complementary parameter; the 
same holds for the corresponding particle parameters C' ,B '. 
We refer to the E case (C = E, C = B -I = p) for nomencla
ture, but use collective forms or either case when convenient. 
Since existing3 explicit results (1/2,C,B) for slabs and cylin
ders may be applied to electromagnetics (and we exhibit the 
forms subsequently for comparison), we emphasize the case 
of spheres. 

For a distribution of either electric or magnetic dipoles, 
to lowest orders in x for the real and imaginary parts inclu
sive of incoherent scattering losses, from (1:89) we have the 
one-parameter form 1/2 = C equalling E or P with 

C = CI + iCs(x3
) + 0 (x2), x = ka. (5) 

We write the k-independent C I , given originally by Max
well l7 and derived analytically for a cubic lattice by Ray
leigh l8 (Le., the Clausius-Massotti result), in terms of 
w = p41Ta3/3 as 

C I =I+w8/D, 8=C'-I, 
(6) 

D = 1 + (1 - w)8/3 = D (8 ), 

with D as the depolarization denominator (for 8> 0). The 
corresponding incoherent scattering loss term 

Cs = x 3w'lr28 2/9D 2 (7) 

depends on the packing factor determined by the second mo-
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ment of the total correlation functionS F = f - 1, 

'lr = 1 + 41Tp I"" F(r)r2 dr, F(r) =f(r) - 1. (8) 

From the scaled particle equation of state6 or from the 
Wertheim-Thiel solution of the Percus-Y evick equation,7 

'lr;:::::(I- W)4/(1 + 2W)2, 

w =p41Ta3/3, 

as discussed earlier in detail. 14-15 

(9) 

More generally, for the one-parameter case (either 
P' = lou' = 1) correcttoO (x3),from(4:41)basedon(I:113) 
for scatterers consisting of dominant electric dipoles plus 
weak magnetic dipoles and electric quadrupoles, we have 
1/2 = Cwith 

C = CI + Cc + iCs + o (X4), (10) 

C = _ x2w8{_1 [1 -8 + 8N(2 + .£L)] 
c D2 5 9 5 

_.£L _ CI (2CI + 3)2}. 
10 50(2C' + 3) 

(11) 

The correction term Cc = 0 (x2
) depends on the first moment 

ofF, 

N = - 41Tpa I"" F(r)rdr, 

with closed form 7,8 

N;:::::~ 6W [1- W + W2]. 
b 1 + 2W 5 10 

(12) 

(13) 

For the unrealizable value W = w = 1, the results based on 
(9) and (13) reduce to C = C', which appears consistent with 
the implicit statistical mechanics and multiple scattering 
closure approximations. Note thatN of(4:41) should be mul
tiplied by 8. 

If each scatterer is both an electric plus magnetic dipole, 
then from (1 :96) to lowest orders in x for the real and imagi
nary parts, 

1/2 = (EI + iEsHpl + ips) + o (x2
) 

= 1/i + i1/; + o (x2
), 

with 

1/i = EJJ.LI = (1 + w8JDe)(1 + w8m/Dm), 
(14) 

De =D(8e), Dm =D(8m), 

1/; = EJJ.Ls + PIEs = 1/i (EJEI + Ps/PI)' 
(15) 

1/; = X
3
W'lr2( 8 ~ 2 + 8~ 2 ), 

1/1 9 EID e PID m 

in terms of the forms (6) and (7). The attenuation via incoher
ent scattering losses is given by Re(1/;121/d, approximately. 

In the following, we apply (1: 113) to scatterers consist
ing of strong electric and magnetic dipoles and weak quadru
poles to obtain 

1/2 = 1/~ + 1/; + i1/; + 0 (X4), (16) 

with the correction 1/; of 0 (x2
). Using (16) and 1/2 = Ep with 

each bulk parameter in the form (10), we require 
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2 
1]c _ Ec + I'-c 

1]~ =EJltc +I'-IEc' -2 -- -, 
1]1 EI 1'-1 

(17) 

where each correction term depends on both particle param
eters E' and 1'-'. However, a simple decomposition ofthe ex
plicit result for 1]~ does not determine Ec and P,c. Although 
1]2 must be symmetrical in E' and 1'-' , and the interchange of E' 

and 1'-' in E must produce 1'-, direct factorization of 1]2 as a 
product form does not yield results for the parameters satis
fying the mean value theorems (1:40) and (1:41). The theo
rems require that C - 1 be proportional to c' - 1 (so that if 
one of the particle's relative parameters is unity, then so is 
the corresponding bulk parameter), but terms of E and I'- that 
insure this behavior cancel in the product EI'- = 1]2. To obtain 
the explicit xl corrections for the bulk parameters, we use the 
theorems to construct electromagnetic analogs of the deter
minate forms (2:99) and (2:100) introduced for the scalar 
problems (and applied recently3 in detail). 

The next section summarizes required aspects of the de
velopment of the determinate electromagnetic equation for 
1] for arbitrary sized spheres, and derives corresponding re
sults for C and B. Subsequent sections consider applications 
and comparisons with slabs and cylinders. 

III. GENERAL RESULTS FOR SPHERES 

From (1:82), we write the forward (I' = k = i) value of 
the dyadic scattering amplitude of an isolated sphere as 

'" g(k,k) = (i - ii)g(k,k), g(k,k) = 2: (b" + c,,), (18) 
,,=1 

where i is the unit dyadic, and the two sets of scattering 
coefficients b" and c" (electric and magnetic multipoles, re
spectively, for the E case) are well known. 19 Collectively, for 

a" = b",c", 

n(n + 1) a~ 
a = , 

" 2 1-a~/d" 
(19) 

with a~ = a~ (B ') in the form 

a' =id j" (y)[xj" (x)]' -j,,(x)[yj,,(y)]'B' (20) 

" " j" (y)[ xn" (x)]' - n" (x) [yj" (y)]'B' 

where y = 1]' x, and the prime on a bracket indicates differen
tiation with respect to argument. For the E case, 
a~(l/E') = b~, a~(l/I'-') = c~; we obtain corresponding coef
ficients for the perfect conductor by the formal procedure of 
letting E' -+ 00,1'-' -+ 0, and regarding 1]' as bounded. 

The development for the pair-correlated distribution in
volved the average of the general functional equation 
(20:127) relating the multiple and isolated scattering ampli
tudes of particles in an arbitrary configuration. We replaced I 
the ensemble averaged multiple scattering amplitude with 
two particles fixed by that with one fixed to obtain the deter
minate functional equation (1:65) for 1], and then expanded 
the amplitudes in spherical harmonics to construct a corre
sponding algebraic system for the scattering coefficients. 
From (1:84), we write the multiple scattering analogof(18) as 

(21) 

such that the homogeneous algebraic system (1:86) for the 

2210 J. Math. Phys .• Vol. 26. No.9. September 1985 

coefficients B" ,C" in terms of the known b" ,c" and the Cor
relation integrals .71"" of(I:80) determines 1] and all but one 
of the coefficients. 

To facilitate manipulation and interpretation, (1:111)
( 1 : 113) recast the original system as an inhomogeneous sys
tem in terms of normalized coefficients 

P" =b,,1]2"[1 + 2: (Pmh"m +Mmii"m+ 

(22) 

(1]2 - 1) _ '" (P M ) _ ip41T _ i3w (23) 
- c - "'" ,,+ ", c - k 3 - x3 ' 

P" M" (1]2 - 1)1]" 
-=-=-
B" C" c~(Bm + Cm )1]m 

(24) 

The coupling factors h "m for like poles (PP,MM) and ii "m for 
unlike (PM,MP) are given in (1: 114) in terms of 1], c, and .71"" . 
For detailed considerations, we suppress self-coupling in the 
sense a" a" by the form 

d,,1]2" = a" 1]2"/(1 - a"1]2"h,,,,) 

= {~" 1]2", Crff ,,1]2,,} = {p" ,m,,} (25) 

and work with the coefficients ~ ,,(b,,), Crff ,,(e,,) as well as 
p" ,m". See (1:88Hl:11O) and (4:36H4:41) for earlier appli
cations. 

The bulk index 1] is fully determined by (22) and (23), but 
additional relations are required to determine the bulk pa
rameters as well as the remaining coefficient of(21). To con
struct the relations, we represent g of (18) as an integral over 
the sphere's volume (v) in terms of the internal field 
"'(1]' k ) = ",(K') = \i/. i and the dyadic plane wave 
cj,(k ) = (i - ii)e - ikz by the form 

g(k,k) = :. i· J [(C' - l)k 2cj,(k). ",(K') 

+ (B' - 1)(VXcj,)· (Vx",)]dv 

= [cj,(k ), ",(K')]. (26) 

The integral is a special case of (1 :23), and the present sym
bolic form is the x component of the original. If we replace k 
by K in cj" then 

(27) 

To obtain the ratios/3" ,r" of isolated scattering coefficients 
we decompose the general dyadic version of the volume inte
gral into two terms, and convert them to surface integrals by 

(K 2 - K '2) f cj,(K) • \i/(K ')dv 

= f [(cj,xn)· (Vx\i/) - (VXcj,) • (nx\i/)]ds 

~-~ ~ 

(K2 - K'2)f(vxcj,). (Vx\i/)dv = - K 2S1 + K,2S2' (29) 
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where +(K) = (i - KK)e - iK· r and ds = a2 dfl (r). Using 
(20:38) and (20:97) for + and 1jI, and the orthogonality rela
tions (20:33), we construct 

rn = Vn(7],7]')/Vn(I,7]'), 

Vn(7],7]') = - (e' - 1)]n(7],7]') + (B' - l)£n(7],7]'), 

Pn = Wn(7],7]')/Wn(I,7]'), 

Wn(7],7]') = - [Ie' - 1)/7]7]']Ln(7],7]') 

+ (B' - 1)7]7]']n(7],7]'), 

(7]2 _7]'2){~:} = {~2} I n(7],7]') - {7]~2}Jn(7]',7]), 
I n(7],7]') = jn(7]X)[ 7]'xjn (7]'X)]'. 

(30) 

These expressions plus the representation theorems (1 :40)
(1:47) help make all aspects of the multiple scattering prob
lem determinate. 

For the special case of spheres we need consider only 
simplified versions of(I:45) and (1:46) 

e - 1 = (e' - lloi ° f +(K) ° \II(K')dv, 

+(K) = (I - o)e - iKz, 

(31) 

7]2(B - 1) = - (B' - 1) :2 i ° f (VX+) ° (VX\ll)dv, 

(32) 

where (except for translational factors) \II = iii ° i represent 
the ensemble averaged internal field within one fixed sphere. 

Subtracting (32) from (31), we obtain the corresponding 
version of (1 :47) 

7]2-1= :2iof[(e'-I)k2+o\ll 

+ (B' - 1)(VX+) ° (VX\ll)]dv, (33) 

with the integral proportional to [+(K),W(K')] in the form 
defined in (26). Thus (33) relates 7]2 to a multiple scattered 
analog of (27) 

_ (7]2 - 1) =g(K IK) = ~)Bn + en), 
C 

(34) 

lin =/3nBn, en = rnen' 

in terms ofPn ,rn of (30); this additional relation for 7]2 helps 
determine all the multiple scattering coefficients. 

From (31) and (32) in terms of (28)-(30), the bulk param
eters are determined by 

2211 

e - 1 = '2JBnP; + enr;), 
C 

P; = (e' - 1) L n(7],7]') , 
7]7]' Wn ( 1,7]') 

r; = (e' - l)ln(7],7]')/Vn(I,7]'), 

7]2[(B - 1)1e] = '2JBnP! + enr!), 

P! = (B' - 1)7]7]' []n(7],7]')/Wn(I,7]')], 

r! = (B' - I)[Ln(7],7]')/Vn(I,7]')], 
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(35) 

(36) 

such that/3n = -/3; +P!, rn = - r; + r!. 
Using (34) and (23) in (24), we construct 

PI ~(PnPn + Mn rn )/7]n 1 
-= (37) 
B I 7] ~(Pm +Mm) R ' 

which with (24) determines all coefficientsBn ,en in terms of 
Pn ,Mn, and enables us to rewrite (35) and (36) as 

(38) 

The analogous development for the scalar case (2:92)-(2: 100) 
is simpler in that only one set of multipoles and one set of 
ratios (corresponding essentially to the r set) are involved. 

These results, and the relation 7]2 = e / B plus the two 
sets in (4), provide for alternative derivations (as well as for 
checks) of mutually consistent results for the bulk values 7]2, 
E, andp. in an unbounded distribution. See Refs. 1,2, and 21 
for additional discussion and for comparison with interface 
(equivalent slab) approximations. 

IV. DIPOLES PLUS QUADRUPOLES 

To evaluate Pn,Mn of (22) for spheres specified by the 
four isolated scattering coefficients bn 'Cn represented by 
n = 1,2 in (19), we require only the coupling factors 

hll = (2c + 2Ko + jy2)/37]2, 

ii ll = c/7](7] + 1) + jyl/7]2, 

h12 = (3c7] + 3jyl + 2jy3)/57]3, 

ii l2 = c/7](7] + 1) + jy2/7]3, 

in terms of the correlation integrals of (2:148) 

jyn = 41Tp So"" F(rlin(Kr)h ~)(kr)r2 dr, 

F(r) =f(r) - 1. 

The isolated scattering coefficients 

(40) 

(41) 

al =a;/(I-a;2/3), a2=3a~/(1-a~6/5) (42) 

are given to 0 (X6) by 

a; = ix3(8 - x2t )/3(1 + 013 - x 2d) + 0 (X7), 

lOt = (7]'2 + 1)8 - e'8, 
30d = (10 + 7]'2)0 + 5e'8, (43) 

a~ = ix50118(2e' + 3) + o (x7). (44) 

Here8 = e' - 1, and 8 = liB' - 1 = e' - 1 is the comple
ment; for the E case, we have 8 = E' - 1 and 8 = p.' - 1 for 
b ~, and conversely for c~. The remaining a~ are 0 (x2n + I). 

For small-spaced scatterers (small kb = xb fa), from 
(2:149) 

jyo = ')Y - 1 + iN /x + 0 (x), 

jyn = i7]nN /x(2n + 1) + o (x), 
(45) 

with ')Y,N as in (8) and (12). To 0 (x3
) for the bulk values, we 

need retain only 
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hllz 3~2[ 2c + 2(11" - I) + i: (2 + ~2)], v. BULK PROPAGATION INDEX 

Substituting (51) into (23) we write initially 

hll zcl'1J('1J + I) + iN 13x'1J, 

h12 z3cI5'1J2=h, h12 zcl'1J('1J + I)=h. 

(46) - ('1J2 -1)1c =PI +MI +P2 +M2 

From (42) and (46) we write d 1 of (25) initially as 

d l = al/(l - a l'1J2h ll) 

{
a' [ '6 N ( 2) ]} - I 

=aj 1-1 'x~ +7 2+ ~ +211" 

(47) 

Substituting (43) we obtain to 0 (x3
) in terms of C I and Cs of 

(6) and (7) 

/" = tDCI - B(d + 2wt 13) = B(I - B)/5 - C '28 110. 

Equivalently, with'1Jt as in (14) 

1+ cdl = (CI - x2T + iC.)-1 

I 2 T . C. O( 4) =-+x --1-+ x, 
CI Ct Ct 

T = ~{B[ 1-B + BN(2 + '1Jt )] _ 8 C'2} 
D2 5 9 5 10 

=BV+8R, 

(49) 

where T consists of essentially two terms, one proportional 
to B and one to the complement 8. The corresponding qua
drupoles are given by 

d 2 = 3a2 + 0 (x lO
) 

= bcsB/6(2C' + 3) + o (X7), (50) 

cd2 = - wx2B/2(2C' + 3) + o (x4
). 

Thus from (22) to O(x6
) in terms of {~n'1J2n,1fn'1J2n} 

= {Pn,mn} of(25) 

PI =PI(I +mlh ll + &')19, 

MI =ml(1 +Plhll +..4')19, 9 = I-Plmlhtl' 

&' = P2(h l2 + mlh11hd + M2(h l2 + mlhllhd 

zP2(h + mlh 2) + M2h (I + mlh ), 

P2 = P2[9 + PI(I + m lh 11)h I2 

+ ml(l + Plhll )h12 ]19 

ZP2(I +Plh)(1 +mlh)/(I-Plm lh
2). 

(51) 

Corresponding results for ..4' ,M2 follow by interchanging P 
andm in &' 'p2' To the required accuracy inP2 andM2 forms 
we retain only the leading terms of PI and m I factors and use 
h for h11 as well as for h 12. 
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= (PI + m l + 2plm lh ll + U)/9, 

(52) 
U =P2(1 + Plh )2(1 + mlh)2 + m~~ + mlh )2(1 + Plh )2, 

I-Plmlh 
which simplifies to 

'1J2-1 c ( 2KI) ---=PI+ml +Plm l "2 1+-- +U, 
c '1J C'1J (53) 

2Kllc'1Jz2x2N 19w. 

Thus to 0 (x3
) in terms offorms (49) and (50) 

1/'1J2 = (I + c~ 1)(1 + c1f I) 

+ {C2~ 11f 1(2Nx2/9w) + UC'1J2}, (54) 
U = [~2(5 + 3C~I)2('1J + I + '1Jc1f 1)2 

+ 1f 2(5 + 3c1f 1)2('1J + I + '1Jc~ 1)2] 

X {25[('1J + W - '1J2C2~ 11f I]}-I, 

wherein { J we replace cdl by 1/CI - I and '1J by '1JI' Using 
the first two of the elementary relations 

and the abbreviations 

Te = Be Ve + Bm R ., 

(56) 

(EI - 1)fJ.t1 - I)N wB.BmN 
s= =, 

9w 9D.Dm 

Q. = W(2E"1 + WI50(2E' + 3), 

and Qm,Tm obtained by interchanging E' andp', we rewrite 
(54) as 

'1Jtl'1J2 = I + x2(TeIEI + Tmlpl) - i(E.IEI + p.lpd 

+ x22S - x2'1Jt(B.Q.IEI + BmQmlPI)' (57) 

Thus we obtain the form (16) in terms of 

_ ?;2 =~+ Tm +2S_'1Jt(B.Qe + BmQm) 
x '1JI EI PI EI PI 

(58) 

and '1JL'1J: as in (14) and (15). 
For b = 2a and the unrealizable value w = I, the closed 

forms (9) and (13) give 11" = 0 and N =~; then'1J; = '1J: = 0 
and '1J2 reduces to the single particle value '1J,2 which seems 
consistent with the implicit truncation approximations. If 
one of the particle's parameters equals unity, we obtain 
'1J2 = C as in (10) in terms of (6), (7), and (11). To emphasize 
the structure of the generalization (58), we indicate the essen-
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tial features involved in the reduction to the one-parameter 
case (11) for C = E = 1J2. The overall electric dipole contri
bution Te = t>e Ve + t>mRe is not purely electric and (like bl) 
depends onp' in addition to E'; the same applies for the com
plement Tm = t>m Vm + t>eRm' The S term, corresponding 
to coupling of electric and magnetic dipoles, is symmetric in 
E' and p'. The overall quadrupole terms Q (with dipole cou
plingimplicit) depend only on eitherE' orp'. Thus, ifp' ~ 1, 
then Te ~t>e Ve, Tm ~ - t>e w/lO, 1J~ ~EI' and S and Qm 
vanish; 1J2 ~ E and (58) reduces to 

1J~ = Ec = - x2t>e [Ve - EI(w/lO + Qe)]' (59) 

corresponding to (11) for C' = E'. 

For moderate parametric contrasts, retaining only to 
second order terms in t> in (14), (15), and (58), we have 

1J~ = 1 + w(t>e + t>m) + w2t>et>m - w(l - w)(t>~ + t>~ )/3, 

1J: = x32w Y(t>; + t>~ )/9, (60) 

1J~ = x2w(6 + 3w - 5N) [11(t>; + t>~) + 10t>et>m ]1225. 

As discussed for (3:83), for b = 20, the function 

'Y= 6+3w-5N = (2-w)(1-w)2 =2-w y1I2, 
6 ~1+2~ 2 

(61) 

based on (13) and (9), is similar to Y(w) in that both decrease 
monotonically from 1 to 0 as w increases from 0 to 1. The 
product wY has a maximum at w::::0.129, and w'Y has a 
maximum at w::::0.221. We have 1J::::1J1 + (1J~ + i1J:)/21J1' 
and to 0 W) for real t> 's these maxima specify the maxima of 
the attenuation via scattering losses 1m 1J and of the correc
tion to Re 1J. 

We also apply (14), (15), and (58) to the extreme case of 
perfectly conducting particles by using the formal procedure 
indicated for the single sphere after (20), i.e., we let E' ~ 00, 

p' ~ 0 to obtain 

1Ji = 2(1 + 2w)/(2 + wI, (62) 

1J: =x32w(5 + 4w)Y/(1- w)(2 + wf (63) 

For b = 20 and Y(w) as in (9) 

1J: = x32w(5 + 4w)(1 - w)3/(2 + w)2(1 + 2W)2 (64) 

has a maximum at w::::0.147; the corresponding attenuation 
1J:121J1 has a maximum at w::::0.135. 

We write the correction to 1J~ initially as 

1J~(1 - w) = ~{.!!... + N _ 1Ji [N + (10 - W)2]} 
wx2 2+w 5 10 30 

+-.!L{~-2N 
1 + 2w 10 

_ ~i [N _ (5 ;OW)2]), (65) 

where t~e first/second term is dominantly magnetic/elec
tric; the 1J~ factors indicate dipole effects, and the 1J1 factors 
involve both dipole and quadrupole effects. Substituting for 
1Ji and combining terms 

1J;(1 - w)(2 + w)375/wx2 

2213 

= 135(4 + 5w)(2 + w) + (1 + 2w)(50 - 45w 

+ 75w2 + w3) - 30(35 + 29w + 8W2)N, 
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and using N of (13) for b = 20, we obtain the simple result 

1J~ = x
2
w(1 - w; [226 + 33w - 42w - 28w3], (66) 

15(2 + w) 
where we also have 

[ ] = 189 + 135(1 - w) - 126(1 - W)2 + 28(1 - W)3. 

The correction term has a maximum at w::::0.351, and the 
corresponding correction 1J~/21J1 to 1J1 in the form 
Re 1J::::1J1 + 1J~/21J1 has a maximum at w::::0.316. 

VI. BULK PARAMETERS 

From (37) in terms of (30), to the required accuracy, 

..!..= [1 + e(PI +P2)] +£e{MI +~1 + 1'1J'2)} , 
R 1J(1 + 1J) 10 1J 

(67) 

r= (B' - l)/(C' - 1), 

where we may also use [ ] = 1/1J - e(MI + M 2)/1J(1J + 1). 
Similarly from (38) and (39) in terms of the factors defined in 
(35) and (36) 

- (C - l)1J/cR = PI + P2 - (x2/1O) 

X [PI(1J2 - 1 -1'1J'2) + M I1J/r ] , (68) 

1J2(B - l)1eR = MI + M2 - (x2/1O) 

X [MI(1J2 - 1 - 1/r) + PI1'1J1J,2] , (69) 

which satisfy 

[-C+ 1 +1J2(B-l)]le=PI +MI +P2 +M2 

= - (1J2 - l)/e 

to 0 (x6
). Thus from (51) for the coefficients we can evaluate 

the bulk parameters explictly to 0 (x3
). The B form (69) is the 

simpler to use to evaluate both Ec and Pc because to the 
required accuracy the derivation involves only combinations 
ofleadingterms (1JI,EI,f.LI) and the particle's parameters. The 
C form (68) also involves 1J~ of (58) and requires more mani
pulations. From either form, by elementary operations based 
on (51) and (55), we obtain initially for comparison with (54) 
and (57) for E-case interpretation 

..!.. = 1 + e86' 1+ X2[L (E' ,p') + S _ 1Jit>eQe ], 
E EI EI 

1 ( x2Te iE.) 1 +e86'1 =- 1 +---- , 
EI EI EI 

(70) 

(71) 

1 ( x2Tm iP.) l+e~I=- 1+----, 
PIP I P I 

with 

L =L(E' ,p') 

= _1 [(EI - l)E'(P' - 1) _ (PI - llu'(E' - 1)] 
10 E' - 1 p' - 1 

= (w/lO)[ E't>m/De - p't>e/Dm] 

= -L(p',E'), (72) 
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and T, S, and Q as in (56). The L 's cancel in the product 
(70)X(71) to reproduce (57) to the required accuracy, so that 
a simple factorization of the bulk index form (57) does not 
lead to correct values of the bulk parameters. 

From (70)-(72), we obtain EI and J.tl in the form (6), E. 
and J.t. in the form (7), and write the corrections initially as 

(73) 

J.tc = - x2(Tm - J.tIL + J.tIS -l1~~mQm)' (74) 

to indicate that relation (17) is satisfied. The L terms of Ec / 
EI + J.tc/J.tl cancel to reproduce 11~/11~ of (5S). To show that 
the parameters satisfy theorems (31) and (32), we combine 
the T and L terms and factor~. Thus 

J.tIE' J.t1~eN 2 (2.u1 + 3)2 (76) 
- lODe + DeDm 9 - 111 50(2.u' + 3) , 

where ~e = E' - I, ~m =J.t' - 1, D; = 1 + ~;(1 - w)/3 for 
i = e or m, EI = 1 + w~e/De' J.tl = 1 + ~m/Dm' and 
l1f = EtJ.tI· The correlation integral N is defined in (12) in 
terms of the first moment of the total correlation function, 
and its closed form based on the Percus-Yevick approxima
tion is given in (13). We include both (75) and (76), and repeat 
the definitions of all elements to facilitate comparisons and 
applications. However, (76) is merely (75) with J.t' and E' in
terchanged and it suffices to consider the collective form 

- Cc =_1_[ 1-~ _ 6C'(I- w) + ~N(2 + 11~ )] 
X2~ D2 5 15 9 5 

- - 2 2 
_ CIC' + CI~N _!!.2.... (2CI + 3) (77) 

1015 D159 50 (2C' + 3) , 

where 11~ = cl:1 and the bar indicates that the complement 
is involved. For the one-parameter case we take C' = 1; then 
- - 2 
~ = 0, D = 1,111 = CI , and (77) reduces to (11). 

Although Cc depends on both C' and C', it vanishes if 
~ = C' - 1 = 0, as does C. of (7). Thus the form C of (10) in 
terms of (6), (7), and (77) reduces to C = 1 if C' = 1, as re
quired by theorem (31). For b = 20, in terms of the closed 
forms for the correlation integrals, for the unrealizable 
bound w = I. all scattering effects vanish and C reduces to 
C'. 

For moderate parametric contrast, we retain only terms 
to 0 (~2) in (6), (7), and (77) to obtain 

CI = 1 +~-w(1-wW/3, 

C. =x32w'lr~2/9, (7S) 

Cc = x2~(11~ + 56 )(6 + 3w - 5N)/225. 
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Comparison of the corresponding E/ andJ.ti (for i = 1, s, and 
c) with the analogous results for 11: in (60) shows 
11~ = EI J.tl + 0 (~3), 11: = E. + J.t., and 11~ = Ec + J.tc as re
quired to 0 (~2). 

VII. SLABS AND CYLINDERS 

As discussed before, I electromagnetic results for normal 
incidence on parallel slabs or cylinders are obtained by ap
plying results for the corresponding acoustic problems.2 The 
analogs of the leading terms in (5)-(17) follow from Ref. 2, 
and the analogs of the corrections (10)-(13) for the one-pa
rameter cases are given inRef. 4. Now we emphasize the 
corrections for the two-parameter (E', J.t') cases based on the 
explicit two-parameter results (C')1') in Ref. 3. We use the 
general forms (3:S), (3:12), and (3:13) to display the slab set 
(3:32)-(3:34) and the cylinder set (3:50)-(3:52) in forms analo
gous to the present (57), (75), and (76). 

A. Slab seaHerers 

The leading terms for the one-dimensional problem of 
slab scatters corresponding to (5)-(7) and (14) and (15) are 

CI = 1 +~, C. =xw'lr~2; (79) 

l1f = (1 + w~e)(1 + ~m)' 
l1:/l1f = xw'lr(~ ~/EI + ~!,1J.tIl, (SO) 

11: = xw'lr[ ~~ +~!. + ~e~m(~e + ~m)]' 
From the Laplace transforml2 of the exact II F, or from the 
equation of state, 13,6 

'lr= 1 +2p L"" Fdr=(I-w)2, 

(SI) 
W = (b /2a)w, w = 2pa, 

with F as the rigorous Zernike-Prins II distribution function; 
the closed form is exact. For this case, the scatterers are 
characterized solely by electric and magnetic dipoles, and 
there are no depolarization effects (Le., D = 1 because there 
are no field components along the finite dimension of the 
slabs). 

The correction terms involve the first moment 

N= _.::1:.. Frdr=-W l--W+-- . 1n L"" b ( 4 W
2 

) 

a 0 a 3 2 
(S2) 

(The present N, defined as in Ref. 3, is the negative of that 
used in Ref. 4.) The closed form is exact, and follows from 
the Laplace transform of F. Using the abbreviations 

T= w[~(1 + U) - C,26 - 3~2N]l3, 
(S3) 

S = (CI - 1)(CI - I)N /w = ~e~mNw, 
with~ = ~e' ~m and 6 = ~m' ~e for T= Te, Tm, we rewrite 
(3:32) as 

-11~/11~X2 = Te/EI + Tm/J.tl + 2S, (S4) 

which is an analog of (5S) without quadrupole effects. 
If one of the particle's parameters equals unity, then 

T= ~(1 + U - 3~N)/3, T= - w8/3,and(S4)reducesto 

11~ = Cc = - X2~2(2 - w - 3N )13, (85) 
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as in (4:21) for 15 = c5e and 1/~ = Ec in terms of the present sign 
for N. For b = 20, 

2 - w - 3N = 2 - 7w + Sw2 
- 3w3 

= (2 - 3w)(1 - W)2 

=2Y, (S6) 

where Y, rand wY, wr are discussed after (3:40). 
For the general case (S4) we may regroup to obtain 

31/;lx2w = - (c5e - c5m )2(2 - W - 3N) 

+ c5ec5m (c5e + 15m + 2wc5e c5m )(1 - 3wN), (S7) 

where for b = 20, 

1 - 3wN = 1 - w2(6 - Sw + 3w2
) = (1 + 3w)(1 - W)3. 

(SS) 

If p,' = E' then the leading term is 0 (15 3) instead of 0 WI. 
From (3:33) and (3:34), the analogs of (73) and (74) are 

Ec = -x2 [Te +E1L+E1S], 
(S9) 

P,c = -x2 [Tm -P,lL+P,lS], 

L _ L (' ') - 1 [El - 1 'SI P,l - 1 'SI] - E ,p, - 3 -15- E U m - -c5-P, U e 
e m 

= (wI3)[E'c5m -p,'c5e ] = -L(p,',E'), (90) 

where L has the same symmetry as for the sphere. Using (S4) 
and (S9), we see that (17) is satisfied because the L terms 
cancel. Combining the T and L terms and factoring 15 we 
obtain the analog of (77) 

- 3Cclx
2wc5 = 1 + 2c5 - C'6 (1 - w) - 3Nc5 

(91) 

which satisfies the corresponding version of (31). Using 
G' - 36N = 1 + 6 (1 - 3N), etc., the form simplifies to 

- 3CJx2wc5 = (15 - 6)(2 - w - 3N) + 156 (3wN - I), 
(92) 

in terms of the statistical functions in (S6) and (8S). 
If b = 2a, then for w = 1 (full packing) we have r = 0, 

N = !, and the bulk values reduce to the single particle val
ues as required by elementary physical considerations. 

For the corresponding acoustic problem, we reinterpret 
E' as a scatterer's relative compressibility andp,' as its relative 
mass density for the simplest case (but both parameters may 
be complex), and similarly for the bulk values. 

B. Cylindrical scatterers 

For the two cases of E perpendicular (C = E,G = p,) or 
parallel (C = p"G = E) to the axes, we represent the leading 
terms of the real and imaginary parts collectively by 

2215 

C l = 1 + wc5ID, D = 1 + 15(1 - w)/2, 
(93) 

Cs =1Tx2wrc5 2/SD 2, 

Gl = 1 + w6, Gs = 1TX2Wr6 2/4, (94) 

2 - 1/; mc
2
wr[ 15 2 62

] 1/1 = C1Cl, -2 = --2 + -=-- . (95) 
1/1 4 Cl2D Cl 
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As discussed earlier in detail IS 

r = 1 + 21TP 100 

Fr dr, (96) 

r:::::(I- W)3/(1 + WI, W=(bI2a)2W, w=1Ta2p. 

(97) 

The form of the parameter C (which involves either electric 
or magnetic depolarization effects for a field component 
along the cylinder's finite dimension) is an analog of the 
sphere form, and that of the complementary G is an analog of 
the slab form. Equation 97 is based on the scaled particle 
equation of state.6 

The correction terms also involve3
.4 

b 2 100 

M= -In--rln-+SW (Flnu)udu, 
a c'kb 0 

(9S) 

where c' = 1.7S1. .. , and u = rib. (The present M, defined as 
in Ref. 3, is the negative of that used in Ref. 4.) No closed 
form of M is available, but as before,3 in order that the bulk 
values for cylinders mimic those for spheres at the unrealiza
ble value w = 1, we require 

M=i - 2(1- w)/(3 + w) + 0(1- wt, v> 1. (99) 

The roles of the terms are displayed in the following. 
In distinction to the symmetrical odd-dimensional cases 

in which r appeared solely in the scattering loss terms and 
N in the correction terms, for the present case of cylinders 
the correction terms depend on both M and 1 - r. As can 
be seen from (2:71) and (2:73), theM term is associated with a 
JoNo logarithmic contribution of a correlation integral, and 
1 - r with a J1Nl regular contribution. 

We use the abbreviations 

T = (wI16D2){c5(4 + 15) - 4C'26 

+ 15 2[ 4M + 1/~(1 - 1r)]l, 

T= (wIS)[6 (2 - 6) - G'2c5 + 4'6 2M], 

S = (Cl - l)(Gl - 1)(1 - 1r)/4w 
(100) 

= wc56 (1 - r)/4D, 

Q = (wI16)[(Cl + W/(C' + 1)], 

where T and Q are analogs of the spherical dipole and qua
drupole functions in (56), and T of the slab function in (S3). 
From (3:50), we have 

2 -
1/c T T 2 Q 

- 22 = - + -=-- + 2S -1/1 15 -, (101) 
1/ I X Cl Cl Cl 

which is intermediate to forms (5S) and (S4). For the unreali
zable w = 1, the closed form of r vanishes and 1/; = 0; in 
order that 1/; = 0 and 1/2 reduce to the single particle value 
1/'2, we require M = i as indicated in (99). 

The present result differs essentially from (5S) and (S4) in 
that (101) represents two distinct physical situations deter
mined by the direction of the field. This also applies for the 
corresponding one-parameter cases. Thus if C' = 1, then 
T= - w46/16,T= w6(2 - 6 + 46M)/8,and(101)reduces 
to 

(102) 
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which for C' = E' (i.e., E parallel to the axes) is the same as in 
(4:26) in terms of the present sign for M. If C' = I, then 
T= wl5{4 + 15 + 15 [4M + CI(I - »111/16D2,T= - wI5/ 
S, and (101) reduces to 

11~ = Cc 

= _ x
2
w15 {4 + 15 + 15[ 4M + CI(I - »1] 
S 2D2 

_ C _ C,(C, + 1)2} (103) 
I 2(C' + I) , 

which for C' = E' (i.e., E perpendicular to the axes) is as in 
(4:33) in terms of the present sign for M. 

For moderate parametric contrast in (101), to second 
order in 15, the two analogs of (60) are represented by 

l1i = I + w(15 + 8 ) + 158w2 -152w( I - w)/2, 

11: = (1TX2WY /S)(28 2 + 15 2), (104) 

11~ = (x2w/16)[(28 2 + 15 2)(1 + 2w - 4M) 

+ I5(S8 + 15 )Y], 

where the next terms are 0 (15 3). 
We also apply (95) and (101) for E perpendicular to the 

axes of perfect conductors by proceeding as for (62) ff. We let 
C' = E' -- 00 and C' = f.I: -- 0 to obtain 

l1i = I + w, (105) 

11: = 1TX2WY(3 + w)/4(1 - wI. (106) 

For b = 20 in terms of the closed form Y of (97), 

11: = 1TX2W(3 + w)(1 - w)2/4(1 + w) (107) 

has a maximum at w::::0.301 and the attenuation 11:12111 has 
a maximum at w::::0.275, i.e., at volume fractions approxi
mately twice as large as those for spheres given after (64). The 
correction reduces to 

l1~S _ 1 + 11w - 4M(3 + w) - 6Y(1 + w) 
wx2 - 1- w (lOS) 

For b = 20, we use the closed form of Y to rewrite the result 
as 

l1~S = [(3 - 4M)(3 + w) - S(l - W)] _ 6(1 _ W)2. 
wx2 I-w 

(109) 

In order that (109) behave similarly at large w as (66) for 
spheres, the function in brackets must vanish for the unreali
zable value w = 1; this leads to (99), which may facilitate 
development of a closed form approximation for M. 

The results (105)-(109) and the inference (99) are essen
tially the same as obtained from (3:95)-(3:99) for the acoustic 
case of rigid cylinders. Corresponding results for E parallel 
to the axes of perfectly conducting cylinders are the same as 
acoustic results for pressure release (free surface) cylinders; 
as discussed before (Ref. 15, 1975), alternative procedures 
than those now under consideration are required to obtain 
more than the leading terms in w. 

From (3:51) and (3:52), we write the bulk parameters 
initially in terms of 

Cc = _x2(T+ CIL + CIS-l1iI5Q), 
- 2- - -
Cc = -x (T- CIL + CIS), (110) 
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L =L (C',C') = (w/S)[2C'8/D - C'I5], (111) 

which satisfy (17) expressed as l1~/l1i = CJCI + cjel • 

The present cases lack the symmetry of the sphere and slab 
problems, so that L (C',C') is not the negative of L (C',C'). 

Combining the T and L terms, we obtain 

- Cc I6/x2w15 = (4 + 15 - 28C'(1 - w) 

+ 15[ 4M + l1i(1 - »1] }/D2 

- 2CIC' + 4CI8 (I - »1/D 

-l1i [(I + CI)2/(1 + C')], (112) 

- Cc S/x2w8 = 2 -8 - C'I5(I- w) + 48M 

- (CI2/D)[C' -15(1- »1], (113) 

where the factored decrimant shows that the appropriate 
versions of(31) and (32) are satisfied.IfC' = I, then Cc van
ishes and (112) reduces to (103); ifC' = I, then Cc vanishes, 
and (113) reduces to (102). The present forms facilitate com
parison and checks, but we may also use 
C' -15 (I - »1 = I + 15 Y, etc. For the corresponding 
acoustic problem for the simplest case we reinterpret C as 
relative compressibility and C as relative mass density.3 For 
b = 20 and the unrealizable w = 1, we supplement Y = 0 
with M = ~ to reduce the bulk parameters C,C to the corre
sponding single particle values C',C'. 

For moderate parametric contrast, to second order in 15, 

CI = 1 + I5w -152w(1 - w)/2, 

C. = 1T"X2wYI5 2/S, (114) 

Cc = (x2wMI6)[15(1 + 2w - 4M + »1 + 48Y], 

CI = I +8w, C. =1T"x2wY8 2/4, 
(115) 

Cc = (x2w8/S)[8(1 + 2w - 4M) + 28Y]. 

We compare the bulk values of a given parameter (E or It) for 
polarization parallel and perpendicular to the axes by form
ing the differences 

C(I5) - C(I5) = CII - C1 

= 15 2W( I - w)/2 + (x2wI52/16) 

X(1 +2w-4M- »1 
+ i1TX

2wYI5 2/S, (116) 

which for C = E equals (4:35) with the present sign of M, i.e., 
the cross terms cancel to second order. The corresponding 
difference of the indices of refraction for E parallel and per
pendicular to the axes is given by 

1111 -111 = [(15~ -15~)w/4][I-w+(x2/S) 

X(l + 2w - 4M - »1 + i1TX
2Y/4j. 

(117) 

See (4:62) ff for discussion of birefringence and dichroism. 
Note thatM of (4:62) should be replaced by 4M, and 16 by S. 
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Core size effects, bound states, and scattering states of the Aharonov-Bohm 
problem 

N. Gauthier and P. Rochon 
Department of Physics, Royal Military Col/ege, Kingston, Ontario K7L 2 W3, Canada 

(Received 22 June 1984; accepted for publication 24 May 1985) 
The mathematical solutions ofSchrooinger's equation for an electron which is moving outside a 
hard cylindrical core which contains a hidden flux is studied and it is shown that there are two 
possible types of eigenstates or scattering states. The first type of state is cyclic about the hidden 
flux. Such states give rise to field-induced energy shifts, to probability density shifts, and to a 
divergent scattering cross section. The second type of state is noncyclic about the above axis but 
all the physical observables are independent of the hidden magnetic flux. The relationship to 
gauge invariance is discussed. 

I. INTRODUCTION 

In 1959, Aharonov and Bohml analyzed the quantum
mechanical scattering of electrons by an infinitely long inac
cessible whisker of magnetic flux of negligible radius R. 
Through a partial-wave analysis of this quantum-mechani
cal problem, Aharonov and Bohm independently redisco
vered Ehrenberg and Siday's earlier proposal2 that a mag
netic field can have a quantum effect which is "not due to the 
magnetic field itself." This surprising effect has stirred a li
terature controversy which is still active today, because of its 
far-reaching consequences for physical theories.3 Our pur
pose here is not to take part in the controversy but to present 
a mathematical study of core size effects on the bound states 
and scattering states of the problem. By assumption, the core 
is very hard and long, and its axis coincides with the z axis of 
a cylindrical coordinate system (p,¢, z). 

In the first part of our paper, the bound state Aharonov
Bohm effect is studied. We show that there are two possible 
types of eigenstates: (1) eigenstates whose eigenvalues are 
independent of the hidden field but which are not invariant 
under rotations by multiples of 2tr around the z axis, and (2) 
eigenstates which are cyclic in the angular coordinate ¢ but 
whose eigenvalues depend explicitly on the hidden flux. The 
local values of electron density and current density are 
shown to be flux independent in the first case and to depend 
on the hidden flux in the second one. The requirements of 
gauge invariance are discussed. 

In the second part of our paper, we consider the impor
tant case of electron scattering by a hard core of finite radius 
R which contains a magnetic flux in its interior. Again, there 
are two possible forms of the total wave function, associated 
with the non periodic and the periodic partial-wave spectrum 
discussed in the first part of the paper. When the nonperiodic 
form is used for the partial-wave analysis, the total scattering 
cross section is finite and independent of the hidden flux. On 
the other hand, when the periodic form is used, there results 
a local change in the charge density and the total scattering 
cross section diverges for all values of the core size R; this 
poses a major problem in this case. Aharonov and his co-

workers4 recently published some considerations pertaining 
to scattering of a uniform electron beam by a core of finite 
radius. Their solution is an extension of Aharonov and 
Bohm's original solution and, as such, does not deal with the 
nonperiodic solution considered here. Aharonov and co
workers actually consider the finite core solution to see how 
it behaves when the core radius is small, but nonzero. How
ever, as can be seen from our results for the periodic scatter
ing state, the physical parameter which characterizes the 
core size is the dimensionless combination kR, where 
k =(2mE Ifr)I/2 is the wave vector of the incident electrons, 
E is the energy, m is the mass, and fz is Planck's constant 
divided by 2tr. When kR < 1 the diffracting core is "small" 
and when kR> 1 the diffracting core is "large." Now, in ex
perimental cases reported in the literature, workers have 
used energies5 in the vicinity of 100 keY so that k = 1012 

m -lor so. A typical core size6 is of order R = 10-6 m and so 
kR> 1, Le., the diffracting core is large. To reduce kR to 
unity would require energies 1012 times smaller than those 
currently used if one still assumes that R = 10-6 m. From a 
practical point of view, therefore, the theoretical region of 
small core size investigated originally by Aharonov and 
Bohm and more recently by Aharonov and co-workers is not 
very useful and a more general discussion of this problem is 
needed. 

Corinaldesi and RafelC and Henneberger8
•
9 have also 

done some work on the zero-size limit of the scattering prob
lem under investigation here. The work of these researchers, 
particularly Hennebergers's, prompted us to construct a 
model where the wave function cannot reach the z axis and 
where a study of the periodicity and non periodicity of the 
wave function was made. It does not appear that the square
integrability argument used by Henneberger9 is valid in our 
case because the wave function cannot reach the z axis, by 
construction. 

II. BOUND-STATE AHARONOV-BOHM EFFECT: 
PERIODIC AND NON PERIODIC EIGENSTATES 

In this section, we consider the eigenstates and eigenval
ues of an electron (q) which is confined to the two-dimension-
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al region R <p < R " where p is the distance to the solenoid 
axis. The magnetic flux provided by the hidden field is 
- ah Iq, by assumption, and it is positioned at p = 0; a is 

assumed positive and it is a dimensionless quantity. The ei
genstates of the system satisfy the differential equation 

2( a 2 1 a k 2).'. ( a .)2.,. P -+--+ 'f'= - -+za 'f" 
ap2 p ap at/> 

( 1) 

where k 2 is 2mE lfil, with E the eigenvalues. In general, it is 
permissible to write 

(2) 

where v is a number to be determined, and A ~ + a is a norma
lization constant. The function!v+a(p) satisfies the differ
ential equation 

(~+.l~+k2_ (v+a)2)/, (p)=O (3) 
ap2 p ap p2 v + a , 

whose general solution is a linear combination of the Bessel 
functions Jv+a(kp) and Yv+a(kp). By construction, the ei
genstates must vanish at p = Rand p = R ' and so it is per
missible to write 

!v+a(P) = Jv+ a (kp)Yv+ a(kR ) -Jv+a(kR )Yv+a(kp). 
(4) 

The boundary condition!v+a(R ') = 0 then gives an equa
tion for the energy levels E = fil k 212m: 

Jv+a(kR ')Yv+a(kR) =Jv+a(kR )Yv+a(kR '). (5) 

For v, a, R, and R ' given, we then have eigenvalues E ~ + a' 

where I is a label attached to the distinct solutions ofEq. (5). 
In order to determine the number v, extra physical con

ditions must be imposed. If, following tradition, we impose 
that the eigenstates be cyclic in t/>, then vis an integer n; As a 
result, the energy levels of the particle depend explicitly on 
the hidden flux, through a. Furthermore, the probability 
density at p also depends on a; 

ItfJI 2 = IA :+a 121!n +a(PW. (6) 

A similar dependence on a is found for the current density j 
at a point. On the other hand, on the grounds of gauge invar
iance, 10 we may require that the physical observables ItfJI 2,j, 
and E be unchanged by the hidden field. As a result, we must 
set v + a = n + /j in the eigenstates and eigenvalues, with n 
an integer and /j a fixed number which is a independent. In 
particular, if a = 0, we must obtain the zero flux solution 
and so /j = 0 and the physical observables are the same as 
they would be in the absence of the hidden field. For exam
ple, 

(7) 

where IA ~ - a 12 is found to be a independent upon normali
zation; similarly, the eigenvalues are given by the a-indepen
dent equation 

(8) 

However, the eigenstates now contain the angular term 
eim/>e - iat/> and so they are nonperiodic in t/> if a is noninteger. 
We will return to this point in our concluding remarks. 
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III. PERIODIC AND NON PERIODIC SCATTERING 
STATES 

We now extend the previous considerations to the scat
tering context and use the partial wave bases of the previous 
section to formulate the problem. The radius of the inacces
sible core is R, as previously, and the outer boundary p = R ' 
is removed. Furthermore, we assume that an incident plane 
wave 

(9) 
m 

is traveling in the positive x direction and scatters off the 
hard core plus hidden field. As is customary in scattering 
theory, we require that the scattered wave I[Is behave like an 
outgoing cylindrical wave eikp I p l/2, as p -. 00. Because of 
the hard core, the total wave function 

1[1 = tpo + 1[1. (10) 

vanishes atp = R. 
The Hankel function H ==J + iY satisfies the require

ments imposed on the scattered wave and so we write the 
cyclic version of the total wave function thus: 

1[1 = ~ eimt/> (A ':"Hlm + al (kp) + B ':"J1m + al (kp)). (11) 
m 

In this expression, 

B':" = (- l)m( _ i)lm+al (12) 

and 

(13) 

as found through the boundary conditions on tp atp = R and 
on I[Is as p -. 00. The total cross section per unit length 
along the z axis G'is given by integrating 

(14) 

over t/>, from 0 to 21T, assuming that p -. 00; I[Is = tp. (p,t/> ) is 
the asymptotic form of the scattered wave. We write tps as 
follows: 

1[1. = tpl + 1[12 + tp3' 

where 

1[1. = ~ eimt/>.TI., z' 1 2 3 
I £.. rim =", 

m 

by definition. Here, 

tplm =A':"Hlm+adkp) 

and 

(15) 

(16) 

(17) 

(18) 

are terms that determine the total wave function 1[1, and 

tp3m = - ilmlJlml (kp) (19) 

determines the negative of the incident wave. In terms of 
these functions, the total scattering cross section is 

3 

G' = ~ G'ij> 
i,1= I 

where 

G'ij = 1Tp ~(tp!. ~m + tpim tp;..). 
m 
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Note that uij = Uji so that we only require a calculation of 
Ul1 , U22' U33' UI2 = U2I' U 13 = U 31 ' and U23 = U32• In order to 
make the discussion of the limiting case R ---+ 0 easier later 
on, we give here the terms which are core-size independent 
(U22' U33' and U23 = (32): 

U22 = 21Tp L Jim +al (kp), (22) 
m 

(23) 
m 

and 

m 

Xcos[(lml-lm + a l)1l (24) 

One may be tempted to replace the Bessel functions of Eqs. 
(22)-(24) by the asymptotic form l1 (2/1Tkp)I/2 cos(kp - 1TI 
4 - v1T/2), in order to make U22' U33' and U23 independent of 
p. Such a procedure is often used to obtain the cross section 
whether it be in quantum-mechanical or electromagnetic 
scattering. Its application here is, however, not mathemat
ically justified because the functions Jy(kp) involved in the 
above series are not multiplied by a factor whose magnitude 
decreases as Iml increases. The present coefficients, e.g., the 
cosine modulation in U 23' are of order unity for all m and 
thus fail to provide the cutoff which is already built into the 
exact Jv(kp). Indeed, as is known,l1 the following expression 
holds for v>kp: 

(25) 

this property ensures the convergence of the above series to a 
finite, p-independent value in the asymptotic region. As a 
result, the sum of the core-size independent terms, 
Ua =U22 + U33 + 2U23, diverges linearly withp. One can ver
ify this latter property exactly for the case a = odd integer 
since then U23==0 and U22 = U33 = 21Tp. The explicit p de
pendence of U a in the asymptotic region leads to an explicitp 
dependence of the total cross section of Eq. (20) and is not 
consistent with our original requirement (see earlier in this 
section) that '/Is behave like an outgoing cylindrical wave 
eikp Ipl/2 in the asymptotic region. This lack of self-consis
tency of the theory is apparently due to the long-range na
ture of the vector potential. Indeed, the "strength" of the 
potential may be characterized by the circulation ~A. dr 
over a closed circle of radius p centered on the solenoid axis; 
this strength does not vanish asymptotically and the im
posed requirement that the full '/Ibecome the incident '/10 as 
p ---+ 00 is not met. The long-range behavior of the present 
solution does not decay into that of the incident beam and 
the theory is not self-consistent. 

An ad hoc solution to the present dilemma might be to 
replace the original beam by a beam of finite extent. One 
could assume an incident beam of the form 
~milmle-ElmIJlml(kp)eim.p, where E>O is a positive number. 
Such a procedure does ensure that the anomalous part of the 
cross section is p independent asymptotically. Then, for ex
ample, 
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m 

_ : ~ e-2Elml cos2( kp _ ; _ 1~11T). (26) 

and the sum is absolutely convergent. However, for E ---+ 0+, 
the cross section is strongly dependent on the beam shape, 
through E, and the total cross section diverges in that limit. 
Indeed, the anomalous cross section is simply obtained in 
closed form for E ---+ 0, 

U a ex: csch(2E), (27) 

and the result diverges in that limit. 
The finite core contribution to the cross section is 

Un = Ul1 + 2u12 + 2u13 and it behaves properly for all val
ues of E. The limit E ---+ 0+ presents no difficulties and so we 
take it at the outset. As a result, we find 

U 12 = - 21Tp L Mlm+al(kp)Yam(P)Yam(R) cos Aam(p,R) 
m 

- _.±. L Yam(R )r:m(P)COSA ~m(p,R), 
k m 

(29) 

and 

U 13 = 21Tp LMlm+a,(kp)Yam(R )Yam(p)cos8am (p,R) 
m 

where 

8y(s)=tan- I(Yy(s)lJy(s)) 

and 

(31) 

(32) 

are the phase and modulus of the Bessel functions J and Y. II 

Also, 

and 

Aam (p,R )==8Im + al (kR ) - 81m + al (kp), 

Yam (s)=cos 8 1m + al (ks), 

(33) 

(34) 

8am (p,R )==A.am(p,R) + (1m + al - Iml)1T/2; (35) 

the quantities A ~m' r:m' and 8 ~m refer to the above defini
tions, with 8y (kp) replaced by its asymptotic expression l1 

8 : (kp) = kp - 1T/4 - v1T12. (36) 

The second line ofEqs. (28)-(30) gives the asymptotic form of 
the corresponding expression; in each case, the series in
volved contains roughly kR finite terms and the normal part 
of the cross section is of order R, as expected on a semiclassi
cal basis when kR> 1. As is easily shown, the normal part of 
the cross section vanishes in the limit kR ---+ O. As a result, 
the total cross section diverges due to the anomalous part U a 

[see Eq. (27)]. Henneberger8 appears to have been the first to 
mention this anomaly of the AB cross section in his study of 
the zero-size core problem (kR ---+ 0). Henneberger had sur
mised that the origin of the divergence was due to the pres
ence of the wave function on the solenoid axis. As shown 
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here, however, the difficulty is deeper than this: the cross 
section still diverges for a finite core size. 

The nonperiodic form of the scattering wave function is 
easily found to be 

l/I=e-iaif>l/Ia=O' (37) 

where 

1/1 = ~ 'Iml [J (kp) _ Jlml (kR) H (kp)]eimif> (38) 
a = 0 ~ I Iml H (kR ) Iml 

m I~ 

is the wave function with a = O. This represents scattering of 
a plane wave by a scalar-potential hard core atp = R only, in 
the absence of hidden flux. The total scattering cross section 
for the state represented by Eqs. (37) and (38) is equal to 
0"11 + 20"12 + 20"13' with O"ij given by Eqs. (28)-(30) and 
a = O. The anomalous contribution vanishes and so the 
physical properties are well behaved. Henneberger also stud
ied9 some of the aspects associated with a noncyclic scatter
ing wave function, for a core of zero size. Equations (37) and 
(38) represent the first generalization of his results for the 
caseR #0. 

The scattering state of Eq. (37) is generally not single 
valued, as implied by its noncyclic character. Furthermore, 
the usual requirements that the full wave function 1/1 decay 
into the incident beam "outside" the range of the potential is 
not met. Indeed, as p __ 00, 1/1- eiaif> eikp 

cos if>. This problem 
can again be traced back to the infinite range of the vector 
potential used in discussions of AB scattering. 

IV. CONCLUDING REMARKS 

It appears extremely difficult to ascribe a physical 
meaning to the observables computed by assuming that the 
eigenstates or scattering states of an AB system are periodic 
in the coordinate cp, i.e., single valued. In such a case, the 
gauge invariance of the theory appears to be broken and the 
scattering cross section is divergent. The divergence of the 
cross section is not unique to AB scattering, however, since 
this property also occurs in Coulomb scattering, due to the 
long-range nature of the interaction. What is really special 
here is the absence of a long-rangeforce to cause the diver
gence. However, there is a long-range vector potential inAB 
scattering and if we accept Aharonov and Bohm's original 
suggestion that it, by itself (R -- 0), can scatter particles, 
then the finding that 0" (anomalous) diverges for an incident 
beam of infinite extent may not be all that surprising. The 
total cross section of Eq. (20), 0" (normal) + 0" (anomalous), 
represents the effects of scattering by the scalar and the vec
tor potentials in our problem. The normal part of 0" is essen
tially due to scattering by the hard core, proper account be
ing taken for the continuing interaction of those particles 
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with the vector potential as they move out to infinity. Con
servation of the number of such particles is reflected by the p 
independence and finite value of 0" (normal). The anomalous 
contribution, on the other hand, takes into account the scat
tering of all those particles of the incident beam which would 
normally not "collide" with the core because their impact 
parameter (Iml - values>kR) is too large. Because of the 
infinite range of the vector potential used in AB scattering, 
scattering events "cumulate" up to infinity and the number 
of scattered particles eventually diverges for a beam of infi
nite extent. As we have seen, the difficulty may be removed 
by limiting the spatial extent of the incident beam, but the 
strong beam-size dependence of the resulting cross section is 
hardly acceptable as a definitive solution. Failure to incorpo
rate the tailing-off of the vector potential asp __ 00 (as would 
be the case for a realistic situation) seems to imply that the 
usual assumption of scattering theory that the total 1/1 even
tually decays into the incident 1/10 is not met. This latter point 
is clearly shown by the nonperiodic solution ofEq. (37) and 
so both the present cyclic and noncyclic solutions are faced 
with serious difficulties. We believe that proper account of 
the tailing-off of the vector potential will lead to a correct 
physical solution of this question, even when an incident 
beam of infinite extent is used. Once this is done, the limit of 
the solenoid length going to infinity can be taken since then 
the boundary conditions on 1/1 atp -- 00 will have been prop
erly satisfied. Such a solution is not presently available, how
ever. 
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The physical idea of a continual observation on a quantum system has been recently formalized by 
means of the concept of operation valued stochastic process (OVSP). In this article, it is shown 
how the formalism of quantum stochastic calculus of Hudson and Parthasarathy allows, in a 
simple way, for constructing a large class of OVSP's that in particular contains the quantum 
counting processes of Davies and Srinivas and continual "Gaussian" measurements. This result is 
obtained by means of a stochastic dilation of the OVSP's: at the level of the enlarged system 
probabilities tum out to be expressed in terms of projection valued measures associated with 
certain time-dependent, commuting, self-adjoint operators. 

I. INTRODUCTION 

Continual measurements can be consistently intro
duced in quantum mechanics by using the general frame
work of measurement theory. In this setup, effect (or positive 
operator) valued measures generalize the concept of observa
bles (usually associated with projection valued measures) 
and operations generalize the Von Neumann reduction pos
tulate. l -4 

Up to now, two classes of continual measurements have 
been independently introduced and studied: counting pro
cesses (analogous to classical Poisson processes),2.5-1O and 
the continual measurements of some observables with 
"Gaussian" instruments. 11-20 In both cases the dynamics of 
the continually measured system is given by a quantum dyn
amical semigroup as for quantum open systems. In Ref. 12, 
operation valued stochastic processes (OVSP's) have been in
troduced as the mathematical objects that formalize the con
cept of continual measurements in quantum mechanics. 

Meanwhile, the analysis of quantum open systems has 
led to the introduction of the concept of quantum stochastic 
process21-26 and the development of a quantum stochastic 
calculus,27-29 which enable one to construct unitary dila
tions of quantum dynamical semigroups27-29 and a wide 
class of quantum stochastic processes. 26 

In this paper we want to show how quantum stochastic 
calculus can be used for constructing a class of OVSP's 
which generalizes the results of Ref. 12 and includes and 
mixes the "Gaussian" and the "Poisson" cases. Moreover, in 
this way, we obtain a dilation of the irreversible dynamics to 
a reversible one and of the effect valued measure, describing 
the continual observation, to a projection valued one; at the 
level of the enlarged system the continually measured obser
vables are associated with a set of self-adjoint operators com
'muting also at different times (in the Heisenberg picture). 

The plan of the paper is as follows. In Sec. II we give the 
definition ofOVSP and introduce the notion of characteristic 
operator of an OVSP. In Sec. III we sketch the formalism of 
quantum stochastic calculus, with emphasis on the struc
tural properties which are needed in our work. In Sec. IV we 
construct a class ofOVSP's by giving a dilation for them, in 

some sense similar to stochastic dilations of quantum dyna
mical semigroups. In Sec. V we study the meaning of this 
dilation. For the global system the standard formulation of 
quantum mechanics appears to hold: commuting (at all 
times) self-adjoint operators are associated with the contin
ually measured quantities, after the measurement the state of 
the system is given by the Von Neumann reduction postu
late, etc. In Sec. VI we show how the class of continual mea
surements studied by Davies and Srinivas2.5-10 is included in 
the class ofOVSP's found in Sec.IV. 

II. OPERATION VALUED STOCHASTIC PROCESSES 

The most general setup for speaking of continually mea
sured quantities is that of generalized stochastic processes 
(GSP).30.31 Let f» be the nuclear space of the n-component, 
real COO functions h(t )=(hl(t ), ... ,hn (t)) on R with compact 
supports. The random variables are taken to be the elements 
of f»', the topological dual space of f»; thus, f»' is the "tra
jectory space" of the continually measured quantities. For 
x e f»' and he f», we denote by Xh the distribution x ap
plied to the test function h. The subsets of f»' of the form 
{x e f»': (x h (I) , ... ,x h I,d e B I, where B is a Borelsubset of RS 

, 

are called cylinder sets. We equip f»' with the u algebra ~ 
generated by the cylinder sets and denote by ~(t,.t,), t I < t2, 

the sub-u-algebra generated by the cylinder sets defined by 
test functions with supports contained in the time interval 
(t l ,t2)· 

Now, let h be the Hilbert space of the measured system 
and denote by T (h) the Banach space of the trace-class oper
ators on h. An operation valued stochastic process (OVSP) is 
defined to be a set oflinear maps Y(t2,t I;N), N e I(t,.t,» from 
T(h) into itself with the following properties: (i) Y(t2,tl;N), 
V N e I(t,.t,) is completely positive; (ii) Y(t2,tl;·) is u additive 
onI(t,.t,) (convergence in the strong sense); (iii) Y(t2,tl ;f»') is 
trace preserving (normalization); and (iv) the following Mar
kov property holds: 

Y(t3,t2;M)Y(t2,tl;N) = Y(t3,tl;M n N), 

V N e I(t,.t,), V Me I(t,.t
3
)' t I < t2 < t3' (2.1) 
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By properties (i)-(iii), Y(f2,f);') is a normalized operation 
valued measure (OVM)2 on .I(t"t,) for any time interval (f ),f2) 
of measurement. The physical interpretation of these prop
erties is the following: if p is the statistical operator for the 
system at time f), then 

(2.2) 

is the probability of finding the result x E N (N E .I(t"t,)) and 

(2.3) 

is the state at time f2' conditioned upon the result x E N. 
Property (i) is mathematically stronger than the simple posi
tivity of quantities (2.2) and (2.3); for a physical motivation of 
this condition, see for instance Ref. 3. 

Property (iv) ensures the consistency of the OVM's re
ferring to different time intervals. First, by Eq. (2.1) and 
property (iii), we have 

PIN I p,f)) = Tr{Y(f2,t);N)(p)] 

= Tr{ Y(f3,f);N)(p)], N E .I(t"t,l' t) < f2 < t3; 

(2.4) 

therefore probabilities do not depend on the future but only 
on the past. Then, if we introduce the conditional probability 

P(M IN;p,fIl: = P(MnN I p,tIlIP(N I p,tIl 

_ Tr{Y(t3,t);MnN)(p)J 
- Tr{Y(t3,t);N)(p)] 

N E .I(t"t,), ME .I(t"t,) , t) < t2 < t3, (2.5) 

we have 
P(M IN;p,tIl = P(M I p',t)), (2.6) 

where p' is given by Eq. (2.3); therefore, at any time, the 
whole information on the past can be represented by a statis
tical operator. 

Note that the triple 

{E', .I(t"t,l' P('I p,t))], for givenp,t),t2 
is a GSp.30

,3) Just as a GSP is uniquely determined by its 
characteristic functional, an OVSP is uniquely determined 
by its characteristic operator [1(t2,tdcp]) (Refs. 12 and 15), 
defined as the mean value of exp(lxq»' cp E iZ1(t"t,) [iZ1(t"t,) is 
the subspace of iZ1 of the functions with supports contained 
in (t),t2)] with respect to the OVM Y(t2,t);.). 

The characteristic operator [1 (t2,t);[CP]) of an OVSP has 
the following properties. 

(a) It is a bounded linear operator from T(h) into itself. 
(b) It is normalized, i.e., 

Tr ([1(t2,t);[O])(Xll = Tr(X), 'rJX E T(h). (2.7) 

(c) It is of completely positive type, i.e., the quantities 
n 

I ar[1(t2,t);[CPi - CPj ])aj 
i,j= ) 

are completely positive for any choice of the integer n, of the 
complex numbers ai' and of the test functions CPi (t ). 

(d) It is strongly continuous in cP (cp E iZ1(t"t,)). 
(e) It satisfies the following composition law: 

[1(t3,t2;[CP2])[1(t2,t);[cp)]) = [1(t3,t);[cp) + CP2])' 

'rJcp) E iZ1(t"t,1' 'rJCP2 E iZ1(t"t,1' t3>t2>t). (2.8) 
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Vice versa, given a set of operators [1(t2,t);[cp]) with 
properties (aHe), there exists a unique OVSP whose charac
teristicoperatoris [1 (t2,t);[CP]). Note that, whenh = C, these 
properties define the characteristic functional of a classical 
GSP with independent values at every time.30 

In this paper we shall consider only time-translation in
variant OVSP's. This notion is formalized in Ref. 12; when 
the Schrodinger picture is chosen, for the characteristic op
erator time-translation invariance becomes the following. 

(f) If we put cpit)(t) = cp(t - t), then, 'rJ cP E iZ1 (t"t,l' we 
have 

[1(t2 + t,t) + t;[cpit )]) = [1(t2,t);[cp]). (2.9) 

By these properties, the family of operators 

[1(t2 - t)): = [1 (t2,t); [O])=Y(t2,t);iZ1') (2.10) 

is a quantum dynamical semigroup2 and gives the dynamics 
of the measured system [see Eq. (2.3) and Ref. 12]. 

Finally, let us recall that for any operator .!if in T (h) it is 
possible to define its adjoint .!if' in B (h) (Banach space of 
bounded operators on h) using the duality relation between 
T (h) and B (h). In particular, in the following sections it will 
be useful to work with [1'(t2,tdcp]). Moreover, using this 
notation, we can write the probabilities (2.2) as 

PIN I p,to) = Tr (F(to;N)p), NE.I(to,tfl' (2.11) 

where, denoting by 1 the identity operator on h, 

F(to;N): = Y'(tl,to;N)(I); (2.12) 

F(to;') turns out to be an effect (or positive operator) valued 
measure.),2 Ifwe consider cylinder sets and put 

F(h Itl, ... ,h lSI) (to;B ): = F(to;(xh,,,,· .. , xh(sd E B), (2.13) 

we have that F; ... ) (to;') is an effect valued measure on the Borel 
u algebra of RS and it can be formally obtained from the 
characteristic operator by taking the Fourier transform 

F;h ''', ... ,h ('I) (to;B ) 

= i d x _1_ f d k exp( - ik • x) 
B '(217')' S 

X [1' (tl,to; Lt) krh(r)(tJ]) (1). (2.14) 

By similar formulas, the operations y( ... ) can be recon
structed from the characteristic operator. 

III. QUANTUM STOCHASTIC CALCULUS 

In this section we want to recall some results about 
quantum stochastic calculus and related topics,26-29 mainly 
for fixing notations. 

Let 2\( - 00, + 00) r(Li( - 00, + oollbethesym
metric Fock space over the space of the square-integrable 
functions taking values in a complex separable Hilbert space 
k. We denote by tP (I),f ELi ( - 00, + 00), the exponential 
vectors in the Fock space 

tP (I) = (l,f, ... ,(n!)-)/2j® •.• ® f, ... ); (3.1) 

we recall that { tP (f);! ELi ( - 00, + 00)] is a total family in 
2\ ( - 00, + 00) (Ref. 32), {tP (/;); i = 1, ... ,n] is a set oflin
early independent vectors, if/; ¥= Jj for i ¥= j, and the following 
equality holds: 
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(3.2) 

In these notations the Fock vacuum is t/J (0). 
Similarly, one can introduce the space 

.!f k (s,t )=r (L Z (s,t I), for s < t,s,t E R. Then, there is the nat
ural identification 

.!fd- 00,+ OO)=.!fk(- OO,s)®.!fk(S,t)®.!fk(t, + 00) 
(3.3) 

in which, forii EL Z( - oo,s),h EL Z(S,t),h EL zIt, + 00), 

(3.4) 

Using the structure (3.3), we introduce the W* algebras 

1f(s,t):=I®B(.!fds,t))®I. (3.5) 

In the following we shall use the property 

( t/J(O), JX 0t/J (0)) = j~X (t/J (0),0t/J (0), 

for Cj E 1f(tj,t)+ d, t1 < t2 <... . (3.6) 

Now, we define the time-shift operators St on 
.!f k ( - 00, + 00) by26 

STt/J(f) = t/J(fT)' /,.(t) =f(t + 1'); (3.7) 

(St;t E R 1 is a strongly continuous one-parameter group of 
unitary operators. Moreover, we have 

S, t/J(O) = t/J(O), 

S T+ '6'(S,t)ST = 1f(s + 1',t + 1'). 

(3.8) 

(3.9) 

In a series of papers (see, for instance, Refs. 27-29) Hud
son and Parthasarathy have developed a noncommutative 
stochastic calculus with respect to the basic operator pro
cesses At> A ,+ (quantum Brownian motion) and At (gauge 
process). For simplicity, consider .!f(0, + 00) 
=r(L ~ (0, + 00)); then the basic processes are defined as 
follows: 

A,: = a(xIO,t I)' A ,+: = a+(xIO,t I)' t>O, (3.10) 

A,t/J(f):= -i:Et/J(eXP[iEX1o"df)I£=0, t>O, (3.11) 

where a(f) and a + (f) are the annihilation and creation oper
ators in the Fock space defined by 

a(f)t/J(g) = (J, g)t/J(g), 

d 
a+(f)t/J(g) = dE t/J(g + Ef)I£=o' 

(3. 12a) 

(3.12b) 

Note that, using the heuristic notation usually adopted in 
theoretical physics, we can write 

A, = f dl'a(l'), A ,+ = f dl'a+(l'), 

A, = f dl' a+(l')a(l'), 

(3.13a) 

(3.13b) 

where we have introduced the boson field a(t), a+(t) satisfy
ing the CCR's 

[a(t),a+(t')] =£5(t-t'), [a(t),a(t')] =0. (3.14) 

Consider now the space A ® .!f(0, + 00) (A is the "ini
tial" Hilbert space); we identify At and I ®A" etc. In this 
context, stochastic differentials28 are defined by 
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dM(t)=E(t)dAt +F(t)dA, +G(tJdA,+ +H(t)dt, 
(3.15) 

where M (t ), E (t), F (t), G (t ), H (t) are adapted, which 
meansM(t) E B (A) ® 1f(O,t), etc. (or, if unbounded, they are 
affiliated to this algebra). The differential of a product can be 
evaluated by means of the quantum Ito's formula 

d (MN) = (dM)N + M(dN) + (dM)(dN) (3.16) 

and of the multiplication table 

dA, dA, dA ,+ dt 

dA, dA, 0 dA ,+ 0 

dA, dA, 0 dt O. (3.17) 

dA ,+ 0 0 0 0 

dt 0 0 0 0 

The following theorem allows for the construction of 
stochastic evolutions. 

Theorem 3.1 (Hudson and Parthasarathy27,28): Let R, 
W, H EB (A), Wunitary and H self-adjoint. Then, there ex
ists a unique strongly continuous adapted family of unitary 
operators on A ® .!f(0, + 00) such that 

dU(t)= {(W-l)dA, -R +WdA, +RdA,+ 

- (!R + R + iH )dt 1 U (t ), 

U(O) = I. 

(3.18a) 

(3.18b) 

The family (U (t), t>O 1 gives a unitary dilation of a 
quantum dynamical semigroup on B (A). Indeed, let us define 
the operators Y" t>O on B (A) by 

Yt(X) = Eo(U(t)+XU(t)), XEB(A), (3.19) 

where the vacuum conditional expectation map 
Eo:B (A ® .!f(0, + 00 ))---+B (A) is defined by 

(u,Eo(J)v) = (u ® t/J(O),J v ® t/J(O), 

u,v E A, J E B (A ® .!f(0, + 00)). (3.20) 

Then, the following theorem holds. 
Theorem 3.2 (Hudson and Parthasarathy28): (Yt , t>O 1 

is a uniformly continuous semigroup of completely positive 
maps on B (A), whose infinitesimal generator .!f is given by 

.!f(X) = i[H,X] -!(R +RX +XR +R) +R +XR, 

XEB(A). (3.21) 

In the following, the operators St on .!f( - 00, + 00) 
defined by Eq. (3.7) and the operators U (t ) on A ® .!f (0, + 00) 
defined by Eq. (3.18) will be identified with the operators 
IA ®S, and 1.>"(_ 00,0) ® U(t),actingonA ®.!f( - 00, + 00), 
respectively. For s,t E R, we define a two-parameter family 
of unitary operators on A ® .!f ( - 00, + 00) by 

U(t,s) = S.+ U(t - s)Ss' (3.22) 

In Ref. 26 it is shown that the following properties hold: 

S T+ U (t,s)ST = U (t + 1',s + 1'), (3.23a) 

U(t,s) is strongly continuous in sand t, (3.23b) 

U(t,s) E B (A) ® 1f(s,t), (3.23c) 

U(t,s)U(s,r) = U(t,r), r,s,t. (3.23d) 
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More generally, a two-parameterfami1y of unitary oper
ators U (t,s) on h ® .!f k ( - 00, + 00) with the properties 
(3.23) is called a covariant adapted unitary evolution26 (see 
also Refs. 23 and 25). So, the results of Ref. 20 allow for 
constructing a large class of such evolutions when k = e or, 
with a trivial extension, when k = eN. The case of an infi
nite-dimensional k could be treated along the lines of Ref. 29. 
We note also that in the general case the equation [cf. Eq. 
(3.19)] 

then ~'(t,to;['P]) is a linear operator on B (h), continuous in 
the ultraweak topology.2 This guarantees (see for instance 
Ref. 33) that a bounded linear operator ~(t;to;['P]) exists 
from T (h) into itself such that V X E B (h), V pET (h) 

Tr" {p~'(t,to;['P])(Xll = Tr" (X~(t,to;['P])(pll. 

Property (b): From the definition (4.5) and Eq. (4.2), we 
have 

~'(t,to;[O])(I) = Eo(U(t,to) + V [0] U(t,to)) = I, 

Y,(X) = Eo(U(t,O)+ XU (t,O)), X E B (h) 

defines a quantum dynamical semigroup.26 

(3.24) and, therefore, ~(t,to;[O]) is trace preserving. 

IV. CONSTRUCTION OF OPERATION VALUED 
STOCHASTIC PROCESSES 

Using the formalism of quantum stochastic calculus, 
OVSP's can be constructed. First, we establish the main re
sult of this paper by exploiting only general structural prop
erties. Then, we consider a particular case and obtain an 
explicit construction of a large class of OVSP's. 

Let { V['P];'P E f!jJ} be a family of unitary operators on 
.!f k ( - 00, + 00) with the following properties: 

V+ ['P] = V[ - 'P], (4.1a) 

(4.1b) 

V['P] E CG'(tl,t2), ifsupp('P)C(tl,lz), (4.1c) 

V ['P] is strongly continuous in 'P, (4.1d) 

s,V['P(il]S,+ = V['P], (4.1e) 

where supp('P) = Lf.' = I supp(<p.); Equation (4.1a) and (4.1b) 
and unitarity imply 

V[O] = I. 

Note that, by these properties and Eq. (3.6), 

L ['P]: = (tf!(0), V [ 'P ] tf!(0) 

(4.2) 

(4.3) 

is a normalized, continuous, positive definite functional on 
f!jJ with the further property 

L ['PI + 'P2] =L ['PdL ['P2]' 

(4.4) 

therefore, L ['P] is the characteristic functional of a GSP with 
independent values at every time.30 

Consider now the space h ® .!f k ( - 00, + 00) and iden
tify V['P] with I" ® V['P]; we have the following result. 

Theorem 4.1: Let V[ 'P] be the family of unitary operators 
introduced above and U (t,s) a covariant adapted evolution on 
h ®.!f k( - 00, + 00). We define the operator ~'(t,to;['P]), 
for sUPP('P) C (/o,t ), from B (h) into itself, by 

~ '(/,to; ['P])(X) = Eo( U (t,to) + XV ['P] U (/,to))' (4.5) 

Then, Y'(t,to;['P]) is the adjoint of an operator ~(t,to;['P]) on 
T (h) with the properties (aHtl of Sec. II; therefore it defines a 
time-translation invariant OVSP. 

Proof Property (a): As we have 

Tr" {p~'(t,to;['P])(X)} 

2225 

= Tr" .. ~ {(p ® 1tf!(0) (tf!(O)IW(t,to)+ 

XXV ['P] U(t,/o)}, 
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Property (c): FromEqs. (4.1a) and (4.1b) and the fact that 
V ['P] commutes with all X E B (h), we can write 

n 

L araj ~'(/2,tl;['Pj - 'P;])(X) 
i,j= \ 

= Eo {U(t,to) + (~\ arV ['Pi] + ) 

X X (tl aj V ['Pj] )U(t,to)}. 

By the fact that Eo is a completely positive map, property (c) 
follows. 

Property (d): Let {'Pa } a e I be a net in f!jJ (',,',1 converging 
s 

to 'P; then V['Pa]--"'V['P] by Eq. (4.1d). This implies that 
s 

~(/2,tl;['Pa]l--+~(/2,tl;['P]); indeed, we have 

II ~(t2,td 'Pa] IIp) - ~(t2,tl;['P ])(pllil 

= sup ITr" {X(~(t2,tl;[ 'Pa]) - ~(t2,tl;[Cp]))(p)} I 
Xe B("I 
IIXII=I 

= sup ITr" .. ~{X(V['Pa] - V ['P])U(/2,tt! 
Xe B("I 
IIXII=\ 

X (p ® I tit (0) (tit (0)I)U(t2,tt!+ }I; 
the last quantity goes to zero because V ['Pa] Y --... V ['P] Yin the 
trace norm, VY E T(h ®.!f) (see for instance Ref. 2, p. 6). 

Property (e): By using Eqs. (3.23d), (3.23c), (4.1c), and 
(3.6), we have 

V'PI E f!jJ("",» V'P2 E f!jJ("",» tl <t2 <t3, 

~'(t3,t\;['P1 + 'P2])(X) 

= EO(U(t2,ttl+ U(t3,t2)+ XV['P2] 

X U(t3,t2)V['Ptl U(t2,ttl) 

= Eo(U(/2,/1)+ Eo(U(/3,lz)+ XV ['Pz] 

X U(t3,tz))V['Pd U(tz,tt!) 

= ~ '(tz,tl; ['Pd)~ '(t3,lz; ['Pz] )(X). 

Therefore, ~( ... ) satisfies Eq. (2.8). 
Property (j): Using Eqs. (3.23a) and (4.1e) and the invar

iance of the vacuum under time shift, we have 

~'(t2 + t,/1 + t;['P("])(X) 
- - Cl --= Eo(U(/2 + I,ll + 1)+ XV ['P' ] U(lz + I,tl + t)) 

= Eo(S,+ U(lz,tt!+ Xs, V ['P("]S,+ U(tz,/I)S') 

= Eo(U(/2,/1)+ XV ['P] U(/2,/1)) 

= ~'(/z,/l;['P])(X), 
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and, so, Eq. (2.9) holds. Q.E.D. 
Now, we consider an explicit case that allows for the 

construction of a large and very interesting class of OVSP's. 
Take k = CN, so that the Hilbert space is A ®.!? N( - 00, 
+ oo),.!? N( - 00, + 00 )-F(L ~N( - 00, + 00)),L ~N( - 00, 
+ 00 )=CN 

® L 2(R). In this space the basic differentials 
dA ~j),dA V),dA ~j)+ ,dt (j = 1, ... ,N) are introduced; they can 
be defined for t>O as in Eqs. (3.10) and (3.11) and then shifted 
to all times by 

S / dA ~J)S1" = dA ~\ " etc. (4.6) 

Products of differentials with different indices vanish, while 
products of differentials with the same index are given by the 
multiplication table (3.17). 

First, we introduce in A ® .!? N ( - 00, + 00) a stochastic 
evolution by 

dU(t,to) = t~1 [(Jfj - l)dA ~J) - R / Jfj dA ~J) 

+ Rj dA ~J)+ - ~ R / Rj dt ] - iH dt } 

x U(/,to), 

U(to,/o) = 1. 

(4.7a) 

(4.7b) 

By a trivial extension of Theorem 3.1, the operators U (t,to) 
are unitary and enjoy properties (3.23); thus, (U(t,s), 
s<.t E R} is a covariant adapted unitary evolution. 

Then, we introduce the operators V[cp) by giving their 
action on the exponential vectors and extending them by 
linearity and closure to the whole Hilbert space 

V[CP]tP(!)=expf+'" dtIJ:, [Pj (P
j 

+}j(t)) - '" L= I Aj Aj 

X (i'!'(t) .aillAj _ 1) _ icp(t) • aU) Pi] 
Aj 

(4.8) 

where cp is a n-component real integrable function and 

(4.9a) 

gY)(t) = }j(/) + (}j(/) + ~~) (i'!'(t)'a((}lAj - 1). (4.9b) 

Note that one can have Aj = 0 for some j; in this case the 
right-hand sides of Eqs. (4.8) and (4.9b) are defined as the 
limit for Ar-+O; the same convention is adopted in all the 
following formulas. 

The operators defined by Eqs. (4.8) and (4.9) enjoy all the 
properties (4.1). This can be easily proved by exploiting the 
definition (4.8) and (4.9); moreover, operators of this kind are 
extensively studied in Ref. 28. Therefore, by Eq. (4.5), we can 
define the characteristic operator of an OVSP. Now, we 
want to see what the explicit structure of such a characteris
tic operator is. 

Let us put 

V (/,10; [cp]): = V Ltrlo,t }cp], 1>/0, cp E~. (4.10) 
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By computing (¢'(g), V(/,/o;[cp))tP(!)) fromEqs. (4.8) and (4.9) 
and by differentiating this quantity with respect to I, we ob
tain a differential equation for (¢'(g), V(/,/o;[cp)) rfJ(f). By 
comparing this result with the definition of quantum sto
chastic differential for an adapted process,28 we have that 
V (/,/0 ;[ cp)) satisfies the following stochastic differential equa
tion: 

(4.11) 

Vice versa, V (/,/0 ;[ cp)) is the unique solution ofEq. (4.11) (Ref. 
28), with the initial condition 

V(/o,/o;[cp]) = 1. (4.12) 

Now, we define 

Y '(/,/0; [cp])(X) 

= Eo(U (/,10) + XV(/,to; [cp])U (t,/o))' V X E B (A). 

(4.13) 

By theorem 4.1, (Y'(t2,tl;[CP)), cp E ~(tl,t,), tl < t2 E I} is the 
adjoint of the characteristic functional of an OVSP. 

Using the quantum Ito's formula (3.16), the multiplica
tion table (3.17), and the differential equations (4.7a) and 
(4.11), we obtain 

d(t) (U (t,to) + XV (/,to; [cp])U (t,/o)) 

= U(/,/o)+ t~1 [(W/ XJfjei<p(t).aIJ)Aj - X)dA~j) 

+ ((R/ + ~~)xekp(t).a(}lAj_X(R/ + ~)) 

XJfjdAP)- W/ ((Rj + ~~)X-X(Rj + ~) 
xei'!'(t).a(}lAj) dA U)+ + (R .+ XR - ..!.. (R.+ R ,x) 

t J j 2 J j 

+ (R/ + ~)X(Rj + ~}ei'!'(t).aI.I)Aj_l) 

- icp(/) • aU) ~; X) dl ] + i([H,x] 

+ cp(/)· cX}dt} V(t,to;[cp])U(t,to), (4.14) 

where {A,B} is the anticommutator between A and B. By 
taking the vacuum conditional expectation of Eq. (4.14) all 
terms containing dA ~J\dA ~j),dA ~j) + vanish and a differen
tial equation for Y'( ... ) is found. For y( ... ), this equation 
becomes 

(4.15a) 
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(4. 15b) 

where, 'tip E T(h), 

%(cp)(p) = .,ZP(p) + f [(Rj + Pi)p (R / + Pi) 
i_I ~ ~ 

N 

X (eUp'aUlA.j _ 1) _ icpo al') PI p] 
AJ 

+ icpo cp, (4.16) 

2'(p) = L (RJ pR / -!(R / RJ,pJ) - i[H,pl. 
J-I 

(4.17) 

Equation (4.17) gives the infinitesimal generator of the quan
tum dynamical semigroup (2.10) associated with the OVSP 
we have constructed. 

If we take AJ #0, for j = 1, ... ,M and Aj = 0, for 
; = M + 1, ... ,N, by making the replacements 

M P~ 
C-C+ L a l])-' , 

J- I Aj 

al'L_~IVIl)/' 1 . J' - 1 ,M -------,..-"'" AJ' - , ... , 

Il) Il) /'{3 J' - M + 1 N. a ---+U /, j' - , ... , , 

Rr~Rj -Pj/Aj' j= 1, ... ,M, 
. Mp 

H_H + .!.... L ...L(Rj -R/), 
2 j_ I Aj 

we find that %(cp) can be written as 

M . 111 
%(cp)( p) = 2'( p) + L Rj pR / (e"P' a_I) 

j-I 

+ f [(RJ P + pR / )icp 0 a l ]) 
j-M+I 

- ! (cpo a ll))2p] + icp 0 cp, 

whi~t .,ZP does not change. 
As the formal solution ofEqs. (4.15) is 

~ (t2,t I; [cp]) = T exp (" dt %(cp(t )), Jt, 

(4.18a) 

(4.18b) 

(4. 18c) 

(4.18d) 

(4.19) 

(4.20) 

where Tmeans the time-ordered product, we can identify in 
Eq. (4.19) a Poisson and a Gaussian contribution; therefore, 
Eq. (4.19) generalizes the results of Ref. 12, where only the 
Gaussian part was found.·1t can be also shown (see Sec. VI) 
that the pure Poisson case corresponds to the class of contin
ual measurements studied by Davies and Srinivas.2

•
S

-
IO 

In Ref. 12 it is shown how the moments of the continual
ly measured quantities x(t) can be obtained by functional 
differentiation of the characteristic operator. In particular, 
by Eq. (4.19), for the mean values we have 

(x;(t )Ip.to) = Tr {[j~1 a\')R / RJ 

+ f a\')(R/ +Rj)+C;]P(t)} , 
J-M+I 

(4.21) 
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where 

pit) = exp[(t - to)2'](p). (4.22) 

So, we can say that the continually measured quantity XI (t ) is 
represented by the self-adjoint operator 

M N 

C; = L a\')R / Rj + L a~(R / + Rj ) + Ct. (4.23) 
j-I j-M+I . 

v. THE DILATION 

In the previous section a certain class ofOVSP's on T(h) 
has been constructed starting from quantities defined in 
h ® r (L ~N(R)); therefore we have also obtained a dilation of 
this class of OVSP's. In this section we want to show the 
main features of this dilation. For simplicity, we work only 
at a formal level, though rigorous statements could be given. 
By using the time-shift operators (3.7) we can define the op
erators 

{
St U (t,O), for t'~0, 

T(t): = (I I + + fi U t ,0) Sltl' ort<O; 
(5.1) 

{T(t ),t E R} isastronglycontinuousone-parametergroupof 
unitary operators on h ® r (L ~N(R)) (Ref. 26), which gives 
the dynamics of the global system. We have also 

StU(t,to)St~ = T(t-to)· (5.2) 

Then, consider the formal solution ofEq. (4.11), with the 
initial condition (4.12), which is given by 

V (t"to; [cp ]) 

= exp r i i (}';(t) {f al') [Aj dA ~') 
Jtelfo,t} ;-1 i-I 

+ PJ(dA ~') + dA ~')+)] + C; dt} ; (5.3) 

no time ordering is needed because the operators AjdA P) 
+ PJ(dA ~]) + dA P) + ) commute, also at different times. 

Using Eqs. (5.3), (3.8), and (4.13), we have that the effect 
valued measure (2.14) can be written as 

F;" II) ..... " I'l, (to;B ) = Eo(p(" II) ..... " I')) (to;B )), 

where 

PI" II) ,,1<J)(to;B): = r dsx-
l
-Jds k ..... JB (217')S 

(5.4) 

X exp [i ± kr(O (hlr);to) - Xr)] (5.5) 
r= I 

is the projection valued measure associated with the com
muting self-adjoint operators 0 (hlr) ito) given by 

o (hl"'·t ). -S U(t t)+ I ~ hl"'(t) ,0'- to ,'0 ~ ; 
telt",t};_ I 

X t~1 [Aj dA ~') + Pj(dA~]) + dA ~')+)] 

(5.6) 

A more revealing expression can be given to the obser
vables 0 (h(r) ,to). For to<t < t" we have 
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S'o U(t"to)+dA ~J)U(t"to)S,~ 

= S'o d(,) (U(t"to) + A ~:]o U(t"to))S;' 

= S,At) (U(t,to)+ A ~~~ U(t,to))S;: 

= Sto U(t,to)+(dA ~J) + R / Jfj dA ~j) 

+ W/ Rj dA Y) + + R / Rj dt )U(t,to)S,~ 

= T(t - to)+S ~,(dA ~J) +R / Jfj dA ~j) 

+ W/RjdAPH +R/Rjdt)S_,T(t-to), (5.7) 

where 

A (j) - I d'''' en '.to - a," 
" e (to.') 

(5.8) 

In the third step ofEq. (5.7) we have used Eq, (3.23d) and the 
fact that U(t"t) E B (h) ® 'G'(t,t,) and A ~2o E I ® 'G'(to,t); 
in the fourth step we have used Eq. (4.7a) and the rules (3.16) 
and (3.17) of quantum stochastic calculus; in the fifth step 
Eq. (5.2) has been used. In an analogous way, we find 

Sto U(t"to)+(dA ~J) + dA P) + )U(t"to)S,~ 

= T(t - to)+S~, [Jfj dA ~J) + W/ dA (~' 

+ (Rj + R /)dt]S _ ,T(t - to). (5.9) 

Moreover, by using Eq. (4.6), we write 

S :::, dA ~J1S _, = dA l{1, etc., (5.10) 

where dA 'oj) means the differential of the gauge process in the 
time interval (O,dt). Therefore, for the observables 0 (b(') ito) 
we have I 

.r'(t"tO;(Xh UI, .. ·,xh (.)) E B )(X) 

o (b(');to) 

itl Ie (fo,') h Ir)(t )T(t - to)+ ttl alJ) [.~'jdA l{1 

+ (AjR / + Pj ) JfjdA 'oj) + W/ (AjRj + Pj )dA l{H 

+ (AjR/Rj +PjRj +PjR/}dt] 

+ Ci dt} T(t - to). (5.11) 

By Eqs. (5.4), (5.5), and (5.11) and the arbitrariness of the 
test functions hI') (t ), we can say that we have obtained a dila
tion of the effect valued measure associated with the consid
ered OVSP to a projection valued measure, which is con
structed along the lines of the standard formulation of 
quantum mechanics, starting from a set of self-adjoint oper
ators; these operators, in the Heisenberg picture, commute 
also at different times. 

The operation valued measure .r(t"to;N) (see Sec. II), 
defining the OVSP, can be obtained from the characteristic 
operator ~y the Fourier transform 

.r(t"tO;(xhCl" ... ,xh{.d E B) 

= i d x-
1
-Jd ke-il"x 

B s (217")S s 

X ~ (t"to; Ltl k,h(')(t)]) . (5.12) 

By using Eqs. (3.8), (4.1), (4.13), (5.3), and (5.6) we obtain for 
the adjoint of .r( ... ) 

= i dsx~JdskeXp( -ikOX)Eo{S'oU(t/,to)+v(t"to; [~ ± k,h(')]) 
B (217") 2 ,= I 

xxv(t"to; [~ ,tl k,h(')]) U(t"to)S,~ } 

= lim f dsx_1-Jdsk(~)SI2Jds1)exp[- .!..(lkI2+11)12)-ikoX]Eo{SroU(t"to)+ 
E-+O+ JB (217"}' 41T 4 

X V (t/'to; [ ~ ,tl (k, - 71,)h(')]) xv (t"to; [~ ,tl (k, + 71,)h(')]) X U(t/'to)S,~ } 

= lim i dsx _l_Jdsk (~)S/2 Jds1) exp [ - .!.. (lkl 2 + 11)1 2
) - ik 0 x] Eo {exp [2i ± (k, - 71,) 

E-+O+ B (217")S 41T 4 ,= I 

X 0 (h(');to)] S'o U(t"to)+ S,; XS'fU(t/'tO)S'~ exp [~ ,tl (k, + 71,)0 (h(');to)]} 

= lim i dsx _1_ J ds k exp [ - .!.. Ikl 2 
- lk 0 x] Eo{exp ± (~k, {o (h(');to),'} 

£--0+ B (217")S 4 ,= I 2 

-! [0 (h(r);to), [0 (h(');to),'] ]) (T(t, - to) + XT(t, - to))} 

= lim (_1_)s/2 i d.x Eo {exp [ - ~ ± (x, - 0 (h(');to))2] T(t, - to) + XT(t, - to) 
.. --0+ 17"e B 2e r= I 

Xexp [- ~ ± (x, - o (h(r);toW]} . 
2e ,=1 (5.13) 
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Consider now the case in which all the operators 
o (h(rl ;to) have purely discrete spectra. Let Pi be the eigenpro
jectors and A. ~) the eigenvalues, i.e., 

o (h(r);to)Pi = A. ~)Pi' r = 1, ... ,s. (5.14) 

In this situation Eq. (5.13) gives 

Y(tf,to;(Xhl,), ... ,xhl") EB IIp) 

= 2: Trr { T(tf - to) 
i 

XPi(p ® ItI10) (tI10)I)PiT(tf - to) + }, (5.15) 

where Tr r is the partial trace over the Fock space. Equation 
(5.15) can be interpreted by saying that for the global system 
the state after the continual measurement is given by the Von 
Neumann reduction postulate. In the case of not purely dis
crete spectra, Eq. (5.13) gives, in some sense, a formal gener
alization of the reduction postulate. 

In conclusion. as far as the global system is concerned. 
we can say that continual measurements are obtained by 
applying the standard formulation of quantum mechanics: 
observables are associated with commuting self-adjoint op
erators. projection valued measures describe measurements. 
reduction postulate holds. etc. Obviously. these statements 
are very formal: the operators involved are "distribution val
ued operators" (only time smoothed operators have mean
ing). the spectra are not always purely discrete. etc. 

VI. THE PURE POISSON CASE 

In this paper continual measurements are treated using 
the language of Refs. 11-18. where only the pure Gaussian 
case was studied; it is interesting to show explicitly how the 
formalism developed includes also the "quantum stochastic 
processes" (counting processes) of Davies and Srinivas.2•5-

10 

Let us consider the simplest Poisson case; take in Eq. 
(4.19) M = N = 1. n = 1. and c = O. so that the generator 
%(9') can be written as 

%(9')(p)=RpR +eia<P-HR +R.p} -i[ll.p]. (6.1) 

Choose 

9' (t ') = (k la)X[t.t+ Tl(t ') (6.2) 

and compute Y(t + T.t;[9']) from Eqs. (4.15); we obtain 

Y(t + T.t;[(k la)X[t.t+ T11) 

= i: iT dT", [m dT m _ 1 ••• (T, dT 1 eimk 
m =0 0 0 Jo 

X ~ T-TmJ~ Tm-Tm_/"'~ T'-T/~ T,' (6.3) 

where 

J(p)=RpR +. 

2229 

~t(p)=exp( - ~ R+R-itH)P 

X exp (- ~ R + R + itH )

Now. let us introduce the cylinder set 

CB = {XE9J':xx /a EB}; 
(t,t+1'"r 
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(6.4a) 

(6.4b) 

(6.5) 

for the operation valued measure introduced in Sec. II we 
obtain. using Eq. (6.3), 

Y(t + T.t;CB ) 

= L dx 2~ f_+oooo dke-ikxy (t+T.t; [= X[t.tHl]) 

i: [dTm [m drm-l ... ['drl~T_Tm 
m=O 0 0 0 

= 2: NT(m). (6.6) 
meB 

where the operations NT(m) are defined by 

NT(m):= iT drm i
Tm 
rm_l"'iT2drl~T_r J~r -T 

'" m m-l o 0 0 

XJ .. ·~T2-T/~T,. form;;;'l. (6.7a) 

NT(O): = ~ T' (6.Th) 

The quantities NT (m) are the basic objects introduced by 
Davies and Srinivas [cf. Ref. 10. Eqs. (3.4)-(3.9). (3.14). 
(3.18). and (3.27)]; the meaning of these objects is given by the 
assumption that the probability of having m counts in the 
time interval [t,t + r). when the system is in the state pIt ) at 
time t. is given by 

P(m;rlp.t) = Tr{NT(m)(p(t))}. (6.8) 

Moreover. from the operations NT(m). more complicated 
joint probabilities can be obtained. coincidence experiments 
studied, etc. 10 

Therefore, from an OVSP of pure Poisson type we have 
obtained a counting process {NT(m)}. Vice versa, given a 
counting process one can reconstruct an OVSP. Indeed. let 
NT(m) be defined by Eqs. (6.7); we can introduce the charac
teristic operator of this process by 

Y (to + r.to; [9' ]) 

= lim 2: exp [i ± mj 9' (to + j ~)] 
k_+ 00 (m}l j= 1 k 

X NTlk (m k ) .. ·NTlk (m2)NTlk (m d· (6.9) 

The generator of this characteristic operator is given by 

k {OO . } %(9'(t)) = lim - 2: e,mtp(tWT1dm) - 1 
k_+oo r m=O 

= lim !5.- {~ Tlk + ei<p(t) 
k_+ 00 r 

= - ! {R + R,.} - i[H •. ] + ei<p(tlJ. (6.10) 

Apart from the quantity a, that can be reintroduced by re
scaling the observables. the generators (6.10) and (6.1) coin
cide; therefore, we have reobtained an OVSP. More general
ly. one can see that the OVSP's of pure Poisson type [Eq. 
(4.19) with M = N] coincide with the general counting pro
cesses introduced in Refs. 2 and 5-9. 
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The dyonium is solved exactly by path integration. The Green's function for the dyonium is 
separated into the monopole harmonics and the radial path integral, and the radial Green's 
function is found in closed form. The exact energy spectrum is also obtained. Dirac's charge 
quantization condition is seen to be essential for performing path integration. 

I. INTRODUCTION 

For quantization of a charge-monopole system which 
involves the path-dependent integral of a vector potential, 
Feynman's path integral approach I is generally considered 
ideal, but no explicit path integral calculation has yet been 
made available. Apparently the computational complexity 
has hindered its application to the monopole problem. In 
this paper, we report that under Dirac's charge quantization 
condition2 path integration can explicitly be carried out for 
the dyonium3 which includes the charge-monopole system 
as a limit. The calculation is of course not at all straightfor
ward. The various tricks recently developed4-9 have to be 
effectively exploited. By presenting the path integral quanti
zation of the dyonium, we shall achieve the following: (i) we 
provide a way to calculate a path integral involving the mon
opole potential; (ii) we separate for the first time the mono
pole harmonics and the radial path integral; (iii) we find the 
radial Green's function for the dyonium in a closed form; (iv) 
we derive the discrete energy spectrum of the dyonium; (v) 
we observe that Dirac's condition is essential for performing 
path integration; and (vi) we establish a unified path integral 
treatment of the dyonium, the hydrogen atom, and the 
charge-monopole system. Throughout this paper, we use 
units for which Ii = c = 1. 

II. PATH INTEGRAL FOR DYONIUM 

We consider a dyonium whose Lagrangian is given by 

L = !mr2 + qD-r + air, (1) 

where a = - (e le2 + glg2)' q = elg2 - ezKl' and 

D(r) = (xj - yi)[ ± 1 - (zlr)]I(r2 - r), (2) 

with r2 = x2 + r + r. Here, a light dyon mass m having a 
dual charge (e l,g I) is viewed as moving about a heavy dyon of 
(e2,g2) fixed at the origin r = O. Evidently the hydrogen atom 
(e l = - e2 = - e, gl =g2 = 0) and the charge-monopole 
system (e l = e, g2 =g, e2 =gl = 0) are special cases. The 
vector potential (2) has Dirac's singularity which we choose 
to be in either the negative or the positive z direction. The ± 
signs in (2) may as well correspond to the regions (a) and (b), 
respectively, of the W u-Yang potential. IO 

For the dyonium (1), we intend to evaluate by path inte
gration the Green's function 

G(r",r';E) = -;f Q(r",r';1")tJ.r, (3) 

a)Present address: Physikalisches Institut der Universitiit Wiirzburg, 
Wiirzburg, West Germany. 

which is the Fourier transform of Feynman's propagator, 1 

K (r",r';1") = fexp[ifLdt ]Dr(t). Naturallytheintegrandof(3) 
can be given as a path integral, 

Q(r",r';1") = !~fiilexp[iW(~tj)] 
N ( m )3/2 N-l XIT -.- ITdrj 

J= 1 21Ti~tj j= 1 

(4) 

having an effective short time action, 

W(~tj) = (m/~tj)(~rj)2 + qDj-~rj + (E + alrj)Atj' 
(5) 

where 1"=t"-t', t"=tN , t'=to, ~tj=tj-tj_I' 
rj = r(t)), and ~rj = rj - r) _ 1 • Since the action (5) involves 
the monopole potential as well as the Coulomb potential, the 
path integral (4) cannot be calculated by standard tech
niques. I Fortunately we know the local time rescaling trick 
that has enabled us to treat the Coulomb problem, both non
relativistic4

•
s and relativistic.6 We also have a trick to handle 

the Aharonov-Bohm potential which depends on a single 
angular variable. 7 

III. SEPARATIONS OF MONOPOLE HARMONICS 

In order to utilize these tricks in our problem, we first 
transform Cartesian variables into parabolic variables 
IS,'T/,t/J ):x = S'T/ cos t/J,y = S'T/ sin t/J, andz = !1S 2 - 'T/2). This 
set of variables, containing a single angular variable, is suit
able for describing the vector potential term of (5) in a form 
similar to that of the Aharonov-Bohm case.7 Keeping in 
mind that (~q)2 of any generalized coordinate q is of the 
order of ~t in effects.s and that terms of 0 [(~t )2] can be ig
nored in a short time action, I we express (5) as 

JJj = !(m/~t)!?2 + il)[(~s)2 + (~'T/)2) 

+ (m/~t)!€~j2[I- cos(~t/J)) 

+ q~t/J [ ± 1 - (t 2 - ~2)1!? 2 + il)) 

+ 2a~t I(t 2 + 7j2) + E~t, (6) 

where t = !IS) + SJ- d, t = (SjSj- d 12
, ~S = Sj - Sj- I> 

etc. For convenience, we have suppressed in (6) the subscript 
j which identifies the jth interval. Hereafter, we shall also 
employ the same convention as far as we can. By doing this, 
however, we do not mean that ~tj are the same for allj. 

Next, we change the short time interval ~t· into a new 
interval ~Sj by ~t = 2(52 + 7j2)As as before,s.6

J 
and put (6) 

into two parts, JJj = - i(A) + Bj ), where 
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Aj = (im/4.1s)[(.1S)2 + (.11])2 + !l1iliW] + 4i.1s(a + Ep2), 
(7) 

Bj = (ml 4i.1s)!l-~/,o)2 [ cos(.1¢ ) + 8 ± .1¢ ], (S) 

wit~ ,02 = !!t + :;;2) and 8 ± = (2q.1slm)rl' 2 _ ~2 
+ (S 2 + :;;2)]/(S~)2. As.1s is kept small, so are 8 ± . Hence we 
can use the relation, cos(.1¢) + 8.1¢ = cos(.1¢ - 8) +!8 2, 
to change (S) into 

Bj = 4~s ( ~ r cos(.1¢ - 8 ± ) - (2irf .1SI;l(~/l) ± 2 . (9) 

Then, we use the asymptotic formula for large Izl, 
exp(x cos f) ) = 1: exp(ivO 'ilv (z), where Iv (z) is the asymptotic 
form of the modified Bessel function Iv (z), that is,9 

Iv(z) = (21TZ)-1/2 exp[z - (v -l)/(2z)]. (10) 

After rearranging terms, we get 

i"l = (21Tm,02Ii.1s)112 exp [(iml2.1s)( P + 1]1) 

+ 4i.1s(a + Ep2)] exp(2iq2.1slm,02if ± (S,1],¢), 
(11) 

where P = !(SJ + SJ-I)' etc., and 

00 iwJ.{"f (ml2)- (m~2) f±(S,1],¢)= I e I v-H-q 2' A IV+q=Fq 2' A • 
v = - 00 ,,uS l,uS 

(12) 

Use of Graf's addition formula II applied to the modified 
Bessel functions in the asymptotic form reduces (12) into the 
form 

f ± (S,1],¢) = e ± iq.d4>(; + I; _ )2qI =F2q(m; + ; _ 12i.1s), 
(13) 

where ; 2± = l2 exp( + i.1¢ ) + ~2 exp( ± !i.1¢). At this 
point, we must remark that Graf's formula is applicable to 
(12) provided that S 2~1]2 for f ± ' respectively.l1 Such con
straints jeopardize the chance of completing path integra
tion. However, (13) is constraint-free in the exceptional case 
when 2q = integer,I1 i.e., when Dirac's quantization condi
tion is satisfied. Thus, in order to proceed with our calcula
tion, we have to adopt Dirac's condition. 

Now we turn parabolic variables to polar variables 

(r,f),¢ ) with r = p2 by s = Jip cos(!f) ), 1] = Jip sin(!f) ), and 
¢ = ¢. As a result, (11) becomes 

ei"J = (211"m,02Ii.1s)112 exp(4ia.1s) exp[(iml.1s102 

with 

f ± (p,f),¢) = e±iq.d4>(;+I;_)2q 

XI2q [(mli.1s¥>2 cos(!8)], (15) 

where cos 8 = cos f)j cos f)j_1 + sin f)j sin f)j_1 cos(.1¢). 
Note that 12q (z) = 1_ 2q (z) for 2q = integer. The radial and 
angular variables in (15) can be separated with the aid of the 
expansion formula l2 for large Izl, 

I2q[izCOS(~8)] =-?- f (2/+ 1Jd/q(8'il21+diz), (16) 
2 lZl=lql 

where dq Iq' (8) is the Wigner function having the property13 
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(~: rqd
/q(8) = I-'t-I eipJj4>d/ _q(f)jJd/ _q(f)j_ d· 

(17) 

Namely, we have 

2i.1s. 00 1 _ (mfi) 
f ± (Pj,f)j'¢j) = ~ ') I (21 + 1)/21+ I 'A J 

mpj I=lql 1-'= -I ,,uS 

Xd 1 (f).)d 1 (f). )e'll-'±q).<l4>). (IS) 
I-' -q J I-' -q J-l 

Substitution of (IS) into (14) yields 

'W 4' A 2i.1s. ·s 
e' } = e ,a~s}~ I I(21 + l)e' j 

mpj 1 I-' 

X d 1 (f).)d 1 (f). )ei(l-'±q).d4>) (19) 
I-' -q J I-' -q J-I , 

where 

~ = (ml2.1s)(.1p)2 -il. (il. + 1).1sl(2mp2) - !m(()2p2.1s, (20) 

withil. = [(21 + 1)2 - 4i]1/2 -! and (()2 = - SE 1m. 
Let us now perform the integration of (4) for (19) on the 

polar coordinate basis. With r = p2, we have 
dr = 2ps dp sin f) df) d¢. The angular integration can easily 
be done by using the orthogonality relations 13 

fIii Ij2+ ~d/ _q(f)jJd/ _q(f)j_ tl 
J=l 11" 

N-I 
Xe'll-'}±q).d4>j II sin f). df). dl>. J J '/'J 

j=1 

N-I 
i(I-"±q)(4>" 4>') II ~ X e - u( f.Lj + 1 ,f.Lj )8(/j + 1 ,Ij ). (21) 

j= 1 

Consequently, we achieve the separation of three variables, 

00 12/+1 
Q(r",r';r) = ') Q/(r",r';r) I --

I=lql 1-'= -I 411" 
X d 1 (f)'Jd / (f) ")ei( I-' ± qxr - 4> ') (22) I-' -q I-' -q . , 

Hence, from (3), we obtain 

00 1 

G(±)(r",r';E) = ') Gtlr",r';E) I Y~t)·(f)',¢') 
I=lql 1-'=-1 

X Y(±)(f)" J.") q/I-' ,'/', (23) 

where G1(r",r';E) = - ifQrlr",r';rJdr is the radial Green's 
function and y( ±) (f),¢ ) = [(21 + 1)/411"]112 d (f)) exp[i( f.L 
± q)¢ ] are the monopole harmonics. 14 The ± signs in (23) 

correspond to the regions (a) and (b) of the Wu-Yang poten-
tial. lO Apparently, G(+) = G(-) exp[2iq(¢" - ¢ 'I]. 

IV. RADIAL PATH INTEGRATION 

In (23), we have still to carry out the radial path integra
tion in (22), 

QI(r",r';r) = !(p'p")-3/2e4iaUK,,dp" .p';u), 

where r' = p,2, r" = p,,2, U = r/(4p'p"), and 

K;,.(p" .p';u) = (p'p,,)-I 2~iooiil exp[iSj] 

X fi(~)1/2NrrldPj' 
j=l 211"i.1s) j=1 

H. DOrr and A. Inomata 

(24) 

(25) 

2232 



                                                                                                                                    

This path integral is identical in form with that for the radial 
propagator of the three-dimensional harmonic oscillator, 
which has been evaluated exactly.9 The radial Green's func
tion in (23) has also been integrated for the hydrogen atom 
having 1 in the place of r = !(A - !). Thus, exploiting the 
result for the hydrogen atom5

•
6 and replacing / by r, we ob

tain the radial Green's function of the dyonium in closed 
form, expressed in terms of the Whittaker functions, 

G/(r",r';E) = (2ikr'r")-I[r(p + r+ 1)/r(2r+ 2)] 

XM -p.r+ 1/2 ( - 2ikr')W -p.r+ 1/2( - 2ikr"), 
(26) 

where r">r', k=(2mE)1/2, p= -i(ma2/2E)1/2, and 
r = [(I + !)1/2 - ip /2 -~. Thepolesofr(p + r + l)occur 
whenp + r + 1 = - nr (nr = 0, 1,2, ... ), giving rise to the 
discrete energy spectrum, En = - ma2/(2n 2

), where 
n = nr + ! + [(I + !)2 - ip /2 and 2q = 0, ± 1, ± 2, ... , 
± 2/. This bound state energy formula is in agreement with 

that of Barut and Bornzin obtained by the algebraic meth-
od. IS Obviously, in the limit a = e2 and q = 0, the radial 
Green's function and the energy spectrum coincide with 
those of the hydrogen atom. S.6 In the algebraic approach, the 
pure dyonium easelS (a #0) and the charge-monopole casel6 

(a = 0) have been treated separately, whereas the present 
path integral scheme provides a framework in which the 
dyonium, the charge-monopole system, and the monopo
lium as well as the hydrogenlike atom are treated in a unified 
manner. The techniques used for the separation of the mono
pole harmonics can also be applied to such problems as the 
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Poschl-Teller and the Rosen-Morse oscillators. 17 
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Algebra extensions of r = Zk Ee ••• Ee Zk (n summands) are considered as old Clifford-like 
algebras. Grassmann-like algebras closely related to them are introduced. New Clifford-like and 
another Grassmann-like algebras are defined and discussed, the generalization consisting in 
considering k-linear structures instead of only bilinear ones. Several applications are listed. 

I. INTRODUCTION 

Generalizations of Clifford algebras were introduced 
quite independently by the authors of Refs. 1-4. In the pres
ent paper we derive, in a canonical way, an ultimate general
ization of Clifford algebras so that the precedent C(f ~ 1 gener
alized Clifford algebras serve as an epimorphic image of the 
ones introduced by the author. These new k - C(f" Clifford
like algebras are naturally of primary importance for those 
algebraic problems of physics in which universality of the 
arising algebra is crucial. 

In parallel, we introduce the corresponding Grass
mann-like algebras, which are expected to playa similar role 
with respect to Clifford-like algebras as the Grassmann ones 
with respect to the usual Clifford algebras. 

First applications of generalized Clifford algebras date 
from the late 196O's,5.7 then followed by other ones in an
other branch of physics.8

•
9 The C(f~1 algebras were also 

shown to playa decisive role in solving problems of general 
involutional transformations. 10 

Quite recently a remarkable application of these alge
bras was found while constructing and classifying the so
called €-Lie r-graded algebras,l1·12 hence equivalently an 
application to modular quantization (see Ref. 13 and refer
ences therein). 

It is already well known that algebra extensions (includ
ing C(f~1 algebras) of finite groups as well as generalized 
Dirac groups form an excellent tool for deriving and classify
ing projective representations of finite groups; a subject of 
primary importance for the quantum theory of crystals. For 
that application see the review (Ref. 14) and Refs. 15 and 16. 

Finally, let us mention some other applications. Name
ly, the generalized Pauli algebra and the corresponding 
Dirac groups were used in Ref. 17 to solve an inverse prob
lem for harmonic vibrations of cyclic molecules not restrict
ed to the closest neighbor approximation. It is also to be 
noted that generalized Clifford and Grassmann algebras are 
of potential importance for generalizations of the Ising mod
el as the Onsager formula for the partition function can be 
transparently derived from the Clifford algebra algebraic 
properties only in the case of the Ising model. 18 

We close this incomplete list of existing or possible ap
plications by noting that for reasons already implied by Ref. 
1, the ultrageneralized complex analysis of Ref. 19 should 
make use of k- CrfJ k algebras as these are the most general 
objects linearizing the equation that defines ultraanalyticity. 

Out paper is organized as follows. In Sec. II we review 
generalized Clifford algebras2 in the language of group alge-

bras and algebra extensions,4 and then (in Sec. III) in the 
language of commutative <5-Lie r-graded algebras. 11.12 The 
latter enables us to introduce a class of new Grassmann-like 
algebras Gp in Sec. III. An intermediate section (Sec. IV) 
serves to introduce some sort of algebras important for sub
sequent use in Sec. V. Finally, in Sec. V we introduce a new 
generalization of the usual C(f~1 Clifford algebras and corre
sponding Grassmann-like ones. A class oftheir matrix rep
resentation is also given there. 

The generalization of Sec. V consists in considering k
linear structures instead of only bilinear ones, and represents 
the main goal of the paper. 

II. PRELIMINARIES 

Let D .. ,k be the group generated by its CU, YI'''''Y'' ele
ments satisfying 

cuy; = Y;cu, 11 = cuk = 1, Y;Yj = cuYjY;' 

i <j, i,j = l, ... ,n. 

D .. ,k is called the generalized Dirac group in the following. 
This is the meta-Abelian group of order k" + I and D .. ,k is a 
special central group extension of Zk by r =Zk Ee .,. Ee Zk (n 
summands) because of an exact sequence 

l-+Zk-+D .. ,k-+r -+1, 

Zk being a subgroup of the center of D .. ;k (we make no dis
tinction between isomorphic structures). The matrix form of 
Y I"'" Y .. ED .. ;k may be found in Ref. 2, while cu is the primitive 
k th root of unity. Here, D";2 is the well-known group of 
Dirac Y matrices for Euclidean spaces. Generalization of the 
"pseudo-Euclidean" Dirac Y matrices is also known.2 The 
group D .. ;k belongs to the family of k .. ( .. + 11/2 inequivalent 
central group extensions of Z k by r as they are in one-to-one 
correspondence4(al with the elements of second cohomology 
groups H(2)(r,Zk)~Zk Ee ••• EeZk [n(n + 1)12 summands]. 

The group algebra C[ D .. ;2] of D .. ;2 over C contains the 
familiar Clifford algebra C(f~). Of course C [D .. ;k ] is semisim
pIe and C(f ~k ), the generalized Clifford algebra generated over 
C by YI, ... ,Yn (See Ref. 2), is a two-sided ideal ofqDn;k]' 
Hence CrfJ~) is an irreducible (reducible) representation for 
n = 2v (n = 2v + 1) of the group algebra C [ D .. ,k ] • While the 
generalized Dirac group Dn;k is the special central group 
extension 1-+Zk-+G-+r-+1, the generalized Clifford alge
bra is a special case of algebra extension of rover C where4(b) 
the following definition holds. 

Definition: An algebra C(f is an algebra extension of r 

2234 J. Math. Phys. 26 (9). September 1985 0022-2488/85/092234-05$02.50 ® 1985 American Institute of Physics 2234 



                                                                                                                                    

over C iff 

(1) ~ = e ~ u (is r graded), 
UEr . 

(2) dim ~ u = 1, ~ u ~ p = ~ u+p, a,p Er. 

It is known4(a) that there exists a bijective correspondence 
between isomorphic classes of algebra extensions of rover C 
and cohomology classes of H(2)(r,C)~ as (r,c*), where 
Pas (r,c*) denotes the group of all antisymmetric pairings, 
i.e., mappings {j:r Xr -C* which are (1) bimorphisms and 
(2){j(a,a) = 1,a Er.AsH2(r,c*)~Zk e··· eZk [n(n - 1)/ 
2 summands] we have k .. ( .. - 1)/2 different algebra extensions 
~ 8 [{j E Pas (r,c*)] of rover c. We can think of ~ 8 as the 
algebra generated by generators rl, ... ,r .. satisfying 

rirj = mljrjri' 11 = 1, i,j = 1, ... ,n, 

where mij = {j(Si,sj)' while lSi }7= I are generators of rand 
{j E Pas (r,C). Because {j is an antisymmetric pairing, mi} 
= ma,}, where aijE Zk' m is the primitive k th root of unity 
and this (au) = (nXn) matrix is antisymmetric in the sense 
ofaZk ring. Note that the additive group of these (a1j ) matri
ces is isomorphic to H 2(r,C*). 

For any {j E Pas (r, C*), we then have 

{j(a,p) = m(ulA P), a,p E r, 

where A = (aij ) matrix and (alP) = 1:7= I a;/3;. a;./3iEZk • 

The special choice of A, namelyaij = I for i <.i gives ~!:') 
generalized Clifford algebras. 

Though these Clifford-like algebras ~ 8 are different as 
algebra extensions some of them are isomorphic to each oth
er as algebras. Which? The notion of annihilator N8 cr is 
crucial to answer that question. The subgroup N8 , is defined 
as the set N8 = {a E r;Aa = O}, i.e., the "kernel" of the A 
matrix. It is trivial to note that if N8 = r then ~ 8 

= C e··· e C (k" summands). On the other hand, for 
N8 = {O} (this holds iff det A is comprime with k) the alge
bra ~ 8 is simple; therefore ~ 8 ~ k .(C); 2v = nand Md (C) 
denotes the matrix algebra of all (d X d ) complex matrices. In 
general, any algebra extension ~ 8 of rover C is of the 
form4(b).(c) 

~ 8~d e··· eMd (J.L summands), 

where k" = J.Ld 2 and J.L = order of N8 • This condition fol
lows from the fact that ~ 8 exists iff r / N8 is of symmetric 
type. Of course for any {j E Pas (r,C*):dim ~ 8 = k" and the 
center Z (C8 ) of the Clifford-like algebra C8 is determined by 
N8 • Namely, 

Z(C8 ) = e cx, Cx~C' 
XEN6 

Finally, we give an example. 
Example 1: Consider for illustration the case r 

= Z3 eZ3 eZ3. We then have 27 different algebra exten
sions. However, we obtain that way only two nonisomorphic 
algebras; ~ I ~C e··· e C (27 summands) and ~ 8 ~~~I 
~3 e M3 e M3 for {j =1= 1. It is easy to see that for all 28 {j 's 
different from 1, N8 ~Z3' • 

These ~ 8 Clifford-like algebras were applied to con
struct and classify11,12 E-Lie r-graded algebras of potential 
importance for physics, as defined below. 
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III. GRASSMANN-LIKE ALGEBRAS Gp 

~ 8 Clifford-like algebras provide an example of {j-Lie 
r-graded commutative algebras11

•
12 and this point of view 

enables one to introduce Grassmann-like algebras along the 
same lines. For completeness we start with the necessary 
definitions. 

Definition: E:r X r _C* is said to be a commutation fac
tor iff (1) E is a biomorphism, and (2) E(a,p)E( p,a) = 1, 
~PE~ • 

In the case of r admitting a r 0 subgroup of index 2 one 
comes up with the following definition. 

Definition: Let r = rourl , Eo is said to be the Grass
mann commutation factor iff 

{
-I, a, perl , 

Eo:r Xr -C*, Eo(a,p) = 
1, otherwise. 

• 
The group of commutation factors is given by either 

Pas (r,c*)uEoP as (r,c*) or Pas (r,c*) depending on whether r 
admits the ro subgroup of index 2 or not. 11.12 

The E-Lie r-graded algebra is then defined as follows. 
Definition: Let L be a r-graded vector space equipped 

with bilinear mapping (, ):L XL-L. Let xU, YP' Zo EL, 
a,(3,y E r, denote homogeneous elements. We then say L is a 
E-Lier-graded algebra iff it is ar-graded algebra under (,) 
multiplication and 

(1) a,pEr, (xu,Yp) = -E(a,p)(yp,xu) 

(E skew symmetric), 

(2) a,p,YEr, (xu,(yp,zy» = «xu,yp),zy) 

+ E(a,p)( yp, (xu,zy) ) 

(E Jacobi identity), 

where E is a commutation factor. • 
Still one more definition is necessary. 
Definition: Let U be an associative r graded algebra. 

Then ass U is said to be an E-Lie r-graded algebra associated 
to Uiff(l) ass U = Uasr-graded vector spaces and (2) ( , ): 
ass U X ass U-ass U is defined via 

(xu, yp) = XU YP - E(a.,8) Ypxu' 

• 
One sees now that ass ~ 8 is a commutative {j-Lie r

graded algebra, hence ~ 8 is an epimorphic image of the 
universal enveloping algebra of a commutative {j-Lie r grad
ed algebra (see Ref. 20, p. 26). This is seen in the following 
way. 

Let V be a maximally r-graded vector space, i.e., 
V = e reI" Vy, div Vy = 1. Let S8 = T /18 be the {j symmet
ric algebra of V, where Tis the tensor algebra of V while 18 is 
an ideal of T generated by the elements 

Xu ® Yp - Yp ® Xu {j(a,(3), a,p E r. 
Of course the vector space V can be considered as a commu
tative {j-Lie r-graded algebra, where, by definition, 
(xu, Yp) = 0, a,p E r. Then S8 is the universal enveloping 
algebra of this {j-commutative {j-Lie r-graded algebra V, and 
S8 may be identified with the algebra of all polynomials in 
the basis elements {xu} aer of V, which satisfy relations 

Xu xp = {j(a,plxp xu' 
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Of course, (Xa)k e Z [S8] as cS (0,13) = cS (13,0) = 1, 13 e r. 
Also, S8 is naturally r-graded with the grading by that of V, 
i.e., 

r 

i1f La; =1', a;.1'er, S8 = E9 (S8)y' 
;=1 yer 

The center Z [S8 ] is not trivial as it contains the subalgebra 
W [ (Za J] of all polynomials in variables (Za J aer Za 
==(xa )\ independently of the cS chosen. 

Because of the commutative diagram 

~ /rt S8
, 

~8 

where 11'0 is the trivial isomorphism ass S8-ass S8' 11' is the 
epimorphism assS8-ass~ 8' and r is the epimorphism of 
the r-graded associative algebras, ~ 8 is a r epimorphic im
age of S8' epimorphism r being that sending (xa)k aer into 
le~8' 

With the r-graded vector space V given, this commuta
tive diagram provides a definition of ~ 8 with r being that 
above, i.e., 

~8~c5/kerr. • 
This seemingly affected presentation of ~ 6 Clifford

like algebras opens the way to introduce Grassmann-like al
gebras [1 p along the same lines. Namely, consider now 
Sp = T /Ip with P = ErP; cSeP as (r,C·), where r admits a To 
subgroup of index 2. Again we have the commutative dia
gram 

• 

where this time the epimorphismp of r graded algebras (Sc5 
onto [1 p) sends all (xa )\ a e r into zero. Hence 

[1 p ~p/ker p. • 
We shall consider now some examples of these new 

Grassmann-like algebras. 
Example 2: Consider r = Z2 E9 Z2 E9 Z2' r = ro urI' 

where ro = {(I, 1,0), (1,0,1), (0,1,1), (O,O,O)J and 
r l = ((1,0,0), (0,1,0), (0,0,1), (l,l,l)J. Define 6; = x." 
i = 1,2,3 with S; generators of r, 6; e [1 p' 

(1) Take cS =1, then (6/.6j 1 = 0 i.j = 1.2.3 and [1 EO is 
the usual Grassmann algebra generated by 1 and (6; J: = I . 

(2) Take cS # 1. cS_A = (aij)' aijeZ2• A #0. Then 
(p = &0)[1 p is the algebra generated by 1 and (6; Jt= I' 
which satisfy this time 

6/6j + (-It'J6j 6/ =0. i#j, 6f=0, i.j= 1,2.3. 

It is now clear how to construct [1 p Grassmann-like alge
bras for any r admitting a ro subgroup of index 2. For a 
given r some Grassmann-like [1 p algebras are isomorphic 
as algebras, the problem being similar to the one considered 
for ~ 8 algebras. 
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Note: For any r of even order there exists a subgroup ro 
of index. 2. 

Note: Any usual Grassmann algebra can be obtained as 
in Example 2 for r = Z2 E9 ••• E9 Zz (in summands) with ro 
and r l chosen according to the same rule as 

[n12] ( n ) .L 2' 1 = 2n 
- I = order of ro = ! order of r. 

.=0 1+ 
• 

To end these considerations we find it interesting to give 
one more simple example. 

Example 3: Let r=z2I; ro= (2i;i=0 ..... I-lJ. 
r 1 = (2i + l;i = 0, ... ,1-1]. Since H2(Zk,C·)~(OJ, we 
have only one cS and cS == 1. Therefore. we end up with only 
one Grassmann-like algebra [1 EO (I). Note that the Eo com
mutation factor now can be written as 

EO(a,{3) = (- WP, a,{3eZ21 • 

[1 EO (I) is the algebra generated by 1 and 6, 6 1 = O. How
ever, note that [1 Eo(l) = [1 EO (2) for 1>2 because for 1>2 
6 4 =0. • 

IV. THE ALGEBRAS 111~""'.PnJ 
We consider now. for completeness. the dimodule alge

bra construction of ~!:') algebras.zl The ~\'f} ..... ,/J.l algebra, 
defined below. is important for the forthcoming application. 
Consider the generalized Pauli algebra ~ ~k ). This is a special 
case of (central simple) generalized quatemion algebra 
A., (a,b ), a,be C· (discussed in Ref. 22. Sec. 15), i.e., ~~k) 
=A ... (l,l). 

In Ref. 21, it was observed that A ... (a,b ) 

= ~!:') # ~l~ I, where ~l~i is the Zk dimodule algebra gen
erated by A. subjected to the relation A. k = aI, aeC·, and # 
denotes the smash product of dimodule algebras.21 The Zk 
group action on ~l~)) is defined viaA.~A.. A similar general
ization of~~k) is an algebra #~= I ~(k)(a;), a;eC·, the gener
ators rl .... 'rn of which satisfy relations 0 = 10;, r;rj 
= tiJrjr;. i <J. i,j = 1, ... ,n. 

With the help of the smash product of Zk -graded dimo
dule algebras one can obtain. besides ~!:' talgebra extension 
of r. some other algebra extensions. Here they are as fol
lows: let ~~) be the k-dimensional algebra over C with the 
basis l,A. .... ,A. k - I, where A. k = 1. Take the grade of A. to be 
PeZk and letpbe comprime with k. Define theZk action on 
~~) via KEZk , KA. = mPA.. Then 11~) becomes a dimodule 
algebra. Consider now the smash product 

~(k) # ~(k) # ... # ~(k) = 11(k) 
P. p., P. - (P •• ···,/J.l· 

Its generators. 

rl =A.1 # 1 # ... # 1, 

r2 = 1 # A.2 # 1 ... # 1, 

rn = 1 # ... # 1 # A.n 
A. K. Kwasniewski 2236 



                                                                                                                                    

then satisfy 

rlrj = o/J r1rl' i>j, 

11 = I, i,j = 1, ... ,n. 

Foranychoiceof.81, ... "8,,eZk (j3'scomprimewithk)we 
obtain "several" algebra extensions ~\~I), ... ,o1P.)j' ueS". 
(The SrI group of permutations==symmetric group.) All 
these extensions are isomorphic as algebras. 

V. THE UNIVERSAL k-9t n CLIFFORD ALGEBRAS 

Up to now we have presented Clifford-like albegras 
which generalized 9t ~ algebras due to the observation that 
9t~) is an algebra extension of r = Z2 ED ... ED Z2 (n sum
mands). In this section we introduce new Clifford-like alge
bras, denoted by k-9t", which are universal in the sense of 
the following commutative diagram: 

v ~O;/_~" 
A 

(5.1) 

where v is an n-dimensional vector space, k-9t" and A are 
associative algebras, and ao, a are corresponding monomor
phisms with the property 

[ao(x)]k = Qdx)l, [a(xW = Qdx)l, 

while 0' E Hom(k-9t .. ,A ). • 
For k = 2, Q2 is a quadratic form and 2-9t .. =9t~). For 

k = 3, Q3: u-+C becomes a cubic form, etc. 
We also introduce in this section new Grassmann-like 

algebras. 
The k-9t " algebras are defined by the commutative dia

gram (5.1) up to isomorphism and it is clear that 

k-9t n=T(v)II(Qk)' 

where T(v) is the tensor albegra of v andI(Qk) is the ideal of 
T generated by the elements 

{x ® ... ®x-Qk(x)llxEV' 
k 

The mapping Qk ("k-ubic" form) is defined as follows. 
Definition: For Qk :u-+C, we have the following: 

(1) Qk (AX) = A kQk (x), XEv, AEC; 

and (2) the mapping B k:V X ... X u-+C, 
k 

is k-linear. Here S (n denotes the family of subsets of 
{1, ... ,k 1 that count / elements. • 

This generalized motion of quadratic and cubic (see 
Ref. 23, p. 114) forms is achieved by the process of polariza
tion typical for multilinear structures. Clearly we have the 
identity 

k! Bdx, ... ,x)=Qk(X). 

The Clifford-like algebra k-9t n has n generators. Namely, 
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let {r, 17= I be the "k-orthonormal" basis of v, i.e., 

B (rll , ... ,rl.) = {)(il,· .. ,ik), ilJ ... ,ik = 1, ... ,n, 

where 

{
I il= .. ·=ik' 

{)(i1, .. ·,ik) = ' 
0, otherwise 

Let p be a canonical epimorphism p: T-T II(Qk); then 
[p(xW = Qk(x)l, XEv. [In the following we shall not distin
guish XEv from its monomorphic image pIx) E k-9t n.] It is 
easy to see now that 

(11k!) (rll, ... ,r;.) = {)(il,· .. ,ik), VrEk-9t", (5.2) 

where 

(XI,· .. ,xk 1= L Xo(l)Xo(2)'''Xo(k) . 
aeS/c 

Here, the k-9t " Clifford-like algebra is generated by (r, 17= I 
satisfying (5.2). Clearly all this is due to the identity 

k! B(xl, ... ,xk)={XI, .. ,xk I, XI,· .. ,xkEv~(v). 

We present now a class of matrix representations of 
k-9t n Clifford-like algebras. It is obvious and characteristic 
that (i) 9t~)is thefaithfulrepresentationof2-9t ", and(ii) 9t~) 
is the only algebra extension of Z2 ED ••• ED Z2 (n summands) 
out of 2"(" -1)/2 possible, that has this property. 

For k>3, 9t~) is also a representation of k-9t n but not 
faithful and neither is it the only algebra extension of 
r ZkED"'EDZk (n>1 summands) representing k-9t". 
(Though it can be shown, for example, that all six algebra 
extensions of Z3 ED Z3 ED Z3' et(~) among them, representing 3-
et( 3' are isomorphic as algebras.) 

Let us prove what is stated above. Consider the diagram 
(5.1), k>3. Ther, ... ,r" satisfying (5.2) areao==pl" images of 
a k-orthonormal basis in v. Denote by rlJ ... ,rn theao image 
of this basis in an algebra A. If A is chosen to be an algebra 
extension of r for which rl, ... ,r .. satisfy (5.2) then 

AA laAACT 

O=l=rl rl - (l) 12 rlrl- 0, 

which shows that this very algebra A is not a faithful repre
sentation of k-et( ,,' Now we have Lemma V.l. 

Lemma V.l: Generators rl, ... ,rn of et(~) satisfy (5.2). 
Proof; The case i l = ... = ik in (5.2) is trivial, hence we 

assume otherwise. Let us consider first the case when i I = 1, 
il =1= 1, / = 2, ... ,k. Then 

k-I 

{rl,r", .. ·,rd- L (l)1 L ro(l,)·"ro(l.)rl =0, 
1=0 CTES._I 

Similarly for il =1= 1, / = 3, ... k, we have 

{ rl,rl,rl" .. ·,rl.1 
~ 1+1 { 1 ~ (l) rl" ... ,rl. rlrl = 0, 

0<.1 <j<.k - I 

and so on. The choice of i I = 1 (and so on) is replaced by the 
choice of other smallest number out of {il, ... ,ik 1 in the case 
lEl{i l , ... ,id. The lemma is thus proved due to the famous 
zero 

L (l)11"'(l)I, = 0, s<.k - 1. 
O<.II<,,·<I,<.k-1 

• 
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In the same manner one proves. a more general lemma. 
Lemma V.2: The rH ... ,r" generators of the 

lC\'I1I .... JJ.I-algebra extension of r (see Sec. IV) satisfy (5.2). 
Analogously to the 2-lC" case one can define Grass

mann-like (k-~ ,,) algebras via k-C(!" Clifford-like algebras. 
Definition: k-~ v is the algebra generated by 1,81, ... ,8v, 

where 

(5.3) 

• 
One immediately gets the representation (denoted by 

~~kl) of k-~ v via C(!~~I. Namely, let C 3 K, ~ = - 1, then 
define 

8 1=rl + KYv+it i = 1, ... ,v, 
where the r's are generators of lC~~I. Clearly these 8's do 
satisfy (5.3). 

It is also obvious that for the 8 (II's, 1= O, ... ,k - 1, 

8~1I = rl + Ci)IKrv+ it i = 1, ... ,v, 
where the r's are generators of lC~~I, represent generators 
k-~v' 

It is then easy to show that 

{8 (III 8 (/kl} - (1 _ II + ... + Ik\J!.( • • ) II , ... , Ik - Ci) IV ll,· .. ,lk , 

and also we have a kind of "Zk-Witt decomposition": 

1 k-I 
r - - ~ Ci)k - I 8 (II 

v+ I - k 1':-0 I . 

VI. FINAL REMARKS 

A natural question arises how far one can pursue the 
investigation of 2-lC" = lC~1 algebras,24 but now for k-lC" 
Clifford-like algebras. Related question is to find out 
whether k-~ " is relevant to the same kind of projective ge
ometry as ~ ~I is via Plucker coordinates. These questions 
and other similar expectations (analogous to the case k = 2 
geometrical facts) are, however, naive as the group of linear 
transformations leaving invariant the "k-ubic" (k> 2) form 
Qk(X) = ~?= 1 x~ is finite----of order k ran!. This linear group 
is given l by transformations 

i= 1, ... ,n, x/~a,xo(IP a/ EZk, (TESn • 

The generators of k-lC" algebra, satisfying (5.2) linear
ize the "k-ubic" form QI; v 3 x-Q (x) = ~?= 1 x~, i.e., 

(6.1) 

This property of { YI }? = 1 is due to the obvious identity valid 

2238 J. Math. Phys .• Vol. 26. No.9. September 1985 

in any associative algebra A, 

k! (t1 a ir = 11 •.. t = 1 {all , ... ,alk }, 

As for the linearization of (6.1), any representation of (5.2) 
relations will do, of course---lC~1 algebra generators includ
~ . 

Due to the property (6.1), algebras k-lC " can be applied 
to ultrageneralized complex analysis as in Ref. 19 . 
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Quantum-mechanical path integrals with Wiener measure for all polynomial 
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The coherent-state representation of quantum-mechanical propagators as well-defined phase
space path integrals involving Wiener measure on continuous phase-space paths in the limit that 
the diffusion constant diverges is formulated and proved. This construction covers a wide class of 
self-adjoint Hamiltonians, including all those which are polynomials in the Heisenberg operators; 
in fact, this method also applies to maximal symmetric Hamiltonians that do not possess a self
adjoint extension. This construction also leads to a natural covariance of the path integral under 
canonical transformations. An entirely parallel discussion for spin variables leads to the 
representation of the propagator for an arbitrary spin-operator Hamiltonian as well-defined path 
integrals involving Wiener measure on the unit sphere, again in the limit that the diffusion 
constant diverges. 

I. INTRODUCTION 

For quantum systems the problem of providing a well
defined meaning for the heuristic and formal path-integral 
expressions for the propagator has attracted the attention of 
a number of workers. 1 The most commonly used prescrip
tion involves the continuum limit of a time-slicing formula
tion which, although perfectly correct,2 is sometimes criti
cized as being far removed from the idealized desired goal of 
an integration over a space of paths defined for a continuous
time parameter. Unfortunately, in such quantum formula
tions, and unlike the Feynman-Kac formula, the orders of 
integration and the continuum limit cannot be interchanged 
to yield a formulation on continuous-time path spaces. Not 
only does this procedure fail for configuration-space path 
integrals, but seemingly even more so for the far more widely 
applicable phase-space path integrals.3 

In this paper we propose an alternative to the time-slic
ing and continuum-limit procedure to define path integrals 
that leads to the quantum-mechanical propagator being giv
en by well-defined path integrals involving Wiener measure 
on continuous phase-space paths in the limit that the diffu
sion constant diverges.4 We are able to prove the existence of 
this formulation for a wide class of quantum Hamiltonians 
(described below) which includes all those that are polyno
mials in (Cartesian) P's and Q's. Indeed, our construction 
leads to a natural definition for the propagator even in cases 
where the Hamiltonian operator is maximal symmetric and 
admits no self-adjoint extension. Moreover, a formulation in 
terms of continuous phase-space paths permits one to make 
a transformation of integration variables, such as that in
volved in canonical transformations, with much greater care 
than usual (see the end of this section). We feel this possibility 
is just one of several advantages offered by our approach. 

A. Motivation, summary of principal results, and outline 
of the paper 

We begin by giving a heuristic overview of our formula
tion of quantum-mechanical phase-space path integrals. In 

al"Bevoegdverklaard navorser" at the Nationaal Fonds voor Wetenschap
pelijk Onderzoek, Belgium. 

terms of the canonical coherent states, defined in Dirac nota
tion for all (p,q) E H2 as 

I p,q) = e'lpQ- Qp1 10), 

where 10) is the normalized ground state of(P 2 + Q2)12, one 
can write the following formal expression for the coherent 
state matrix elements of exp( - iTH) (see Ref. 5): 

(p",q"le-iTHIP',q') =ff- 1 f exp [i ~ f (pq-qft)dt 

- i f H(p,q)dt ] 1) dp(t)dq(t). 

(Ll) 

This is only a formal expression because there is no well
defined measure underlying this "integral"; ff stands for a 
formal (actually infinite) "normalization constant." The 
function H (p,q) was defined in Ref. 5 as the diagonal coher
ent state matrix element of H 

H(p,q) = (p,qIH lP,q) , 

which, in the terminology of pseudodifferential operators, is 
equivalent with the "ordered symbol" corresponding to the 
operator H. 

It is possible to give meaning to the formal expression 
( 1.1) by inserting an extra factor 

exp [ - 21y f (p2 + q2)dt ] (1.2) 

into the integrand, and redefining ff in such a way that 

ff- 1 exp [ - 21y f (p2 + q2)dt ] 1) dp(t )dq(t) 

can be interpreted as a Wiener measure with diffusion con
stant y. The measure is pinned at p',q' at the initial time and 
at pH ,q" at the final time, a conditioning made possible by 
the use of the overcomplete coherent states. Since 
S( pdq - q dp) is a well-defined stochastic integral for this 
Wiener measure (and in fact the Ito and Stratonovich rules 
give the same result), then the function 
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exp[i ~ f(Pdq"-qdP)-if H(P,q)dt] 

is integrable with respect to the Wiener measure, and the 
resulting expression is a well-defined path integral. 

In the limit V-+oo the extra regularizing factor (1.2) for
mally tends to unity and the v-dependent path integrals re
vert to the original formal expression. This entirely formal 
argument suggests that the coherent state matrix element 
(p",q"lexp( - iTH)Jp',q') might be considered as the limit, 
as the diffusion constant v tends to 00, of well-defined phase
space path integrals with Wiener measure. 

Our main result is that this heuristic argument indeed 
contains some truth. More precisely, we will show that 

(p",q"lexp( - iTH)Jp',q') 

= ~~ 21re
vT/2 

f exp [i ~ f (pdq-qdp) 

- i f h (p,q)dt ] dp,"w(p,q), (1.3) 

where P,"w is the product of two independent Wiener mea
sures (one inp, one in q) with diffusion constant v, pinned at 
p',q' for t = 0, and at pIt ,q" for t = T. The normalization of 
the measure is given by 

f dp,"w(p,q) 

= [21rVT] -I exp {_ (p" - p')2 + (q" - q'f}. (1.4) 
2vT 

Its connected covariance is (x is either p or q) (t I .;;;t2 ) 

(x(t l)x(t2)C = (x(tl)x(t2) - (x(tl) (x(t2) 

= vtl(I - t2IT), (1.5) 

where «( . ) = f( • )dp,"wl JdP,"w. The formula is valid for all 
self-adjoint Hamiltonians for which the finite linear span Dc 
of the harmonic oscillator eigenstates is a core, and which 
can be written as 

H= --h(p,q)Jp,q)(p,ql. 
f

dPdq 
21r 

(1.6) 

The function h (p,q) must satisfy, for all a > 0, the bound 

The class of Hamiltonians satisyfing these conditions con
tains all Hamiltonians polynomial in P and Q. 

The function h (p,q) used in the integrand in (1.3) is de
fined by (1.6). The relation between h (p,q) and the diagonal 
matrix element H (p,q) is given by 

h (p,q) = exp[ - !(a; + B!)]H(p,q). (1.7) 

From (1. 7) one sees that generally h (p,q) =l=H (p,q); equality 
only holds when H (p,q) is linear in p and q. In pseudodiffer
ential operator terminology, h (p,q) is equivalent to the "an
tiordered" symbol. From the difference between hand Hone 
sees that (1.3) is more than just a "regularization" of (1. I) by 
(1.2). We shall return later (at the end of Sec. II) to the role 
played by h (p,q). 
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As a matter of fact, our approach can also handle sym
metric operators which are not self-adjoint. Formula (1.3) 
still holds if the closure of H IDe is maximal symmetric, 
where we then have to write either exp( - iHT) or 
exp( - iH*T) in the matrix element on the left-hand side, 
according to which deficiency index of HID is zero (see 
Theorem 2.4 in Sec. II C). Here H is again defined by (1.6), 
and the growth restriction on h ensures that H is well defined 
on Dc. 

Note also that the regularization procedure which con
sists of inserting terms of type (1.2) into (1.1) in order to 
obtain (1.3) cannot work for the ordinary configuration
space path integral (whereas we assert here that it does work 
for the coherent-state, phase-space path integral). The rea
son for this is that the configuration-space path integral con
tains (formally) factors of the type exp(i!fq2 dt) in the inte
grand. This cannot be regularized by inserting an extra 
factor exp( - !v- I f q2 dt ); an old argument6 shows that it is 
impossible to define the Brownian measure with a nonreal 
diffusion constant [or, alternatively, exp(i!fq2 dt) is not a 
measurable function with respect to a Wiener measure]. One 
could imagine inserting exp( - !v- I fil dt ); however, the ad
ditional data needed at the initial and final times are outside 
the scope of the configuration-space approach (it is more 
nearly like the coherent-state approach; compare, however, 
Ito, Ref. I). 

For the proof of (1.3) we shall first show that the path 
integral in the right-hand side of(1.3) can be considered, for 
finite v, as the integral kernel of a contraction operator on 
L 2(R2), the set of square-integrable functions on phase space. 
This will be done in Sec. II B, after we have defined all the 
necessary machinery in Sec. II A. In Sec. II C we take the 
limit V-+oo, and prove (1.3) (Theorem 2.4). For reasons of 
simplicity we will restrict ourselves to the case of one degree 
of freedom, i.e., to a two-dimensional phase space. Every
thing we do can be trivially extended to any finite number of 
degrees of freedom. 

In Sec. III we discuss path integrals for Hamiltonians 
containing spin operators. Again we consider path-integral 
expressions for coherent-state matrix elements ofthe evolu
tion operators corresponding to these Hamiltonians. The co
herent states used here are associated with SU(2) rather than 
with the Heisenberg group, and are labeled by elements of S 2 
rather than of R2. In our construction we shall be able to 
treat an arbitrary Hamiltonian written, analogously to (1.6), 
as a superposition of diagonal dyadic operators in the spin 
coherent states (this representation has been studied and 
used before; its first use in the construction of path integrals 
for spin systems was by Lieb7

). Once the appropriate defini
tions are formulated (Sec. III A), the analysis of Sec. II car
ries over to the spin case without any problem, and we there
fore shall only state the result, without detailed proofs (Secs. 
III B and III C). 

We have already announced our principal results in Ref. 
4, in a slightly weaker version. The proofs outlined in Ref. 4 
are, however, different from the ones we give here, though 
there is some connection. In the Appendix we compare the 
two versions, and show how our previous approach fits into 
the present framework. 
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B. Canonical transformations 

As an illustration of our path-integral formalism we 
conclude this Introduction with a few remarks about how 
time-independent canonical transformations appear in our 
approach. For this purpose it is useful to interpret all sto
chastic integrals and stochastic differential equations in the 
sense of Stratonovich,8 and this we shall do in this subsec
tion. We introduce new canonical coordinates p = p(p,q) 
and ij = ij(p,q), which are classically connected, for exam
ple, by the relation 

pdq - q dp = P dij - ij dp + 2 dF(p,ij;p,q). 

The stochastic variables p and ij satisfy the stochastic differ
ential equations given by 

dp= ap dp+ ap dq, dij= aq dp+ aq dq, 
ap aq ap aq 

and their solution determines a new, generally non-Gaussian 
measure W(p,ij) according to dW(p,ij) = dJ.Lw(p,q). In the 
new canonical coordinates (1.3) becomes 

(p" ,ij" Ie - iTH W' ,ij') 

= ~~ 21Te
vT12 f exp[i ! f (p dij - ij dp)] 

- i f ii (p,ij)dt ] d,uV(p,ij), (1.8) 

where ii (p,ij) = h (p( p,ij),q( p,ij)), and where we have incor
porated the effects of F by defining the states 

w,ij) =exp[iF(p,ij;p(p,ij),q(p,ij))]I p(p,ij),q(p,ij). 

With this phase convection, (1.8) is canonically equivalent to 
(1.3); the phase is still given by the classical action for sto
chastic phase-space paths; what is different is the weighting 
of those paths by the integration measure. Note that the mea
suresji'" andJ.Lw are typically mutually singular, as is already 
the case ifp = ap, ij = q/a, for a >0, a=j:. 1. 

It is straightforward to extend the foregoing discussion 
to time-dependent canonical transformations. 

II. THE CANONICAL CASE 

A. Definitions and basic properties 

We start by a review of the definition and some of the 
properties of the canonical coherent states. Let JY' be a sep
arable complex Hilbert space carrying an irreducible, 
strongly continuous unitary representation W (p,q) of the 
Weyl commutation relations 

W(p',q')W(p",q") 

= exp[i!(p'q" - p"q')]W(p' + p",q' + q"). 

The position operator Q and the momentum operator Pare 
the infinitesimal generators of the strongly continuous uni
tary groups W(p,O), W(O, - q), respectively; one has 

W(p,q) = exp[i(pQ - qP)] 

= exp( - i!pq)exp(ipQ)exp( - iqP). (2.1) 

We define (J) E JY' to be the normalized ground state of the 
harmonic oscillator Hamiltonian 

!(P 2 + Q2 _ 1)(J) = 0. 
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The canonical coherent states (cs) are defined as 

(J)p,q = W(p,q)(J). 

They form an overcomplete set of vectors in K with "over
lap function" 

«(J)p",q" ,(J) p',if) = exp [i!(p'q" - p" q') 

-l(p" - p')2 -l(q" - q'n (2.2) 

They also give rise to the following "resolution of unity": 

f dpdq (t/J,(J) p,q) «(J)p,q,t/J ) = (t/J,t/J). 
21T 

This can be viewed as a special case of 

f dPdq 
~ (t/JI,W(P,q)t/J2) (W(P,q)t/JI,t/J2) 

= (t/JI,t/J2) (t/Jt>t/J2)' 

(2.3) 

(2.4) 
Note: In the usual Schrodinger representation, one has 

JY' = L 2(R). The W(p,q) act then as follows: 

[W(p,q)J](x) = exp( - i!pq + ipx)f(x - q). 

The vector (J) p,q is given by the familiar functions 

(J)p,q(x) = 1T- 1/4 exp[ - i!pq + ipx -!(x _ q)2]. 

Settingp = q = ° gives (J)(x). 
We shall also use the harmonic oscillator excited states 

(J) k' defined by 

!(P 2 + Q2 _ l)wk = Wk' (2.5) 

In analogy with the definition of the cs we define 

(J)f,q = W(P,q)wk' 

In order to alleviate many of the expressions in what 
follows, we shall often make use of Dirac's bra-ket notation 
in scalar products, matrix elements, and dyadic operators 
involving the coherent states. We shall write, e.g., 

(p,qlt/J ) = «(J)p,q,t/J ) (t/J eKj, 

(k It/J ) = «(J)k ,t/J ), 

(p,q;k It/J ) =«(J) ~,q,t/J ), 

( p" ,q" Ip' ,q') == «(J) p" ,q" ,(J) p',q,) , 

Ip,q) (p,ql = (J)p,q«(J)p,q,.), 

Ip,q;k )(p,q;ll = (J){,q«(J)f'9,')' 

In these notations (2.3), e.g., can be written as 

f dPdq 
~ Ip,q)(p,ql = l;y, (2.6) 

where the integral converges weakly, according to (2.3). As a 
matter of fact, (2.6) also converges strongly; see, e.g., the 
remark following Lemma 2.3 in Sec. II C. Equation (2.4) 
implies 

f dPdq --Ip,q;k ) (p,q;l I = 8kl l;y. 
21T 

(2.7) 

For matrix elements «(J)p",q",A (J)P',q,) we shall use the nota
tion (p" ,q" IA p',q') rather than the more common bra-ket 
notation (p" ,q" IA Ip' ,q') (i.e., we use a space instead ofthe 
second vertical bar) in order to avoid confusion in case A is 
not symmetric. 
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In the next section we shall interpret the right-hand side 
of (1.3) as the integral kernel of an operator on L 2(JR2); this 
operator can be constructed explicitly, and its limit for 
v_ 00 can then be taken later. In order to do all this, we shall 
need the following definitions and constructions. 

We shall use the notation L 2(V) for the Hilbert space 
L 2(R2) with the normalization 

11/112 = f d~:q If(p,qW. 

For t/I E Jr', we shall denote by I." the function 

I.,,(p,q) = (p,qlt/l)· 

It follows from (2.3) that the map tfJ-I." is isometric from Jr' 
into L 2( V); the image of Jr' under this map is a closed sub
space Jr'o of L 2( V). The properties of Jr'o are well known9; 
its elements are products of analytic functions in p + iq with 
the Gaussian exp[ -1(p2 + q2)]. We shall denote the iso
morphism between Jr' and Jr'o by U 

U:Jr'-Jr'o, (Ut/I)(p,q) = (p,qlt/l). (2.8) 
A 

We shall also ~ake use of the operator U:Jr' _L 2( V), 
which is defined as U = IoU, where I is the natural embed
ding of Jr'o into L 2( V). The orthogonal projection operator 
in L 2(V), onto Jr'o, will be denoted by Po. 

Define also 

hk/(p,q) = (W(p,q)CtJk,CtJ/ ) = (p,q;k II). (2.9) 

These functions can be explicitly calculated; they are related 
to the generalized Laguerre functions, and can all be written 
as the product of a polynomial in p,q with exp[ _ (p2 
+ q2)/4]. One easily sees from (2.4)thatthehkl areorthonor-

mal in L 2( V); as a matter offact, they form a complete ortho
normal basis for L 2( V) (see Ref. 10). From (2.8) one then sees 
that the hoi are a complete orthonormal basis for Jr'o. We 
shall use the notation D for the set of finite linear combina
tions of the hkl . Note that for any t/I E Jr' 

A f dPdq . (hkl,Ut/I) = ~ (I [p,q;k )(p,q;Olt/l) 

= 8ko (llt/l)· 

Suppose that R is a (bounded) operator on Jr'. The unitary 
map U transports this operator to UR U -Ion Jr'o' A simple 
way to extend URU -1 to all ofL 2(V) is to "fill in zeros," i.e., 
we define R on L 2( V) such that 

A A -1 . 
RI= URU 'f, If/EJr'o· 

(2.10) 

A 

It turns out that R is an integral operator on L 2(V) 

A 

= 8ok8or (hoi ,Rhos ) 

= 8ok8or (CtJI,RCtJs) 

x (l [P",q")(p",q"IRp',q')(p',q'ls) 
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= f dp" dq" f dp' dq' 
211' 211' 

X (l [p",q";k )(p",q";OIRp',q',O) (p',q';rls) 

= f dp" dq" f dp' dq' 
211' 211' 

X hk/(p" ,q")( p" ,q" IR p',q')h,.(p',q'). (2.11) 
A 

Hence R has integral kernel (p" ,q" IR p',q'); note that this 
integral kernel (since it is a cs matrix element in Jf) is a 
smooth function of p" ,q" , p' ,q'. 

For H a (possibly unbounded) self-adjoint operator on 
Jr', we have 

(2.12) 
A 

(here we have extended our construction of H to unbounded 
operators; for the Hamiltonians we shall consider, however, 
this is not a problem). It is necessary to introduce Po in (2.12) 

A A 

because H(l- Po) = 0, hence [exp( - itH)](I- Po) 
A 

= 1 - Po, whereas [exp( - itH)] (1 - Po) = 0 [see (2.10)]. 
For the special class of operators Rand H, which can be 

written as 

f dPdq 
R = ~r(p,q)[P,q)(p,ql, 

A 

another natural extension, different from R, is possible. De-
fine the multiplication operator 

Rv:L 2(V)_L 2(V), (Rv/)(p,q) = r(p,q)/(p,q). (2.13) 

Then 

f dPdq 
(ho/,Rvhos) = ~ (l [p,q)r(p,q)(p,qls) 

= (lIRs), 

which shows that PoR vPo IKo = UR U -1, hence 
A 

PoRvPo =R. (2.14) 

We are now ready to tackle our path integral. In the next 
subsection we shall see that, for finite v, the path integral in 
the right-hand side of(1.3) can be interpreted as the integral 
kernel of an operator onL 2(V), which we can construct expli
citly. 

B. Interpretation of the path Integral (for finite v) as an 
Integral kernel on L Z( V) 

Let us introduce the symbol 9 y (h ) for the expression in 
the right-hand side of (1.3) 

9 y(h;p",q",t ";p',q',t') 

= 211'ev(t" - ")12 f exp [i ~ f (p dq - q dp) 

- i f h (p,q)dt ] dp.'W(p,q), (2.15) 

where again the measure p. 'W is the product of two indepen
dent Wiener measures with diffusion constant v, and pinned 
at p',q' for t = t' and at p" ,q" for t = t ", respectively 
(t" >t'). 

If we put h = 0, 9 y can be calculated explicitly; the 
result is (for the case v = 1, this calculation was carried out 
in Ref. 11) 
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&' v(h = O;p",q",t ",p',q',t') 

e I ( ,,, "') *" -t'V2 { . 
= 2sinh[v(t" -t')/2] exp "2 pq -p q 

_.! coth v(t" - t ') X [(pIt _ p')2 + (q" _ q')2]} . 
4 2 

(2.16) 

By their definition, these &' v(h = 0) have a semigroup prop
erty, as can also be checked by explicit calculation 

I dp' dq' &' (h = O'p" q" t "'p' q' t') 
21T v """ 

x&' v(h = O;p',q',t ';p,q,t) 

= &' v(h = 0; p" ,q",t ", p,q,t ). 

From (2.16) one sees that 

I&' v(h = O;p",q\t ";p',q',t ')1 

<e*"-t')(2[v(t" _ t ')]-1 

(2.17) 

Xexp{ - [(pIt - p')2 + (q" - q')2]/[2v(t" - t')]]. 

(2.18) 

Sinceforalla>Othefunctionpa(p,q) = exp[ _ a(p2 + q2)] 
is in L I(R2), the upper bound (2.18) implies that for t " #- t " 
&' v(h = 0) is the integral kernel of a bounded operator 
EO(v;t ",t') on L 2(V) 

&' v(h = O;p",q",t ";p',q',t') 

= [EO(v;t ",t')](p",q";p',q'). (2.19) 

The bound (2.18) implies IIEO(v;t ",t'lIl<e*" -t')o From the 
semigroup relation (2.17) we see that 

EO(v;t ",t)E°(v;t,t') = EO(v;t ",t'). 

It is also easy to check from (2.16) that 

[EO(v;t ",t ')] * = EO(v;t",t '). 

(2.20) 

(2.21) 

As t" tends to t '(t "--+t '), it is clear from (2.16) that 
&' v(h = O;p" ,q",t ";p',q',t ') tends to 21Tt5 (p" - p'}t5(q" - q') 
in the sense of distributions. Using (2.20), (2.21), and 
IIEO(v;t",t'lIl<e*"-t'), this implies s-limt"~t' EO(v;t",t') 
= I on L 2( V). Moreover, one sees from the explicit expres

sion (2.16) that the &' v (h = 0) depend on the initial and final 
times t ',t " only through the difference (vt" - vt '). Putting 
all this together, we conclude that, for fixed v, the E O(v,t ) 
= E O(v;t,O) form a strongly continuous semigroup (in t) of 
bounded operators. Hence 

EO(v;t ",t') = EO(v,t" - t') = exp[ - vA (t" - t ')], 
(2.22) 

where A is a self-adjoint operator on L 2(V). The bound 
IIEO(v,t )1I<evt implies A;;;. - 1. The operator A can be calcu
lated explicitly from (2.16). One finds 

A = H - (a; + a;) + i(p aq - q ap ) + !(p2 + q2) - 1] 

= ! [( - i ap + q/2)2 + ( - i aq - p/2)2 - 1]. (2.23) 

It is particularly interesting to note, if A is interpreted as 
a Hamiltonian onL 2(]R2), that it describes a two-dimensional 
particle in the presence of a constant magnetic field orthogo
nal to the plane of motion. Indeed, exactly such a Hamilton
ian arises in the two-dimensional quantized Hall effect, and 
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good use has been made of coherent state techniques in the 
study of this problem. 12 Because of this magnetic field ana
logy, we know immediately that A has a purely discrete spec
trum (the Landau levels for the corresponding magnetic 
field). As a matter off act, we already have an expression for a 
set of eigenvalues and eigenvectors for A. Recalling the de
finition (2.9) of the hk1 , and using the definitions (2.5) and 
(2.1) ofthe ll)k and W(p,q), respectively, one finds 

(2.24) 

This will be useful for our analysis of the v--+ 00 limit below. 
It follows immediately from (2.24) that D, the set of finite 
linear combinations of the hkl' is a core for A. Note that 
(2.24) also implies A>O. We have therefore IIEO(v,t)1I 
= lIexp( - vAt)1I < 1, which means that the EO(v,t) are a 

strongly continuous contraction semigroup. 
Let us now look at the case where h is not identically 

zero. We shall consider functions h satisfying, for all a > 0, 
the condition 

I dp dqlh (p,qWexp[ - a(p2 + i)] < 00. (2.25) 

This is automatically fulfilled if, e.g., 

I dp dqlh (p,qW exp[ - ,8(p2 + q2)Y] < 00, 

for some ,8>0 and O<r < 1. 
Condition (2.25) ensures that the path integral (2.15) is 

well defined. To see this, we only need to check that 
IfJ'h (p(t ),q(t ))dt I is finite for almost all paths (p(t ),q(t)) in 
the support of Il"w. This is certainly true if 

I {iT Ih (p(t ),q(t ))Idt }dll"w(P,q) < 00. 

Using the definition of Il"w, we can rewrite this condition as 

iT dt I dp dqlh (p,qll(21TVt}-1 

{ 
(p _ p')2 + (q _ q')2} X exp - ..:.:....--=-'--'-:..:..---=-"--

2vt 
X [21Tv{T- t)]-I exp{ _ [(p _p")2 

+ (q - q")2]/[2v(T - t)]} < 00. (2.26) 

For h satisfying condition (2.25), we can use the Cauchy
Schwarz inequality to bound the left-hand side of (2.26) by 

C iT t -I(T_ t)-I I dpdqexp { _ (p _p')2; (q _q')2 

Xexp {2T(IP'IIP"1 + Iq'lIq"Il}. 
v[T 2-t(T-t)] 
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Since, for te[O,T], T 2 -t(T-t»3T2/4, one immedi
ately sees that expression (2.27) is finite, and hence that 
[!JJ ,,(h) is well defined for allp',q',p",q". From (2.15) we see 
then that, for all h satisfying (2.25), 

I [!JJ ,,(h; pIt ,q" ,t" ;p',q',t ')1 

.;;;21Te*" - t')12 J dp'i¥(p,q) 

e*" -t')/2 { (p" _ p')2 + (q" _ q ')2} 
.;;; exp- . 

v(t " - t ') 2v(t" - t ') 

(2.28) 

Since h is time independent, [!JJ" (h ) will depend on t " ,t ' only 
through the difference t" - t'. Together with (2.28) this im
plies that [!JJ ,,(h ) is the integral kernel of a bounded operator 
E(v,h;t" - t') onL 2(V) 

[!JJ ,,(h;p" ,q" ,t ";p',q',t ') = [E (v,h;t" - t ')](p" ,q";p',q'), 
. (2.29) 

with 
IIE(v,h;t )11.;;;e"t12. (2.30) 

From the path integral definition (2.15) one immediately sees 
that the semigroup property (2.17) for the [!JJ ,,(h ) also holds 
for h ;60. This implies [t l ,t2>0;E(v,h;0) =1] 

E(v,h;tl )E(v,h;t2) = E(v,h;tl + t2), (2.31) 

i.e., the E (v,h;t) form a semigroup. 
WewanttoshowthattheE(v,h;t)actuallyformastrong

Iy continuous semigroup of contractions on L2(V) [which 
means we have to do better than (2.30)!]. In order to do this, 
we shall proceed in several steps. We shall first consider h in 
Co, the C '" functions vanishing at 00. Then we shall extend 
our results to bounded h, and in a third step we generalize to 
all h satisfying condition (2.25). 

For any h satisfying (2.25), we define H v to be [as in 
(2.13)] the multiplication operator by h (p,q) 

(Hvl)(p,q) = h (p,q)/(p,q). (2.32) 

{exp[ - (vA + iHv)T] J(p",q";p',q') 

We shall always assume that h is a real function, which im
plies that H v is self-adjoint. If h is not bounded, the domain 
D (H v) of H v consists of all Ie L 2(V) for which hi is still 
square integrable. Because of the special form of the hkl we 
have 

Ihkl (p,q)I';;;C(1 + p2 + q2t exp[ _ (p2 + q2)/4] 

(C and n depend on k and /); together with (2.25) this implies 
that hkl e D (H v) for all k,l. 

Let us now consider h e Co. Then H v is a bounded 
operator. On thedomainD(A ) of A we can define vA + iHv. 
This is a closed operator, which is the generator of a strongly 
continuous contraction semigroup (both vA and iH v are 
generators, and H v is A bounded with relative bound zero; 
see, e.g., Kato's book,13 p. 499). The integral kernel of 
exp[ - (vA + iHv)T] is given by the Trotter product for
mula 
{exp[ - (vA + iHv)T] J(p",q";p',q') 

= .J~ J ... J iio {[exp( - VAE)](Pj+ I,qj+ 1 ;Pj,qj) 

X exp [ - ih (Pj ,qj)E Jl ft (d
Pj 

d
qj

) 
j=1 217' 

= lim 217' J ... J ft ( exp(vEI2) 
N_", j=O 41TSinh(VE/2) 

xexp{(iI2)(pjqj+ 1 - Pj+ Iqj) 

-! coth(vEI2)[(Pj+ I _pj)2 + (qj+1 _qj)2} 

Xexp[ - ih (Pj,qj)E]) ill (dpj dqj) 

[use (2.16) and (2.17)]. 

Here we have used the notations Po = p', qo = q', PN+ I 
=p", qN+ I = q", and E = T I(N + 1). In the limit for 

N---+oo, we can replace [sinh(vE!2)] -I and coth(vE/2) by 
their first-order approximation 2/ EV (higher-order terms do 
not contribute in the limit). This leads to 

= 21Te"T/2 lim J ... J.ft (exp {..!.. i[ Pj(qj+ 1 - qj) - qj(Pj+ 1 - pj)]} exp[ - ih (Pj,qj)E]) 
N_", J=O 2 

X ft ([21TVE] -I exp { _ (qj+ I - qj)2 + (Pj+ 1 - pj)2}) .ft (dpj dqj) 
j=O 2VE J= 1 

= 21Te"T12 J exp [i ~ J (p dq - q dp) - i J h (p,q)dt ] dp'i¥(p,q) 

= [!JJ ,,(h;p",q",T;p',q',O). (2.33) 

Here we have used the continuity of h in the limit so that as 
N---+oo , 

exp [ -ijto h(Pj,qj)E] ---+exp [ -i J h(P,q)dt]. 

Comparing (2.33) with (2.29) we see that for h e Co, 
E(v,h;t)=exp[ -(vA+iHv)t]. (2.34) 

This implies that for h in Co we have achieved our goal: the 
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I 
E (v,h;t) form a strongly continuous contraction semigroup. 

For h in L "', the operator H v defined by (2.32) is still 
bounded. The operator vA + iH v' defined on D (A), is 
therefore still a generator of a strongly continuous contrac
tion semigroup. We can find functions hn in Co such that 
Ihn (p,q)l.;;; IIh II '" for allp,q andhn (p,q}---+h (p,q) almost ever
ywhere (a.e.). By the dominated convergence theorem, one 
sees immediately from (2.15) that this implies [!JJ v(hn) 
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-n_", r?Jl v(h) pointwise. On the other hand, (vA + iHv,nlf 
_(vA + iHvlf for all/ED(A), and therefore vA + iHv,n 
converges to vA + iH v in the strong resolvent sense (see Ref. 
13, Theorem VIII 1.5), where we have used the notation 
H V.n for the multiplication operator by hn on L 2(V). Hence 

s-lim exp[ - (vA + iHv,n)t] = exp[ - (vA + iHv)t]. 
n_", 

Using (2.28) [note that this upper bound on r?Jl v(h) is inde
pendent of h !] one can therefore apply the dominated conver
gence theorem to see that [f, g eL 2(V)] 

(f,exp[ - (vA + iHv)t] g) 

= lim (f,exp[ - (vA + iHv,n)t] g) 
n_", 

- I' f dp" dq" J dp' dq' I( " ") -1m --p,q 
n_", 21T 21T 

X r?Jl v(hn;p" ,q",t;p',q',O) g(p',q') 

= J dP~:q" J dP~:q' I(p",q") 

X r?Jl v(h;p",q",t;p',q',O)g(p',q') 

= (f,E(v,h;t)g). 

Hence E (v,h;t) = exp [ - (vA + iH v)t ] for hE L "', which 
implies again that the E (v,h;t) form a strongly continuous 
contraction semigroup, now for all h E L "'. 

Finally, let us take a general function h satisfying (2.25). 
Let hn (p,q) be defined as 

hn(p,q) = h (p,q), if Ih (p,q)I';;;n, 
(2.35) 

hn(p,q) = 0, otherwise. 

Clearlylimn_", hn(p,q) = h (p,q)(hn converges pointwise to 
h, a.e.), while Ihn(p,q)l.;;; Ih (p,q)1 for allp,q. By thedominat
ed convergence theorem we have therefore, for every path 
[pIt ),q(t)] for which scflh (p,q)ldt is finite, that 

T T 

!!..~ J hn(p,q)dt = J h (p,q)dt. (2.36) 

° o 

Since scflh (p,q)ldt is finite a.e. with respect to f.L"w (see 
above), (2.36) implies, again by the dominated convergence 
theorem, that for allp',q',p",q" 

lim r?Jl v(hn;p",q",T;p',q',O) 

= r?Jl ,,(h; p" ,q" ,T; p',q',O). 

Take now any I E L 2( V). We have then 

II [E(v,h;t) - E(v,hn;t)] 1112 

= J dpdq J dpi dql J dp2dq2 I( ) 
21T 21T 21T Pl>ql 

X [r?Jl v(h;p,q,t;PI,ql'O) - r?Jl v(hn;p,q,t;Pl>ql'O)] 

X [r?Jl ,,(h;p,q,t;P2,q2'0) - r?Jl ,,(hn;p,q,t;P2,q2'0)] 

x/(p2,q2)' 

(2.37) 

Using the pointwise convergence (2.37) and the upper 
bound (2.28) one sees that this integral converges to zero for 
n-oo, by the dominated convergence theorem. Hence 
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s-lim E (v,hn;t) = E (v,h;t). (2.38) 

Since hn E L '" for all n, the E (v,hn;t ) are contraction opera
tors. Hence the strong convergence (2.38) implies 

liE (v,h;t III.;;; 1. (2.39) 

Taking (2.31) into account, we therefore only need to prove 
still that 

s-lim E (v,h;t) = 1 (2.40) 
t-o 

in order to conclude that theE (v,h;t ) form a strongly contin
uous contraction semigroup. Since theE (v,h;t ) are uniformly 
bounded, and sinceD, the set of finite linear combinations of 
the hkl' is dense, it is sufficient to prove, for all k,l, 

(2.41) 

To prove (2.41) we shall again use the L '" functions hn de
fined by (2.35). Since hn E L "', we know that E (v,hn;t) 
= exp [ - (vA + iH v,n)t ]. Fix k,l. Since hkl ED (A ) 
= D (vA + iH v,n)' Gn (t) = E (v,hn;t )hk1 is differentiable, 

and 

II:t Gn(t) I I = IIE(v,hn;t)[vA +iHv,n]hk11l 

.;;;vk + Illhn Ihklll .;;;vk + Illh Ihklll, (2.42) 

where we have used IIE(v,hn;t)II.;;;I, Ahkl = khkl> and 
Ihn(p,q)I.;;;lh (p,qll. The fact that the upper bound (2.42) on 
lI(d Idt)Gn(t)1I is independent ofn implies that the Gn form 
an equicontinuous family of vector-valued functions of t. 
Since Gn (t ) converges to E (v,h;t )hk1 for every t, the equicon
tinuity of the Gn implies thatE(v,h;t)hk1 is continuous in t. 
We have thus proved (2.41), and hence (2.40). 

We have now achieved our goal, i.e., we have shown that 
for all functions h satisfying (2.25), r?Jl v(h;p",q",t;p',q',O) is 
the integral kernel for a strongly continuous contraction se
migroup E (v,h;t). This contraction semigroup can be con
sidered as a "perturbation" of the semigroup EO(v,T) 
= exp( - vAt). If h is a bounded function, the multiplica

tion operator H" is bounded, and one sees from (2.34) that 
E (v,h;t) satisfies the integral equation 

T 

E(v,h;T) = EO(v,T) - i J ds E(v,h;T - s}HvEO(v,s). 

° (2.43) 

For a general unbounded h, (2.43) cannot be written as an 
operator equation, because of domain problems. However, 
we shall see that (2.43) is still true in a "weak" sense for 
functions h satisfying (2.25). 

Take any (real) functionh satisfying (2.25). Let [pIt ),q(t)] 
be a path in the support of f.L"w for which scflh (p,qlldt is 
finite. Then F(s) = exp[ - i{;h (p,q)dt] is a function of 
bounded variation on the interval [O,T]. Hence, Fis differen
tiable a.e. and by the fundamental theorem of calculus 

F'(s) = ih (p(s),q(s))F(s), a.e. 

Hence 
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T 

F(T) = F(O) + i f ds h (p(s),q(s))F(s), 

o 

or 

exp [ - i I h(p,q)dt ] 

= 1-/ I dsh(W),q\Y))exp [ -i J h(P,q)dt]. 

Since for h satisfying (2.25), scflh (p,q)ldt is finite a.e. with 
respect to J.''W, we can insert the above expression into the 
definition (2.15) of f!jJ v(h), which gives 

f!jJ v(h;p",q",T;p',q',O) 

= f!jJ v(h = O;p",q",T;p',q',O) - i21revT12 

x J {I dsh(p~'q~))exp [i ~ J (Pdq-qdp)] 

xexp [ - i J h (p,q)dt ]} ,*,'M;~;.f(p,q). (2.44) 

In order to avoid confusion we have, for this computation 
only, explicitly labeled the Brownian bridge measureJ.''W by 
its initial and final times, together with the pinned values of 
p,q at these times. For every sin (O,T) we can write 

d,J.V,!'":(,T = f dp dq dllV,!,",q",T ® dllV,,!,~,,, • r-W;p ,q ,0 r-W;P.q.s r- W;p,q ,0 

We insert this into (2.44). The multiple integral we thus ob
tain is absolutely convergent if h satisfies (2.25) [see (2.26)], 
We are therefore allowed to change the order ofthe integra
tions, which yields 

f!jJ v(h; p" ,q" ,T; p' ,q' ,0) 

= f!jJ v(h = O;p",q",T;p',q',O) 
T 

- if ds f d~:q f!jJ v(h;p",q",T;p,q,s) 

o 

Xh (p,q)f!jJ v(h = 0; p,q,s;p',q',O). (2.45) 

For flO}; ED, we multiply this expression by 

fl(P",q")f2(P',q'), and integrate over p",q",p',q'. We can 
use the fact that for some C,n,I.Ij(p,q)1 
<C(1+p2+q2)ft exp[_(p2+q2)14](j=1,2) to show 
that the multiple integral converges absolutely; we may 
therefore again change the order of the integrations, which 
leads, for allfl.J2 ED, to 

(fl,E(v,h;T)h) = (fl,EO(v,T)h) 

T 

- i f ds( fl,E (v,h;T - s)H vE O(v,s)h). 

o 

(2.46) 
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Formula (2.46) holds for all functions h satisfying (2.25). 
Note that EO(v,t) leaves D invariant; since DCD(Hv), all 
the terms in (2.46) are well defined. 

Putting together all the preceding results, we see that we 
have proved the following proposition. 

Proposition 2.1: Let h be a real function satisfying, for all 
a>O, 

f dpdqlh (p,qWexp[ - a(p2 + q2)] < 00. 

Then 

f!jJ v(h;p",q ",T;p',q',O) 

= 21re
vT/2 f exp[i ~ f (p dq - q dp) 

- i f h (p,q)dt ] dJ.''W 

is well defined. Here J.''W is a Gaussian measure completely 
determined by its normalization (1.4) and its connected co
variance (1.5). Moreover, there exists a strongly continuous 
contraction semigroup E (v,h;t) on L 2( V) such that we have 
the following. 

(1) E (v,h;t ) is an integral operator, with kernel 

[E(v,h;t)](p",q";p',q') = f!jJ v(h;p",q",t;p',q',O). 

(2) For allJ, g E D, 

(J,E(v,h;T)g) = (J,EO(v,T)g) 

T 

- i f dt (J,E (v,h;T - t)H vEO(v,t )g). 

o 

This proposition will enable us, in the next section, to study 
the limit for v_ 00 • 

From the path integral definition (2.15) for f!jJ v(h) one 
can easily check that 

f!jJ v( - h;p",q",T;p',q',O) = f!jJ v(h;p',q',T;p",q",O). 
(2.47a) 

This implies 

E (v, - h;t ) = E (v,h;t )*. (2.47b) 

c. Taking the limit v- 00 

Let us again first consider the case h = o. Since the hoi 
span thesubspaceJro ' we see from (2.24) thate-VTA_po as 
V-oo. Hence, as v_ 00, 

f!jJ v(h = 0; p",q",T;p',q',O) 

= [exp( - vAT)](p",q";p',q'I-Po(p",q";p',q'). 

(2.48) 
A A 

Since Po = (lK) [using the definition (2.10) of R for 
R E flj (Jf1], its integral kernel is given by [use (2.11)] 

Po(p",q";p',q') = (p",q" Jp',q'). (2.49) 

Putting (2.48) and (2.49) together yields, as v-oo, 

f!jJ v(h = O;p",q",T;p',q',0I-(p",q"Jp',q'). 

This is exactly statement (1.3), specialized to the case h == O. 
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For h #0, the same will happen. If h is bounded, t?Jl v(h ) 
is the integral kernel of exp[ -(vA+iHv)T]. Since 
A (1 - Po» 1 - Po, the effect of the - vTA term in the ex
ponent, in the limit v~ 00, is that everything happening out
side JYo = PoL 2( V) gets damped out. An analogous pheno
menon takes place for unbounded h. This is the content of 
the following proposition. 

Proposition 2.2: Let h be a real function on H2 satisfying 
(2.25). Let H v be the operator on L 2( V) defined by 

(Hvf)(p,q) = h (p,q)f(p,q)· 

Let E (v,h;t ) be the contraction semigroup given by Proposi
tion 2.1. Define the operator PoH vPo on the domain 
{ j;Po feD (H v) J • Obviously D CD (PoH vPo)' Assume that 
PoH vPo is essentially self-adjoint on D. Then, for all T> 0, 

s-lim E(v,h;T) = Po exp( - iPoHvPoT)po' (2.50) 
1'-+00 

where, with a slight abuse of notation, we write 

exp( - iPoH vPo T) for exp( - i PoH vPo T). 
-=-=--=-0-

Remark: Note that the condition that PoH vPo ID be 
self-adjoint is an extra condition on h, which is not fulfilled 
by all h satisfying (2.25), not even if H v is essentially self
adjoint on D, and PoDCD notwithstanding. It may happen 
that PoHvPolD has more than one self-adjoint extension 
[e.g., h (p,q) =p2 + (1 - 3A )q2 - Aq4,A >0] or none at all 

[e.g., h (p,q) = pq3 + ~pq]. The condition that PoHvPolD 
be self-adjoint ensures that exp [ - i PoH vPo ID T] is well 
defined and unitary. This is needed in point (7) of the proof 
(see below). The condition on PoH vPo ID may be weakened, 
however (see the remark following the proof of Proposition 

2.1); it is sufficient to require that PoHvPolD be maximal 
symmetric. In that case a slightly weaker conclusion than 
(2.50) holds: in some cases one has to substitute "weak limit" 

for "strong limit." Note that if PoH vPo ID is maximal sym
metric (this includes the self-adjoint case), we automatically 

have PoH vPo ID = PoH vPo . 
Before starting on the proof of Proposition 2.2, we state 

the following lemma which we shall need. Since it is easy to 
prove, we omit the proof here (see also Ref. 13, Lemma 
V 1.2). 

Lemma 2.3: Let JY be any separable complex Hilbert 
space. Let B n be a sequence of bounded operators on JY, 
with w-limn~oo Bn = B. suppose that 

IIBn II..; 1, all n, 

IIBtPll = IltPll, all tP e JY. 
Then the Bn converge strongly to B. 

Remark: A corollary to this lemma is that the integral in 
(2.6) actually converges in the strong sense; that is, for any 
increasing sequence of compact sets K n ("increasing" means 
Kn CKn + I for all n) such that unKn = H2, one has 

s-lim r dp dq lP,q) (p,ql = I 
n~oo JKn 21r 

[take Bn = f KJdp dq/21r)lp,q) (p,ql,B = 1. Since IIBn II..; 1, 
all the conditions for the lemma are fulfilled, and the above 
statement follows). 
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We now proceed to prove proposition 2.2. 
Proof of Proposition 2.2: (1) Since we shall work with one 

fixed h, we shall drop this label in our notation for E (v,h;t ): 

E (v,t) = E (v,h;t), EO(v,t) = E (v,O;t) = exp( - vtA ). 

Since the E (v,t) are contractions, liE (v,t)lI..; 1, it suffices to 
provethestrongconvergenceonD. Forf, g e D, we have [see 
(2.46)], for all t>O, 

(f,E (v,t)g) 
t 

= (f,EO(v,t)g) -if ds(f,E(v,t-s)HvEO(v,s)g). 

o 
(2.51) 

Hence, for k> 0, 

I (f,E(v,t )hkl ) I 0;;; I (f,EO(v,t )hkl ) I 

t 

+ f dsl(f,E(v,t-s)HvEO(v,s)hkl)1 

o 

..;e-vktllfll + (v-'k -'lIlfIlIlHvhklll. 

Since D is dense, this implies 

IiE(v,t)hkllio;;;e-vkt + (v-'k -1)IiHvhk11i. (2.52) 

Hence, for k>O: IiE(v,T)hk/ll~ as v~oo (since T>O), 
which proves 

s-lim [E(v,T)(I-Po)] =0. (2.53) 
><-00 

(2) We can use (2.52) to prove an estimate that will be 
useful below. From (2.52) we see that for any feD there 
exists a constant Cf (depending on/) such that, for all t>O, 

IIE(v,t)(I- Polflio;;;Cf(e- vt + V-I). 

Takegl eL 2(V). For arbitrary E>O, we can findfe D such 
that Itf - glllo;;;E. Hence 

IIE(v,t)(I- Po)gIIl";E + CAe-vt + V-I). 

This implies, for g2 e L 2( V), that 
T 

f dt I (g2,E (v,T - t )(1 - Po)gl) I 
o 

O;;;ETIIg211 +Cfllg211[v-IT+v-I(I-e-VT)]. 

It is always possible to choose Vo such that for v>vo the 
second term in the right-hand side of this inequality becomes 
smaller than E. Since E was arbitrary to start with, we have 
therefore proved for all gl' g2 e L 2(V) that 

T 

lim f dt (g2,E (v,T - t)(1 - Po)gl) = O. (2.54) 
~oo 

o 

(3) We now concentrate on PoE (v,T)po' Take any strict
ly increasing sequence (vn)n'vn>O, with limn-->oo Vn = 00. 

Fixt>O. Since IIPoE(vn,t)Pollo;;;l, there exists a subsequence 
(Vn(k))k of (vn)n such that PoE(Vn(k),t)po converges weakly. 
By the standard diagonaIization trick, one finds there exists 
a subsequence (Vk)k of(vn)n such thatthe PoE (vk,t)po con
verge weakly for all rational values of tin R+. 
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(4) For f, g e Do = PoD ( = finite linear span of the hoi)' 
and any t e R+, we see from (2.51) that [use EO(v,t)g = g] 

I!!.... (f.E(Vk,t)g) 1= 1- i(f.E(Vk,t)Hvg)1 
dt . 

<lIfIlIlHvgll· 

Since this bound is independent of k (and of I) this implies 
that for fixed f, g e Do, the functions Fk.J,g(t) 
= (f,E(Vk,I)g) form a (uniformly) equicontinuous family 
of functions lR+_c. Since the Fk converge for leQ+, a 
dense set in R+, this implies that they converge for all 
leR+; namely, for all 1>0, (f,E(v",I)g)-Foo,J,g(l) as 
V-oo. 

(5) for any I, F oo,J,g is obviously sesquilinear in f, g. 
Moreover, since the E (v,t) are all contractions, we have 
IFoo,J,g(I)i<lIfllllgll. By Riesz' lemma this implies that 
there exist operators L t e &J (Ko) such that, for allf, g e Ko 
and all Ie R+, 

(2.55) 

(6) Putting together (2.51) with some estimates, we can 
find an explicit form for the operators Lt. Let f, g be arbi
trary elements of Do. Then 

(f,Lt g) 

= lim (f,E(Vk,I)g) [see (2.55)] 
k-oo 

~ ~ [Ug) -i J dtU,E(~"T-t)H·g)l 
[use (2.51), together with EO(v,t)g = g] 

r 

= (f,g) -i lim fdl(f,E(Vk,T-t)(I-Po)HVg) 
k-oo 

o 
r 

-i lim fdt(f.E(vk,T-t}PoHvg). 
k_oo 

o 
The second term is zero by (2.54); in the third term we can 
interchange the limit and the integration because of the 
dominated convergence theorem, which gives 

r 

(f,Lrg) = (f,g) -i f dt(f,Lr_tPoHvg)· (2.56) 

o 

:gquation (2.56) holds forf, g e Do' Introducing the operator 
Lt on L 2( V), defined as the trivial extension of L t 

A 

L,/=O, if flKo, 
A 

L,/=Ltf, if feKo, 

we can rewrite (2.56), for allf, g e D and all 1>0, as 
r 

(f.Lrg) = (f'po g) - if dt (f.Lr-t PoHvPo g). 
o 

(2.57) 

Since PoH vPo is essentially self-adjoint on D, (2.57) implies 
for all 1>0 that 
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(2.58) 
A 

From (2.55) and the definition of Lro one sees that this im-
plies 

w-limPoE(vk,T}Po = Po exp[ - iPoHvPoT]Po. (2.59) 
k_ oo 

Since (Vk)k was a well-chosen subsequence of an arbilrary 
increasing sequence (v .. ) .. , with lim .. _ oo v .. = 00, (2.59) im
plies 

w-limPoE(v,T}Po =Po exp[ -iPoHvPoT]Po. (2.60) 
>'-+00 

(7) Equation (2.60) is still not quite what we want, since it 
only gives weak. convergence, while we are interested in 
strong convergence. However, we shall see that we can, by 
applying Lemma 2.3, convert this weak into strong conver
gence. Let us restrict ourselves to Ko. If we define E (v,t ), 
Hv to be the obvious restrictions to Ko of PoE(v,l}Po, 
PoHvPo, respectively, (2.60) can be rewritten as 

w-limE(v,T) = exp( - iHvT). 

Since exp( - iHvT) is a unitary operator on Ko, and 
liE (v,T)1I < 1, we can apply Lemma 2.3, and conclude 

s-lim E(v,T) = exp( - iHvT). 

This then implies, on L 2( V), 

s-limPoE(v,T}Po =Po exp[ -iPoHvPoT]Po. (2.61) 
...... 00 

(8) Comparing (2.61) and (2.53) with (2.50) one sees that 
we only need to prove still that (1- Po)E(v,t}po converges 
to zero. This is an easy consequence of the fact that the E (v,t ) 
are contractions, while exp( - iPoHvPoT) is unitary. Take 
fe L 2( V). Let Ebe arbitrary, with E> O. Because of(2.61) we 
know that there exists avo such that 

IIPo [E(v,t) - exp( - iPoHvPot )]Pofll<E, for all v;wo' 

Since Po exp( - iPoHvPot}Po = exp( - iPoHvPol }Po, this 
implies 

lie - iPJlvPotpo fll2 - IIPoE (v,l}Po f1l 2<2EIIPo fll· 

Hence, for v;;'vo ' 

11(1 - Po)E(v,t}PofIl2 

= IIE(v,t}PofIl 2 -IIPoE(v,t}PofIl 2 

<1!PofIl2 _lIe-iPJlvP.rPofIl2 + 2EIIPofll 

= 2EI!Pofll· 

Since E andfwere arbitrary, this proves 

s-lim (I - Po)E (v,l}Po = 0, 

and (2.50) now follows from (2.53), (2.61), and (2.62). 

(2.62) 

Remark.·We already noted above that the condition on 
Po HvPo may be weakened. We only required that 
PoH vPo ID be essentially self-adjoint in order to be allowed 
to make the transition from th;: integral equation (2.57) to the 
"integrated form" (2.58) for L r . There are, however, more 
general conditions under which this transition is still permit
ted. 
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We first make some general remarks. Let Tbe a closed 
symmetric operator on a complex Hilbert space K. We de
fine its deficiency indices n ± as n ± = dim Ker(T· ± ill. 
Let s be any strictly positive real number. One checks easily 
that iT + s is closed, and for all ; ED (T), 

II (iT + s)¢JlI>s 11;11· 
This implies that Ran(iT + s) is closed.IfRan(iT + S ) = K 
then (iT + S ) -I exists, and II (iT + s ) -III <s -I. This is a nec
essary and sufficient condition for iT to be the generator of a 
strongly continuous contraction semigroup (this is the 
Hille-Yosida theorem; see, e.g., Kato13

); we denote this se
migroup by exp( - iTt ). But [Ran(iT + S W 
= Ker( - iT· + s), hence Ran(iT + s) = K if and only if 

n+ = O. Therefore, iT generates a strongly continuous con
traction semigroup if and only if n + = O. It turns out, due to 
the fact that T is symmetric, that this semigroup consists 
entirely of isometries [for ; ED (T), one checks that 
(d /dt )lIexp( - iTt )¢J1I2 = 0, hence lIexp( - iTt )¢JII = 11;11. 
Since D (T) is dense and exp( - iTt) a contraction, this ex
tends to all of ~. If n _ = 0, the same analysis as above 
holds for - T instead of T. We have then that all strictly 
positive real numbers lie in the resolvent set of iT, and 
II(-iT+S)-III<s-1 for S>O. This implies 
Il(iT· + s)-III<s -I,i.e.,iT·isageneratorofastronglycon
tinuous contraction semigroup exp( - iT·t). In fact, 
exp( - iT·t) = [exp(iTt )]*. 

Let us now specialize this to the case at hand. It is clear 

that we have to assume at least that PoH vPo ID is maximal 
symmetric. Hence either n+ = 0 or n_ = O. If n+ = 0, 

PoH vPo I D is the generator of a contraction semigroup, and 
we are allowed to conclude (2.58) from (2.57). This then leads 
to the weak limit statement (2.59). Since exp( - iPoH vPo T) 
is still an isometry, Lemma 2.3 can still be applied, and the 
arguments in points (7) and (8) of the proof of Proposition 2.2 
still carry through. 

Ifn_ = 0 we can apply the above to - h. We have thus 

s-lim E (v, - h;T) = Po exp[ iPoH vPo T ]Po. 
\'-+00 

Taking ad joints, we see that this implies [use (2.47)] 

w-lim E(v,h;T) = Po exp[ - iPoHvPo)·T ]Po, 
\'-+00 

where we have used (PoHvPo)* = (PoHvPoI D)· since 

PoHvPolD = PoHvPo. Note that we only can conclude 
weak convergence in this case (due to the taking of adjoints). 

Summarizing, we see that if PoHvPolD is maximal 
symmetric, then 

s-limPoE(v,h;T}Po =Po exp[ -iPoHvPoT]Po, 
...... 00 

(2.63) 

w-limPoE(v,h;T}Po =Po exp[ - i{PoHvPo)*T]Po, 
v-+oo 

ifn_{poHvPo) = O. 

Ultimately we are interested in convergence of the 
&' v(h ), the integral kernels of the operators E (v,h;t), rather 
than in convergence of the operators themselves. As a conse-

2249 J. Math. Phys., Vol. 26, No.9, September 1985 

quence of the constructions we made in Sec. II A, we can 
easily conclude that the &' v (h ) converge in the sense of the 
Schwartz distributions. 

To see this, let us first define the operator H on K by 

f dPdq H = --IP,q)h (p,q)(p,ql· 
21T 

This definition is consistent with our earlier notations; the 
operator Hv on L 2(V) associated to H by means of (2.13) 
coincides with the multiplication operator H v defined by 
(2.32). We have, therefore, according to (2.14), 

A 

PoH vPo = H, (2.64) 
A 

where H is defined by (2.10). This implies [use (2.12)] 
A 

Po exp( - iPoHvPoT}po = [exp( - iTH)] . 
A 

According to (2.11), [exp - (iTH)] is an integral operator, 
and its integral kernel is given by the cs matrix elements of 
exp( - iTH). Hence 

[Po exp( - iPoHvPoT}Po ](p",q";p',q') 

= (p",q"lexp( -iHT)p',q'). 

We find therefore that both the E (v,h;T) and their limiting 
operator Po exp( - iPoHvPoT}Po are integral operators on 
L 2(V). It is then easy to show, using the fact that the 
Schwartz test functions on R2 are elements of L 2( V), that the 
convergence proved in Proposition 2.2 implies convergence, 
in the sense of the distributions, of the integral kernels 
&' v(h ), for all T> 0, to the integral kernel of the limiting 

. operator. We have thus (d-lim = limit in the sense of the 
Schwartz distributions) 

d-lim &' ,,(h;p",q",T;p',q',O) 

= (p",q"lexp( - iHT)p',q'). (2.65) 

In the final theorem of this section we shall see that we 
can do better than this, i.e., that we can prove in addition 
pointwise convergence of the &' ,,(h ), provided the function h 
satisfies a condition slightly stronger than (2.25). To prove 
this theorem we shall make use of formula (2.45) and of Pro
position 2.2. Actually we shall only need weak convergence 
of the operators E (v,h;t); this enables us to consider also op
erators H which are not self-adjoint, but only maximal sym
metric [see (2.63)]. 

Theorem 2.4: Let H be a maximal symmetric operator 
on K, which can be written as 

H= --IP,q)h(p,q)(p,ql. f dPdq 
21T 

Assume that Dc, the finite linear span ofthe harmonic oscil
lator eigenstates Wk' is a core for H. Suppose that the func
tion h satisfies the following . 

(Cl) For every a> 0 

f dp dqlh (p,qWexp[ - a(p2 + q2)] < 00. 

(C2) For some 0</3 < 1 

f dp dqlh (p,qWexp[ _P(p2
2
+ q2)] = ep < 00. 

Then, for all pit ,q" , p' ,q' in R, and all t " > t " 
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~~ 21Te*" - '')12 f exp [ ~ f (p dq - q dp) 

- i f h (p,q)dt ] dp,rv(p,q) 

{

(p",qHlexP[ - i(t" - t')H] p',q'), 

ifn+(H) = 0, (2.66) 
= «(,q"lexp [ -i(t" -t')H*]p',q'), 

Ifn_(H) =0. 

Herep, rv is the product of two independent Wiener measures 
(oneinp, one inq), pinned atp',q' for t = t', and atp",q" for 
t = t ". The normalization of p, rv is given by 

f dp,rv( p,q) = [21TV(t" - t,)]-l 

{ 
(p" _ p')2 + (q" _ q')2} X exp - ~-~~~-~-'-

2v(t" - t') 

and the connected covariance is (x either p or q; tl <t2) 

(x(tl)x(t2W == (x(t l)x(t2) - (x(tl)(X(t2) 

= vtl[1 - t2/(t" - t 'I], 

where (I) = (Sdp,rv/)/(Sdp,rv). If the limit is taken in the 
sense of the Schwartz distributions, then (2.66) already holds 
if only (C 1) is satisfied. 

Proof (1) We take, without loss of generality, t ' = ° and 
t" = T>O. 

(2) We shall use (2.45), relating f?}J v(h ) with f?}J v(h = 0). 
Ifwe write (2.45) also for f?}J v( - h ), take the complex conju
gate, and apply (2.47a), we find another such integral equa
tion for f?}J v(h ). Combining this with (2.45) leads to 

f?}J v(h;p",q",T;p',q',O) 
T 

= f?}J v(O;p",q",T;p',q',O) - i f dt f d~:q 
o 

X f?}J v(O;p" ,q" ,T;p,q,t)h (p,q)f?}J v(O;p,q,t;p',q',O) 

T " 

- f dtl f dt2 f dP~:ql f dp~:q2 
o 0 

X f?}J v(O;p",q",T;Pl,ql,ttJh (Pl,ql) 

X f?}J v(h;Pl,ql,tl;P2,q2,t2)h (P2,q2) 

X f?}J v(0;P2,q2,t2;p',q',0). (2.67) 

A calculation analogous to what was done above [see (2.26)] 
shows that all the integrals in (2.67) converge absolutely (for 
fixed v). 

(3) Let us introduce a new notation. For p,q E K,v,t> 0, 
we define </Jp,q,V" E L 2( V) by 

</Jp,q,v,,(Pl,qtJ = f?}J v(O;Pl,ql,t;P,q,O) 

= (eV'/2/(2 sinh [ vt 12]))exp{ (iI2)(pql - Plq) 

-1 coth(vt 12)[(p - ptJ2 + (q - ql)2]]. 

One easily calculates 

II</Jp,q,v" II = (1 - e - 2v')-1/2. 

Using (CI), one can check that </Jp,q,V" E D(Hv). As v tends to 
00 (the other parameters remaining fixed), </Jp,q,v,,(Pl,ql) con-
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verges pointwise to a familiar expression 

</Jp,q,v,,(Pl,ql) 

~xp{(iI2)(pql - Plq) - H(p - ptJ2 + (q - qtJ2]] 
A 

= (Pl,ql!P,q) = (UwP,q)(PlJqtJ, 

where we have used the notation of Sec. II A. An easy calcu
lation shows that this convergence also holds in L 2( V): 

II</Jp,q,v" - Uwp,qll = (e2v' - 1)-1/2. (2.68) 

(4) With this new notation we can rewrite (2.67) as 

f?}J v (h; pIt ,q", T; p' ,q' ,0) 

= f?}J v(O;p",q",T;p',q',O) 
T 

- if dt (</Jp",q",V,T-,,HV</Jp',q',v,,) 
o 

T " 

- f dtl f dt2 (Hv</Jp",q",v,T_",E(v,h;tl - t2) 
o o 

XH v</JP',q',V",) (2.69) 

(5) One can derive a similar integral equation for 
(p",q"lexp( - iTH)p',q') [we assume n+(H) = 0; a similar 
derivation can be made if n _ (H) = 0]. Since (CI) ensures that 
the w p,q lie in the domain of H, one can write 

(p",q"lexp( - iTHlP',q') 
T 

= (p",q"!P',q') - if dt (p",q"lexp( - itH)Hp',q') 

o 
T 

= (p",q"!p',q') - if dt (p",q"IHp',q') 

o 
T " 

- f dtl f dt2(p",q"IHexp[ -i(tl -t2)H]Hp',q'). 
o 0 

(2.70) 
Transposing the inner products in (2.70) toL 2( V) by means of 
U, and subtracting the resulting equation from (2.69), we 
obtain 

f?}J v(h;p",q",T;p',q',O) - (p",q"lexp( - iTH)p',q') 

= [f?}J v(h = O;p",q",T;p',q',O) - (p",q"!P',q')] 
T 

'f A p',q' 
- I dt (</Jp",q",v,T- ,,H v(</Jp',q',v" - Uw ) 

o 
T 

-if dt(</Jp",q",v,T_' - UwP",q",HvUwP',q') 

o 

T " 

-i f dtl f dt2(Hv</Jp",q",v,T_'" 
o 0 

T " 

- i J dt l J dt2(Hv(</Jp",q",v,T_', - UwP",q"), 

o 0 
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T t, 

- f dtl f dt2(HvU(i)p·,q·,{E(v,h;tl - t2) 

o 0 

" 'q' -Po exp[ -iPoHvPo(tl-t2)]PoIHvU(i)P' ), 

Let US denote these six terms by A 1., •• ,A6 (in the above order). 
We shall see that each A r+O as v_ 00, which proves the 
theorem, 

(6) Using the explicit expression (2.16) for f/J v(h = 0). 
one easily finds 

IAII«eVI - 1)-I[ 1 + !(p" _ p')2 + !(q" _ q')2] 

xexp[ - (p" - p')2/4 - (q" - q')2/4] , 

henceAI-D, 
(7) For A3 we can use (2.68) and Cauchy-Schwarz, 

which leads to 
T 

IA 31<f dt(e2vt - 1)- 1/2I1HvU(i)p,q1l 

o 
co 

<v-IIIHvU(i)p,q1l f ds(e' - I)-lIZ. 

o 

This implies A3-D. 
(8) Let us now consider A 6• This term is the integral, on a 

bounded domain, of a function uniformly bounded by 
2I1HvU(i)p·,q·lI· IIHvU(i)P'411. and converging pointwise a.e. 

to zero for v tending to 00 [by (2.63)]. Hence. by the dominat
ed convergence theorem. A~. 

(9) For the remaining three termsAz• A 4 , and As we need 
estimates of IIHvt/Jp,q,v,,1I and IIHv(t/Jp,q,V" - U(i)p,q)II, which 
we shall compute using (C2). We have 

IIH vt/Jp',q',v" 112 

f 
dpdq eVI 

= ~ Ih (p,qW 4 sinh2(vt 12) 

Xexp{ -! coth(vt /2)[(p - p') + (q - q')2] I 

<If d~:q Ih (p,qWexp [ _P(p2/ qZ)]f/2 

xeVI [4SinhZ ~rl exp [P(p'2
2
+q'2)] 

X {f d~:q exp [ _ (coth ~ _ p) (pZ + q2)]} 112 

= ~ (; yl2 eVI [4 sinhz ~ J - I (coth ~ _ P ) - 1/2 

X exp[ p (p,2 + q'2)/2] 

<K exp[ P(p,2 + q'2)/2](1 _ e- vt )-3I2. 

Hence 

IIHvt/Jp',q',v"II<KI exp[ P(p,2 + q'2)/4](1 _ e- VI )-3/4, 

An "analogous calculation can be made for IIHvt/Jp',q',v" 
- U(i)p·,q')lI. Puttingy = evt 

- 1, a = 2(1 - P)<2, one finds 

IIHv(t/Jp',q',V,' - U(i)p"q')1I2<!(Cphr)1/2 exp[ P(p'2 + q'2)/2] {y-3a-I(1 + ay)-I 

X(2 + ay)-1(3 + ay)-1(4 + ay)-I[(a4 - 403 + 1202 
- 240 + 24~ 

+ 6o(a2 - 20 + 2lv2 + 6o(lla - 8lv + 60] 11/2 

<K' exp[p(p,2 + q'2)/2]y-3/2(1 + y)-1/2. 

Hence • 

ilHv(t/Jp',q',v" - U(i)p·,q'III ... X2 exp[ P(p,2 + q,2)14](eVI _ 1)-3/4. 

(10) With the help of these two estimates we can now discuss A 2' A4, and A s' We give here the explicit estimate for A4 
T I, 

IA41<KIK2 exp[P(p'2 + p"2
4
+ q,2 + q"2)] J dtl J dt2[ 1 _ e-v(T- I,,] -314 [eVI, - 1] -3/4 

o 0 

Since C' does not depend on v, we clearly have A4-D. Esti
mates for A 2,A s can be computed analogously; one also finds 
A 2-D, As-D· 

(11) Since Aj-D,j = 1, ... ,6, we have shown that 

If/J v(h, p",q",T; p',q',O) - (p",q"lexp( - iTH)p',q')I-D· 

This proves the main statement of the theorem. 
(12) The fact that convergence in the sense of distribu

tions follows already if only (Cl) is satisfied was proved by 
the argument preceding the theorem. Note that there, too, 
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I 
only weak convergence was needed for the operators 
E(v,h;T); the argument therefore extends trivially to maxi
mal symmetric H. • 

Remarks: (1) In our formulation of Theorem 2.4, we 
have used initial and final times t' and t " ,respectively, while 
in all our preceding analyses we took t' = ° (and t" = T). 
Since h (p,q) and therefore also H are time independent, this 
simply amounts to a relabeling of t. It is certainly plausible 
that all the above also holds for time-dependent Hamilto
nians, where the evolution operators are then taken to be 
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time-ordered products. For quadratic Hamiltonians, where 
everything can be calculated explicitly, this is indeed the 
case. 

(2) Strictly speaking, the pointwise limit proved in 
Theorem 2.4 is not stronger than the limit in the sense of the 
Schwartz distributions proved before. A close inspection of 
the proof shows indeed that our estimates of the difference 
functions .::1 j contain factors of the form 
expUP(p"2 + p,2 + q"2 + q,2)], which arenottempered dis
tributions. If h is polynomially bounded, better estimates can 
be made for the .::1 j' containing only polynomials in the 
p',q',p",q". These estimates then automatically imply con
vergence in the sense of the Schwartz distributions. 

(3) Note that we have always restricted ourselves to 
strictly positive time intervals: T> 0 in Proposition 2.2, and 
t" > t' in Theorem 2.4. For T= Oort' = t" there is no hope 
of proving convergence, since 

E (v,h;O) = 1, 

9 v(h;p",q",O;p',q',O) = 6(p" - p')6(q" - q') 

=1= (p" ,q" I,p',q'). 

(4) The construction above shows how the "antiordered 
symbol" h (p,q) comes into play, rather than the more ex
pected (and much more well-behaved) "ordered symbol" 
H(p,q) (as defined in the Introduction). Note that for qua
dratic Hamiltonians a result similar to (1.3), but where the 
functionH (p,q) is used in the path integral instead of h (p,q), 
also holds. 14 The price to pay for this change is that the 
measure has then to be replaced by a Wiener measure with 
drift terms (depending on H; see Ref. 14). This suggests that 
(1.3) might be one element ofa family of related results, each 
with slightly different Hamiltonian functions in the action, 
and accordingly different measures. 

III. THE SPIN CASE 

The spin case can be treated completely analogously to 
the canonical case, modulo a change in the basic setting of 
course. In Sec. III A we define our notation, and in Sec. III B 
we reinterpret the spin path integral for finite v as the inte
gral kernel of an operator on L 2(S 2). We state our final result 
(limit for v_ 00 ) in Sec. III C, without proof since the proofs 
are the same as in Sec. II. 

A. Notations and definitions 

At the end of Sec. III C we shall see, analogously to 
(2.66) in the canonical case, that the matrix element between 
spin coherent states of the unitary evolution operator asso
ciated to a spin Hamiltonian for spin s can be written as the 
limit, for diverging diffusion constant, of path integrals on S 2 

involving Wiener measure on the sphere. In all this the spin 
value s is fixed; s occurs also as a parameter in the path 
integral. In order to prove this relation we shall, however, 
also need matrix elements relating to other spin values than s 
(this is similar to the use of the I,p,q;k ) in the arguments in 
Sec. II, even though the final result involved only the I,p,q»). 
In order to make this distinction clear, we shall use the sym
bolj for any arbitrary integer or half-integer value, while s 
will be used only for the particular spin value (which can also 
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be any integer or half-integer) for which we wish to construct 
a path integral. 

Let K j be a (2j + 1 I-dimensional complex Hilbert space 
(j = p.~, ... ) carrying an irreducible representation of the 
Lie group SU(2). We denote the generators of the corre
sponding Lie algebra by Sk' k = 1,2,3; one has 

[SI,s2] = iS3 (plus cyclic permutations). (3.1) 

It follows that 
3 

L S~ =j(j+ 1)lj' (3.2) 
k=1 

where I] is the unit operator in K j • Let V,m) be a normal
ized vector in 7tJ such that 

S3V,m) = mV,m), m = - j, - j + 1, ... ,j. 

(We use here directly Dirac's bra-ket notation.) Let (),f/J de
note the usual coordinates on the unit sphere, where O..;()..; 1T, 
O..;f/J < 21T. We define unitary operators on K j by 

U(fl) = U((),f/J) = exp( - if/JS3)exp( - i()S2)' 

The spin coherent states (for state V,m») are then given by1S 

Ifl;j,m) =I(),f/J;j,m) = U((),f/J )V,m). 

We shall be more specifi~ally interested in the Ifl;j,j) 
(m = Jj. We therefore also introduce the notation 

Ifl;j) = I(),f/J,j) = U((),f/J JV,j). 

For a given value of s, the states Ifl;S) will be the analog of 
the states I,p,q) in the canonical case, while the Ifl;j,m) will 
playa role analogous to the I,p,q;n). As in the canonical case, 
the Ifl;S) form an overcomplete set in Ks; their "overlap 
function" is given by 

«() ",f/J" ,sl() ',f/J ';S) 

= I cos[(() " - () ')/2]cos[(f/J " - f/J ')/2] 

+ i cos[(()" + () ')/2]sin[(f/J" - f/J ')12] J2s. 
As in the canonical case, the spin coherent states Ifl;j,m) 
give rise to a resolution of the identity in K j (for any m 
value) ~ 

~ f dfl Ifl;j,m) (fl;j,ml = I j , (3.3) 

where dfl = sin () d() df/J, ~ ==(2j + 1)/4tr. One can also 
prove [from the orthogonality relations for the representa
tions ofSU(2)] that for V - j'1 >0 and integer, 

rfJ E Kj' X E K J :::} f dfl (rfJlfl;j,m) (fl;j',mlx) = O. 

(3.4) 
Note well the same value of m! 

One of the intermediate steps in Sec. II was the interpre
tation of the path integral as defining the integral kernel of an 
operator on the Hilbert space of square-integrable functions 
on the label space H2 for the I,p,q). We shall need this here, 
too. We use the notation L 2(S2) for the square-integrable 
functions on S 2, with normalization 

11/112 = f:: I/(fl W, dfl = sin () d() df/J. 

For given spin value s (integer or half-integer, but fixed), 
we define functions h im by 
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h :m(O,cp) = ~21 + 2s + 1 (n;1 + s,sll + s,m). (3.5) 

Here / takes all non-negative integer values (I = 0,1,2, ... ); for 
each value of I, m takes any of the 2(1 + s) + 1 values 
- (/ + s), - (I + s) + 1, ... ,(1 + s). One checks from (3.3) and 
(3.4) that the h:m form an orthonormal set in L 2(S 2), i.e., 

J 
dn h :'m' (n)h:m (n) = ~/I'~mm" 
41T 

(3.6) 

Note that for s = 0, the hi': O(n ) 
= (2/ + 1)1/2(n;I,01/,m) are exactly the familiar spherical 

harmonics 

(3.7) 

Hence the h ~m are not only orthonormal, they also form a 
complete set for L 2(S 2). We shall see that this is true for any 
value for s (integer or half-integer). 

Explicit calculation (see, e.g., Ref. 16) shows that the 
h:m can be written as 

h :m (O,cp ) = Kim ejm~ (1 + cos ° )Is + mil2( I _ cos ° )Is - ml12 

X P(ls+ml.ls-mi) (-cosO) 
l-max(O.lml-s) , (3.8) 

where the Kim are constant factors (normalization plus 
phase), and where theP~'P) are the Jacobi polynomials. Us
ing the well-known fact that the p~.P)(x), k = 0,1, ... , are a 
complete orthogonal set on L 2([ - 1,1]) with respect to the 
weight functions (1 - xt(l + xjP, one sees again from (3.8) 
that the h im are orthogonal. Since for every value of m the 
associated allowed I values range from max(O, 1m I - s) to 00 

[this follows from - (/ + s)<.m<} + s], the lower index of 
the Jacobi polynomial in the right-hand side (rhs) of (3.8) 
ranges from ° to 00. This ensures that for fixed m and cp, the 
him (O,cp ) form a complete set in the ° variable. Consequent
ly, the him are a complete set in L 2(S 2). Taking into account 
(3.6l also, we conclude that the him' 
/ = ~1,2, ... ,m = - (1 + s), - (I + s) + 1, ... ,1 + s, form a 
complete orthonormal basis in L 2(S 2). 

For 'I/J E K s' we define by f", the function 

f",(n) =.j2s + 1 (n;sI'I/J). 

It follows from (3.3) that the map t/l--f", is isometric from 
Ks into L 2(S 2). The image of Ks under this map is a closed 
subspace of L 2(S 2), which we shall denote by JIt'! [this is the 
analog of Ko in Sec. II; we have introduced an extra super
script s because different s values lead, of course, to different 
subs paces JIt'! of L 2(S 2)] . We shall denote the isomorphism 
between Ks and JIt'! by Us: 

Us:Ks~JIt'!, (U'I/J)(n) =.j2s + 1 (.f1;sI'I/J), 

where the notation Us stands for the operator Ks ~L 2(S 2) 
defined as Us = Is 0 Us, where Is is the natural embedding 
~ ~L 2(S 2). The orthogonal projection operator in L 2(S 2), 
mapping L 2(S 2) onto JIt'!, will be denoted by P ~. 

Again, we define possible ways of transporting and ex
tending an operator on Ks to an operator on L 2(S 2). These 
two constructions are completely analogous to what we did 
in Sec. II [cf. (2.10)-(2.14)]. 

2253 J. Math. Phys .• Vol. 26. No.9, September 1985 

(1) Given R E fJj (Ks), we define R E fJj [L 2(S 2)] by 
A 

Rf=O, ifflJlt'!, 
A. A -1 . 
Rf= UsRUs J, If fEJIt'!. 

A 

Then R is an integral operator on L 2(S 2) with integral kernel 
(2s + 1) <.f1 ";SIR.f1 ';S) 

(f,Rg)=(2s+1)Jdn" Jdn' f(n") 
41T 41T 

X (n ";sIR n ';s)g(n '). (3.9) 

(2) Given R E fJj (Ks), with 

J

d.f1 
R=(2s+1) 41T In;s)(n;slr(n) (3.10) 

[any operator in fJj (Ks) can be written in this form, with r a 
smooth function], we define Rs on L 2(S2) by 

(Rs f)(n ) = r(n )f(n ). 

(The index S stands for sphere.) 
One checks again that 

A 

P~ RsP~ =R 

and 
A A 

[exp( - itH)] = P~ exp( - itH)P~. 

(3.11) 

(3.12) 

(3.13) 

So much for our notation and definitions in the spin 
case. In the next subsection we introduce spin path integrals 
and show how they can be interpreted as integral kernels for 
operators in L 2(S2). 

Note that since Ks is finite dimensional, we only have 
to deal with bounded operators this time (unlike the canoni
cal case). Since the function r(n ) in (3.10) can always be cho
sen as a smooth function, and since S 2 is compact, we also 
only have to consider bounded functions r(n ). This simplifies 
the discussion considerably. 

B. Definition of the path Integral (for finite v) 

We define our v-dependent spin path integral as 

&'~,h(n ",t ";n ',t') 

= 41TeY.s{t· - t ')12 J exp [is J cos ° dcp 

- i J h (O,cp )dt ] dp."w(O,cp), 

where p. "w is the Wiener measure on the sphere S 2, pinned at 
n" for t = t" and at n' for t = t', and defined such that 

J dp."w(O,cp) = (41T)-1{exp [v(t" ; t'~]) (n ",n') 

= i: exp [ _ _ v(,-t _If _-_t..!-')'..:..(/--,+--,I...:...)] 
1=0 2 

1 

X L Ylm (n ")yr", (n '), 
m= -I 

where the Y1m are the standard spherical harmonic func
tions. For a restricted class of Hamiltonians, analogous path 
integrals for spin systems were already discussed in Ref. 15; 
the principal difference consists in the presence, in Ref. 15, of 
extra drift terms in the measure, which are absent here. 
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In the canonical case, in Sec. II, we could calculate 
[ljJ v(h = 0) explicitly, and thus identify the generator A of the 
semigroup with integral kernel [ljJ v(h = 0). In the present 
case, we have no explicit expression for [ljJ v(h = 0); we can, 
however, by standard techniques determine the partial dif
ferential equation associated with the above path integral. 
One finds thus that [ljJ v (h;IJ,I;1J ' ,I ') is a solution to the par
tial differential equation 

at [ljJ v (h;IJ,1 ) = - [vAs + ih (IJ)] [ljJ v (h;IJ,1 ), (3.14) 

where 

A =l.[ __ I-aesinoae 
s 2 sin 0 

- _._1_ (a~ _ is cos 0)2 -s] . (3.15) 
SID2 0 

The kernel [ljJ v (h;IJ,I;1J ',1') is completely determined by 
(3.14) and the initial condition 

[ljJ v (h;I1,1 ';IJ ',1') = 4m5(1J -IJ') 

= 41r8(tP - tP ')8(cos 0 - cos 0 '). (3.16) 

In order to define As, given by (3.15), as an operator on 
L 2(S2), we need also to specify the domain D (As) of As. We 
define 

D(As) = {/;e~/2jED( -A)}, 

where D ( - A ) is the usual domain of the Laplacian on the 
sphere. Note that, as in the canonical case, As is "almost" 
equal to ( - !) times the Laplacian. In the present case we 
even recover the Laplacian if we put s = O. For half-integer 
values of s, the functions in D (A s) are not continuous at 
tP = O. This poses no problem, however; we define a ~ on 
these functions, at the points tP = 0 or tP = 21T, as the suitable 
right or left derivative. 

It is easy to check thatAs' defined by(3.15), with domain 
D (As), is a self-adjoint operator on L 2(S 2). This operator will 
be the analog, for the spin case, of the operator A in the 
canonical case. The property of A which turned out to be 
crucial in the proof of Proposition 2.2 was (2.24); this showed 
that any vector in Ko was an eigenvector of A with eigenval
ue 0, while on K; the spectrum of A IK! was bounded below 

by a strictly positive number. In the limit v-co, this made 
everything collapse onto Ko. The same is true here. It is not 
difficult to check, using (3.5), (3.1), (3.2), and 

sh im(O,tP) = (U(0,tP)S3 1 + s,sll + s,m), 

that 

Ashim = [/(/+1$+ 1)/2]him. (3.17) 

Since obviously him ED (A.) for all I,m, and since the him 
are a complete orthonormal set of vectors in L 2(S 2), (3.17) 
tells us thatA. has a purely discrete spectrum; its eigenValues 
and eigenvectors are given by (3.17). We have, as in the ca
nonical case, that A.I~ = 0; moreover, on ~, As is 

bounded below by ~ > o. For h a real smooth function on S 2, 

we define the operator Hs on L 2(S2) by [as in (3.11)) 

(Hs f)(1J ) = h (IJ )f(1J ). 

Since h is a bounded function, Hs is a bounded operator, and 
vA. + iHs, defined onD (A.), is a closed operator generating 
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a contraction semigroup on L 2(S2). From (3.14) and (3.16) 
one then sees that the integral kernel for this semigroup is 
given by [ljJ v (h ) 

{ exp [ - (vA. + iHs)(1 " - I')] }(IJ ",IJ ') 

= [ljJ v (h;1J ",1 /1;11 ',1 '). (3.18) 

C. The limit for v_ co 

Exactly the same arguments as in Sec. II show that 

s-lim exp[ - (vAs + iHs)T] = p~ exp( - iP~HsP~T)p~. 
V--oo 

(3.19) 

Note that sinceHs isalwaysbounded,exp( - iP~HsP~T)is 
always well defined and unitary (unlike the canonical case). 

The integral kernel of the operator in the rhs is given by 

[P~ exp( - iP~HsP~ T)P~] (IJ ",IJ ') 
'" = [P~ exp( - iHT)P~](1J ",IJ') [use (3.12)], 
'" = [exp( - iHT)] (IJ ",11') [use (3.13)], 

= (1$ + I)(IJ ";slexp( - iHT) IJ ';s) [use (3.9)], 

where 

f dlJ 
H=(1$+1) 41r 11J;s) (1J;Slh (IJ). 

Together with (3.18) this implies 

d-lim 41r exp [ vs(t " - 1 ')/2] 
V--oo 

x f exp [is f cos 0 dtP - i f h (O,tP )dl ] dp,';v(O,tP ) 

= (1$ + 1)(11 ";slexp[ - iH(I" - I')] IJ ';S). 

Moreover, one can show, in a way completely analogous 
to the proof of Theorem 2.4, that the limit also holds 
pointwise. Note that no extra conditions on the function h 
are needed here, since h can always be chosen to be a contin
uous, bounded function. 

Putting everything together, we can formulate our final 
result for spin path integrals. 

Theorem 3.1: Let s be any integer or half-integer number 
(non-negative). Let Hbe any Hermitian operator on K •. Let 
Hbe generated by the smooth real function h (O,tP) by 

f dlJ 
H = (1$ + I) 41r IIJ;s) (1J;slh (IJ). 

Then, for alllJ ",IJ' in S2, and for all I" > I', 

41T [VS(t" - I')] f [f lim --exp exp is cos 0 dtP 
....... 00 1$ + I 2 

- i f h (O,tP )dl ] dp,';v(O,tP ) 

= (IJ ";slexp[ - iH(I" - I')) IJ ';S). 

Here p,';v is a Wiener measure on the sphere S2, with diffu
sionconstantv,andpinnedatlJ II = (0 ",tP ")forl = I" and at 
IJ' = (0' ,tP ') for t = t'. The normalization of P,'W is given by 
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I dp,"w((},t/J) = f exp [- vjt" - t ')/(1 + 1)] 
1=0 2 

1 

X L Y1m(fi ")Yt,,(fi'). 
m= -I 
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APPENDIX: CONNECTION WITH PREVIOUS PROOF 

Theorem 2.4 had been announced by us earlier,4 in a 
weaker version, namely (see Ref. 4) 

lim I dp" dq" I dp' dq' ("'IP",q"){21reVTI2 
>'-+00 21r 21r 

xI exp [~ I (pdq -qdp) 

- i I h (p,q)dt ] dP,"w} (p',q'lt/J ») 
= ("',exp(- iTH)t/J). (AI) 

To see that (AI) is weaker than Theorem 2.4 let us go 
back to the properties of the cs. It follows from (2.5) that for 
any (bounded) operator B on JY and any ""t/J E JY 

(""Bt/J ) = I dp" dq" I dp' dq' 
21r 21r 

X ("'IP",q") (p" ,q" IB p',q') (p',q'lt/J ). (A2) 

It is therefore clear that (2.37) implies (A 1). The reverse is not 
true, however; due to the overcompleteness of the cs, the 
matrix element (p" ,q" IB p' ,q') in formula (A2) can be re
placed by any element of a large equivalence class of func
tions. 

The proof for (AI), sketched in Ref. 4, was different 
from the one given here. The main difference lies in the inter
pretation of the path integral expression for finite v (corre
sponding to Sec. II B in the present paper). Let us restrict 
ourselves, in this discussion of the difference between Ref. 4 
and the present paper, to the case where h is a bounded func
tion, hence H v a bounded operator. In Ref. 4, we introduced 
an abstract Hilbert space 

where each JYn was a copy of JYo • It turns out that the 
Hilbert space L 2( V) we have used here is nothing else than a 
concrete realization for this K; the subspace JYo C L 2W) 
~rresponds to the zeroth space",JYo in the construction of 
JY. The nth subspace JY n C JY corresponds then to the 
closed linear span in L 2( V) ofthe (h nl ),1 = 0,1,2, .... We also 

"'-
introduced vectors lP,q; P ) ) in JY defined as 
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"'-
With the identification JY ++ L 2( V), these can be written, in 
our present framework, as 

00 00 

lP,q;P» = L L pnl2 hnm(p,q)hnm · 
n=Om=O 

The operators, defined in Ref. 4, 
00 00 

A = Ell nIn, I(P) = Ell pn1n. 
h=O n=O 

H = lim I dP
2 

dq lP,q; P » « p,q; P I h (p,q) 
fJ--+1 1r 

correspond to. reSpectively, A [as defined by (2.23)], 
lIP) = exp(A lnp), and Hv. We also introduced in Ref. 4 
the operators 

EN = I d~:q e- iE""(P,Q)IP,q;PN» «p,q;PNI, 

where 

EN = T I(N + 1), 

PN = [1 - vT 12(N + l)]I[ 1 + vT 12(N + 1)]. 

Finally, we rewrote fJ1 v(h) as [using our present notations, 
"'-

and identifying JY and L 2( V)] 

I dP~:q" I dP~:q' ("'1.0" ,q") 

X fJ1 v(h;p",q",T;p',q',O)(p',q'It/J) 

(A3) 
A 

with P N as above, and U as defined in Sec. II A. In the limit 
N-+oo, obviously, s-limN~oo I(PN) = 1. The limit oflEN)N 
was more tricky, because of the complicated N dependence 
of EN' Using a theorem of Chernoff, 17 one can show, how
ever, that 

s-lim (EN)N = exp[ - T(vA + iHv)]. 
N~oo 

(A4) 

This can intuitively be guessed already from the matrix ele
ments of EN between the hkl 

(hkl,ENhrs) = f dp dq hkl(p,q)exp[ - iENh (p,q) 
21r 

- Uk + r)/2]vEN + o (E1)]h rs (p,q). 

Substituting (A4) into (A3) leads to the interpretation of 
fJ1 v(h ) as a generating function [in the sense of (A2)] for the 

"'- "'-
operator U· exp [ - T (vA + iH v)] U. This conclusion is of 
course weaker than (2.33), and therefore led to the weaker 
result (AI) in Ref. 4. 
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36 (1963); E. Nelson. J. Math. Phys. 5,332 (1964); K. Ito, Proceedings of 
the Fifth Berkeley Symposium on Mathematical Statistics and Probability 
(California U. P., Berkeley, 1967). Vol. 2, Part I, pp. 145-161; J. Tarski, 
Ann. Inst. H. Poincare 17,313 (1972); K. Gawedzki, Rep. Math. Phys. 6, 
327 (1974); A. Truman,J. Math. Phys.17, 1852(1976); S. A. Albeverioand 
R. J. Hoegh-Krohn, Mathematical Theory of Feynman Path Integrals 
(Springer, Berlin, 1976); V. P. Maslov and A. M. Chebotarev, Theor. 
Math. Phys. 28, 793 (1976); C. DeWitt-Morette, A. Maheshwari, and B. 
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6R. H. Cameron, J. Anal. Math. 10,287 (1962/63). 
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Certain technical subleties regarding the Feynman-Kac representation of the propagator for 
motion on compact spaces are discussed. A method of evaluation of the corresponding path 
integral is given. It produces the correct spectrum for the Hamiltonian, while the ordinary 
semiclassical method fails. 

I. INTRODUCTION 

The scope of this paper is to analyze functional integra
tion on compact manifolds. This problem is of interest for 
understanding the mass spectrum of the nonlinear a model. 
In a recent paper, I the case of a nonrelativistic particle mov
ing on a sphere S 2 was analyzed. It was pointed out that both 
the derivation of a Feynman-Kac formula for the propaga
tor and its evaluation were highly nontrivial, and that in the 
semiclassical approximation for this problem, one obtained 
the wrong spectrum for the Hamiltonian. 

In the present paper, we would like to clarify certain 
points raised in Ref. 1 and outline a procedure of functional 
integration by which one can obtain the (qualitatively) cor
rect spectrum. 

We begin our discussion with a brief outline of the deri
vation of the Feynman-Kac formula for the propagator. For 
the Hamiltonian 
H=L2/2MR2, (1) 

L21/,m) = fill (I + l)l/,m), 1=0,1, ... , -1<m<l, (2) 

(I,m I 0,4> )'" = Yi(O,4», 
one can easily derive 

(Of,4>f,T 100,4>0,0) = (.rr [Sin 01 dOl r
21r 

d4>;) 
1=1 0 Jo 

with 

N (00 2/; + 1 _ 
X IT L --PI,(COS":;+I,;) 

;=0 1,=0 41T 

X e - IP, + I)/UJN ). 

P ==MR 2/liT, 

cos E; + I,; = cos 0; + I cos 01 + sin 01 + 1 sinOI 

X cos(4); + I - 4>;), 

For N~(X) (f3 fixed), one has 

lim i 21 + 1 PI(cos 0 )e - 1(1 + 1)IUJN 

N-OOI=O 41r 

= lim (f3N /21TjePN(C089-1) + O(N-2). 
N-oo 

(3) 

(4) 

(5) 

(6) 

(7) 

We will take the follOwing representation for the propagator: 

0' Pennanent address: Physics Department. University of Arizona. Tucson. 
Arizona 85721. 

(8) 

This formula displays the manifest rotational invariance 
present in the problem. Indeed, it says 

(Of,4>f,T 180,4>0,0) = lim (PN)N( IT fdn;) 
N_oo 21T ;= I 

xexp(- f,PN (nl+ 1 _n;)2), 
;=0 2 

(9) 

(10) 

The semiclassical approximation of this functional inte
gral consists of finding all the classical solutions and inte
grating the Gaussian fluctuations around them. This calcu
lation was carried out in Ref. 1, where it was found that it 
produced a qualitatively incorrect spectrum. We will discuss 
this failure later (see Sec. II), after first outlining the correct 
computation. 

To calculate the functional integral in Eq. (8), we use the 
expansion 

exp [ - PN sin 0; + I sin 0; cos(4); + I - 4>;)] 

= ~ imM)'+I-~')I 'tlNsinO sinO) 
~ m,VJ' ;+\ ;' (11) 

The integrations over the 4>1'S can be performed, and one 
obtains 

(Of,4>f'T 180,4>0,0) 

1· (PN) ~ ;m(~r 1/>0) = 1m - ~ e 
N-oc 211" m= - oc 

X1m (f3N sin 8; + I sin ( 1), 

It is convenient to define the following function: 

e- Vm(z)=(Z/21T)ll2e -Z 1m (Z). 

(12) 

(13) 
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We note for further reference that 

lim Vm(z) = (m2 -1)/2z, (14) 
Z_oo 

lim Vm(z) = - (m + !)lnz. 
z-+O 

(15) 

In terms of Vm , Eq. (12) can be written as 

(Of,t/>"T 100,t/>0.o> 

= (sin Of sin ( 0)112 lim IPN /21T)NI2 
N-oo 

Xexp( - PN [1 - cos(O;+ I - 0;)] 

- V m IPN sin 0; + I sin 0;)). (16) 

Since we are letting N-oo, in Eq. (16) 

m2 -1 
VmIPNSinO;+, sin 0;)_ . .' (17) 

2/3N sm 0; + I sm 0; 

for 0;,0;+ I not too close to 0 or 1T. We notice then that for 
m::;60, we have an attractive potential centered around 
0= 1T/2. Since our formalism has been manifestly rotational 
invariant, we can choose without loss of generality 

00 = Of = 1T/2, 

and apply the semiclassical approximation to evaluate all the 
functional integrals with m::;6 0 in Eq. (16). The classical solu
tion has 0; = 1T/2. We replace them in Eq. (16) 

0;-+1T/2 + 80 

using for V m m::;6 0 the expression in Eq. (17). Expanding V m 
to second order in 8; and cos(O; + I - Od to fourth order in 
(8;+ I - 8;) (see Ref. 2), we obtain for m::;60 

(1T/2,t/>f,T I (1T/2),t/>0 0) m 

= exp [im(t/>f - t/>o)] exp [ - (1/2/3) 

(18) 

This result shows that the spectrum is discrete for m ::;6 O. The 
actual values of Em are reasonably accurate, the error de
creasing to zero as m- 00 • 

The case m = 0 cannot be treated semiclassically: as 
N- 00, Vo(8) produces an infinitely attractive potential with 
minimaatOand1T.SinceasO-o, V(O)- -1/40 2,thepoten
tial is as singular as the kinetic energy; hence, it cannot be 
treated as a perturbation. We proceed with the calculation 
directly by observing that 

1· {3'llT - PN!I - cos 8, + 1 cos 8,11 (R'N . 0 . 0) 1m He 0\10" sm ;+1 sm ; 
N-oo 

(19) 

Using the orthogonality of the Legendre polynominals, we 
obtain immediately 
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(20) 

This, of course, is the exact answer: in effect, we have traced 
back the steps leading from (4) to (S). This procedure is rather 
unsatisfactory. Yet the singular nature of Vo(Z) has prevent
ed all our efforts for finding a genuine approximation for 
m=O. 

II. DISCUSSION 

We have shown an approximate method for obtaining a 
correct result. With hindsight, we would like to go back and 
discuss why the naive semiclassical approximation failed. 
The error can be traced back to two basic difficulties. 

(i) In Eq. (9), we may hope for a Gaussian approxima
tion for 13_ 00 • Since for finding the spectrum we want 13-0 
(T - 00 ), there is no a priori reason for the approximation to 
work, and it does not. On the contrary, it is well known3 that 
it is correct for 13- 00 • 

It may be instructive to emphasize that this difficulty is 
strictly connected with the compact nature of the sphere S 2. 

Indeed, taking the classical solutions along the equator, it is 
easy to verify that in the 0 direction, the fluctuations occur in 
a potential (see Ref. 1) 

(MR 2/2)[(21Tm + t/>f - t/>0)/T]2(1T/2 _ 0)2. 

Obviously, as T-oo, ignoring that the particle is on a 
sphere, hence, 0<0<1T, is incorrect. 

(ii) The functional integral to be computed is not the 
naive one. Indeed, one may be tempted to interpret Eq. (10) 
as 

(Of,t/>f,T 100,t/>0,0) 

. (PN)N( N f ) (N PN 2 = 11m - II dlJ; exp L - [(8;+ 1- 0;) 
N-oo 21T ;= I ;=0 2 

+sinO;+, sinO;(t/>;+, -0;)2])' (21) 

It has been pointed out by many authors, starting with 
DeWitt,3 that to obtain the functional integral correspond
ing to Eq. (9), one must retain all the terms of order exp( 1/ N). 
This then replaces the naive action with an effective action 
[see Eq. (16)]. It maybe tempting to think in the present case 
the effective action differs from the naive one by [see Eq. (17)] 

- i _1_(1 +. 1.). (22) 
;= I SPN sm 0;+ I sm 0; 

This would be incorrect, since for 13 sin 0; + I sin 0 ; < 1, one 
must use Eq. (15) rather than (14). It can be checked that it is 
the fact that V m (z)- 00 for 8-0, which produces the correct 
spectrum. 

To summarize, our conclusion is that the functional rep
resentation of the propagator is specified by the combined 
effect of the Hamiltonian and the parametrization of the 
manifold used for the integration. These specifications pro
duce an effective action, generally different from the classi
cal action. Any attempt to approximate the functional inte
gration should use the former action. Therefore, if interested 
in a semiclassical approximation, one must find the effective 
action and its extrema, then verify that the Gaussian approx-
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imation does not a priori fail because the extremum is too 
flat. For the sphere S 2, this approximation works for m:l= 0 
(even for /3-0), but it is inapplicable for m = O. 

A final statement: We have discussed the case of S 2 in 
one dimension. Our conclusion would apply equally well to 
S". In particular, we doubt that the naive semiclassical ap
proximation is exact for motion on Lie groupS.4 Similarly, 
they apply in two dimensions, a case which we are presently 
studying. 
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Closed form expressions for polynomial or "nontrivial" zeros of degree one of the Clebsch
Gordan (3-1) and the Racah (6-1) coefficients are presented and a conjecture regarding closed form 
formulas for the same is made. 

I. INTRODUCTION 

It is well known that the angular momentum coupling 
(3-1) and recoupling (6:11 coefficients have a series or a poly
nomial part, and that the polynomial parts of these coeffi
cients can be rearranged into generalized hypergeometric 
functions of unit argument. For certain allowed values of the 
arguments of the 3-1 or the 6-1 coefficient, if the polynomial 
part becomes zero, then we have a "nontrivial" or polyno
mial zero of that coefficient. Further, if n + 1 indicates the 
number of terms in the polynomial part, which add up to a 
zero value, then we have a polynomial zero of degree n of 
that angular momentum coefficient. 

Inspired by the suggestion of Koozekanani and Bieden
ham 1 that realizations of exceptional Lie algebras might 
provide bases for explaining the polynomial or "nontrivial" 
zeros of the Racah (6-1) coefficient, Vanden Berghe et al. Z-4 

have accounted for some of these zeros, in a continuing series 
of papers. 

II. MULTIPLICATIVE FACTORS 

On the other hand, closed form multiplicative factors 
can be obtainedS for the polynomial zeros of degree 1, of the 
3-1 and the 6-1 coefficients, which are independent of the 
numerical values of the arguments of the coefficients, whose 
zeros are being sought. In fact, the polynomial zeros of de
gree 1 of the 3-1 coefficient can all be accounted for by the 
factor 

(1 - {jx,y{jn,1 ), (1) 

where n, which governs the degree of the polynomial zeros, 
is given by 

n = min(Rzp ,R3q,Rt,), (2) 

with Rik being the elements of the square symbol 

- jJ + jz + j3 jl - jz + j3 jl + jz - j3 

The values of x imd y are then given by 

x = Rm,Rkp , y = RmpRk" 

(3) 

(4) 

with (/mk ) and (pqr) corresponding to specific permutations 
of (123) and n = R 1q (say). 

Similarly, the multiplicative factor 

(1 - {jX,y{jn,1 ), (5) 

8) On leave of absence from The Institute of Mathematical Sciences, Ma
dras-600 113, India. 

in the definition6 for the 6-1 coefficient, 

W(abcd;ef) = ( - l)a+b+c+d e b e} 
c f' 

(6) 

will account for all the polynomial zeros of degree 1 of this 
coefficient. In (5), the degree of the polynomial zeros is given 
by 

n =Po - a o, (7) 

where 

a o = max(a H a Z,a3,a4 ), Po = mint PI,/3Z,/33)' 

with 

and 

al=a+b+e, PI=a+b+c+d, 

a z = c + d + e, pz = a + d + e + J, 

a 3 = a + c + J, P3 = b + c + e' + J, 
a 4 =b +d +J, 

x = ( Ps - a o)( p, - a o) ( Po + 1), 

Y = ( Po - a k ) ( Po - a1) ( Po - am ), 

(8) 

(9) 

wherePs andp, correspond to two of the threep's other than 
Po and ak,a1,am correspond to three of the four a's other 
thanao' 

III. POLYNOMIAL ZEROS 

We arrived at these closed form multiplicative factors, 
to be introduced into the definitions of the 3-1 and the 6-1 
coefficients, by rearranging the series parts of these coeffi
cients into binomial expansions, using generalized powers, 
in Ref. 5. Using these, we were able to classify the polyno
mial zeros according to their degree, and the explicit tables 
of these zeros are given in Ref. 7. It is to be noted that 21 out 
of 36 polynomial zeros of the 3-1 coefficient, for 
J( =jl +jz +j3)..;27 and 1174 out of1420 polynomial zeros 
of the 6-1 coefficient, for (a,b,c,d,e!)"; 18.5, are polynomial 
zeros of degree 1, accounted for by the factors (1) and (5), 
respectively. Hence, the polynomial zeros of degree one are 
to be considered as trivial zeros, and not as "nontrivial" ze
ros, as referred to hitherto. 1 

In Table I, we list the polynomial zeros ofthe 6-1 coeffi
cient which have been explained either due to the violation of 
the triangle rule for quasispin,1 or due to the vanishings of 
fractional parentage coefficients (f.p.c.)8 in the atomic g 
shell, or due to the realizations of the exceptional Lie alge
bras Gz, F4 , and E 6 • In the last column of Table I, we give n, 
which corresponds to the degree of the polynomial zeros, 
given by (7). We note that of the 12 generic entries, 11 are 
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TABLE I. Generic polynomial zeros of the 6-} coefficient ~: j2 j3} for 
12 13 

which explanations have been given. 

j, j2 j3 I, 12 13 Explanation Ref. n 

2 2 2 1.5 1.5 1.5 quasispinB 1 
5 5 3 3 3 3 R7 :>G2:>S03 1 
5 5 2 2 2 

~ t 
g shell 8 

9 6 4 2 5 f.p.c.b 8 
11 11 3 4 4 : f S026:>F,:>S03 

2 1 
11 11 9 8 4 2 1 
3 2 2 1 2 ~t 3 1 
7 4.5 4.5 2.5 4 F,:> S03 ® S03 3 1 

11 8 6 4 4 n 4 1 
7 6 5 4 6 

E6:>S03 
4 2 

6 6 6 5 4 4 1 
9 6 4 2 5 4 1 

B Regge symmetries do not give rise to any other 6-} coefficient. 

b {5 5 2} = {5 4.5 1.5} = {5 4.5 2.5} and {9 6 4
5

} 
2 2 4 2 2.5 4.5 2 1.5 4.5 2 5 

= {~ ~ ~} , follow from the Regge symmetries. 

Note: The 24 6-} coefficient zeros which follow from the nine other generic 
zeros in this table can be found in Table I of Ref. 4. 

polynomial zeros of degree 1, and only one is a polynomial 
zero of degree 2. 

As has been pointed out by Vanden Berghe et al.,4 one 
can continue the program of giving a group theoretical ex
planation for the polynomial zeros of the 61 coefficient. 
While the basis for realizations of the exceptional Lie alge
bras is by itself fascinating, it being used to explain the zeros 
of the 61 coefficient is likely to lead to only alternate expla
nations for more of the polynomial zeros of degree 1, which 
are trivial structure zeros represented by (5). 

We conjecture that, in principle, one can find closed 
form formulas for the polynomial zeros of the 31 and 61 
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coefficients, provided we look upon these coefficients as gen-
eralized hypergeometric functions of unit argument,9.10 
which are analytic, 11 and extend the method of Siewert and 
Burniston 12 for the determination of zeros of analytic func-
tions to the case of analytic pFq (1)s. 
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Using a variational t~hnique we provide sufficient conditions for the existence of a bound state in 
a system of N particles in one, two, and three dimensions. Our assumptions imply two bound 
clusters' thresholds. 

I. INTRODUCTION 

In this paper we explore the variational method for ob
taining sufficient conditions for the existence of a bound 
state in a system of N particles in v dimensions interacting 
via two-body potentials V;j(r; - rj ). 

Let H N denote the Hamiltonian of the N-particle sys
tem [with center of mass (CM) kinetic energy removed] and 
EN the energy of its continuum threshold. If we can find a 
wave function 4JN such that 

(4JN ,HN 4JN )<EN (4JN , 4JN ), (1) 

the variational principle guarantees, then, the existence of at 
least one bound state of N particles (below the continuum). 

The difficulty associated with the method lies in the 
determination of EN' For locally square-integrable two-body 
potentials vanishing at infinity, EN is given by Hunziker's 
theorem,I.2 which involves the knowledge of the bound 
states of all subsystems of the whole system. Denoting by C a 
cluster, C={il , ••• , in(c) J C {I, ... , N J, and by H C the Hamil
tonian of the subsystem formed by C, after the removal of 
CM kinetic energy, and by E g the energy of the infimum of 
the spectrum of H C, then Hunziker's theorem l

•
2 gives 

, 
inf 

(C, •...• C/J 

u C,=(t •...• NJ ,_I 
CinCJ =;. ;".j 

1 <:,1<:,N 

I 

LE~', (2) 
;=1 

where the infimum is taken over all possible decompositions 
of { 1, ... , N I into disjoint clusters. 

For the two-body problem, E2 = 0 and therefore it is not 
difficult to find sufficient conditions on the potential for the 
existence of bound states. If N>3, however, EN <0, in gen
eral, thus making the problem not so simple. To bypass this 
difficulty we use a recursive procedure on the particle num
ber N to show that there exist simple sufficient conditions on 
the two-body potentials that ensure the existence of bound 
states for arbitrary N in v dimensions (v = 1,2, or 3). 

The physical idea behind our method is dimension de
pendent. In three dimensions, it is basically a "two-body 
mechanism": for a certain class (to be made precise below) of 
purely attractive two-body interactions, given two bound 
clusters Ct(n(Ct) = Nt) and C2(n(C2) = N2), it is possible to 
bind them together provided there is at least one pair of par
ticles, each one in a different cluster, which can form a bound 
state. On the other hand, in one and two dimensions it is a 
"two-cluster mechanism": for "globally attractive" two
body potentials, i.e., f V;j d v x < 0, given two bound clusters 
C 1 and C2, it is possible to bind them together since the "ef-

fective" intercluster potential also satisfies f V~ c, d Vx < O. 
The difference between v = 1,2 and v = 3 cases has its ori
gin in the fact that in one and two dimensions a two-body 
interaction with f V d Vx < 0 always binds3,4 two particles 
but in three dimensions this is not the case even if Vis purely 
attractive. However, if the particles are identical (bosons or 
fermions) we can also show that a N-body system will exhibit 
bound states even if the two-body system has no bound 
states, provided N is big enough (along a subsequence). In 
fact, large particle number favors the existence of bound 
states of identical particles (bosons or fermions): classically 
catastrophic potentials (for instance, globally attractive po
tentials or potentials with an attractive core)5 remain so in 
the quantum case, i.e., limN~'" (- ENIN) = 00. Based on 
that, we show that for these potentials there exists an infinite 
sequence 2 <,.No<,Nt <, ... such that H NI has at least one bound 
state. 

This paper is organized as follows: In Sec. II we derive 
useful sufficient conditions for a two-particle system to have 
a bound state with energy below - a 2 in v = 1, 2, or 3 di
mensions. For v = 1 or 2 and a = 0 we recover the above
mentioned result that if the potential satisfies f V d Vx < 0 
the system always has a bound state. For v = 3, and a = 0, 
we obtain a sufficient condition which is simpler than that 
obtained in Ref. 6; also, if the potential has spherical symme
try we recover Calogero's "best" sufficient condition. 7 We 
also derive sufficient conditions for the existence of a bound 
state of a given angular momentum. Moreover, we show that 
some of the sufficient conditions provided by Caloger07 are 
improved by the variational approach. 

In Sec. III we derive sufficient conditions for the exis
tence of a bound state in the N-body problem in one, two, and 
three dimensions. Part of these results have been announced 
in Refs. 3 and 8. 

In Sec. IV we prove our results for a large number of 
identical particles. 

In the Appendix we collect some kinematical facts for 
N-body systems which are used in this work. 

II. BOUND STATES IN THE TWO-BODY PROBLEM 

A collection of sufficient conditions on V for the exis
tence of bound states of H2 with energy below - a 2 is ob
tained by varying the trial function in the inequality (1) (with 
E2 = _a2

) 

(4J';" H2 4J';,)< - a 2(4J';" 4J';,). (3) 
Particularly useful sufficient conditions are those expressed 
in terms of simple integrals of the two-body potential V (see 
Ref. 6). For instance, very simple conditions are obtained by 
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taking as a trial a function tP ~ that at short range behaves as 
e - ar and at long range behaves as the solution of the free 
equation with energy - a 2

: 

tP~(r) = e- ar t,6 (r), for r<R, 
(4) 

tP~(r) = e- aR t,6 (r) [H(ar)/H(aR )], for r>R 

(r = Irl), where t,6 (r) is arbitrary and H(ar) is the solution of 
the modified Helmholtz equation, 

(-.:::1 + a 2) H(ar) =0. (5) 

(Weare taking energy in units of If /2p" f.L being the reduced 
mass of the two particles.) 

So, in one dimension we take 

tP~(x) = e-alx-xol t,6R(X -xo), (6) 

where Xo is arbitrary and t,6 R (x - xo) E L 2(R I) is such that for 
Ix-xol<R, t,6R(X-XO) = 1 and for Ix-xol>R, t,6R(X 
- xo) starts at 1 and t,6R (x - xoJ-O as Ix - xol-oo. By 

making the scaling t,6R (x - XO)-!31/2 t,6R (P (x - xo)) and let
ting p-o we obtain the condition 

2a + f: 00 e-2alx-XoI V(x)dx<O. 

Setting a = 0 we recover the known resule·4 that in one di
mension a globally attractive potential, i.e., S V dx < 0, al
ways possesses at least one bound state. 

In two dimensions we take 

(7) 
tP~(r) = [e- aR /Ko(aR)] Ko(ar), for r>R, 

where Ko(aR ) is the modified Bessel function, and obtain the 
following sufficient condition for the existence of a bound 
state of energy less than - a 2

: 

1 i21T iR 
- - dO e - 2ar V(r,O)r dr 

21T 0 0 

__ 1_ (21T dO (00 e - 2aR Ko(ar) V(r,O)r dr 
21T Jo JR Ko(aR) 

:> _ aRe - 2aR 1 + 0 , (
1 - e- 2aR ) {K'(aR)} 

2 Ko(aR) 
(8) 

where 

Ko(aR) = dKo(ar) I . 
d(ar) ar=aR 

Again, setting a = 0 we recover the resule·4 that in two 
dimensions a globally attractive potential (S V d 2X < 0) al
ways possesses at least one bound state. 

Finally, in three dimensions we take 

tP~(r) = (l/R 1/2)e- ar, for r<R, 

(9) 
tP~(r) = R 1/2(e- ar/r), for r>R, 

obtaining the following sufficient conditions for the exis
tence of a bound-state of energy less than - a 2

: 

- - dfJ _e __ V(r,fJ)~ dr 1 f iR 
-2aR 

41T 0 R 
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1 f Loo e - 2ar 1 - e - 2aR 
- - dfJ R ---:.2 V(r,fJ)~ dr:> . 

41T R r 2aR 
(10) 

Setting a = 0 obtains 

1 f iR 

1 -- dfJ - V(r,fJ)~dr 
41T 0 R 

- ~ f dfJ Loo RV(r,fJ)dr:>l, (11) 

which is simpler than the condition obtained by Chadan and 
Martin.6 In the particular case of spherically symmetric po
tential, condition (11) reduces to Calogero's7 "best" suffi
cient condition. 

We shall now present the variational version of the oth
er sufficient conditions (a = 0) derived by Calogero in Ref. 7. 
Taking as a trial function tPR (r) = R 1/2/(r + R ), a sufficient 
condition for a spherically symmetric potential to hold a 
bound state is 

i
oo R 1 
---2 V(r)~dr< --. 

o (r+R) 3 
(12) 

Taking tPR (r) = (R 1/2/r)(1 - e - rlR) as the trialfunction we 
get the condition 

_(I_e- rIR )2 V(r)~dr< --. i OOR 1 

o ~ 2 
(13) 

Conditions (12) and (13) should be compared with Calo
gero's7 condition (3.15) and (3.17), respectively. In both cases 
the variational method produced improvement. 

Remark: The fact that, for a = 0, the trial function is 
not square integrable is of no importance: if lima-+o (tP ~ , 
H 2 tP ~ ) < 0 for a sequence tP ~ , then, for a sufficiently small, 
(tP ~ , H 2 tP ~ ) < 0 and the variational principle guarantees 
the existence of a bound state. 

For spherically symmetric potentials, our method can 
be readily adapted to provide sufficient conditions for the 
existence of a bound state having energy less than - a 2 and 
of a given angular momentum I. Our recipe in v = 3 is then 
to use as the trial function the regular and irregular solutions 
of the modified Bessel equation, 

_ d
2 

XI _~ dXI + 1(1+ 1) XI +a2 XI =0, (14) 
d~ r dr ~ 

matched at an arbitrary point r = R. Thus, the trial function 
is 

tPk(r) = (aR )1/2 
11+ 1I2(aR) 

11+ 112 (ar) 
(ar)I/2 ' 

for r>R, 

providing the following sufficient condition: 

--I-fdfJ (00 ItPkl 2 V(r,f.l)~dr 
41T Jo 

:>aR 2 { (I + 1) + K I _ 112 (aR ) } 
aR K I + 1I2(aR) 

+ aR 2 {_l_ II + 3/2 (aR )} . 
aR 11+ 1I2(aR) 
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In the limit a~, the above condition reduces to Calogero's 
"best"6 sufficient condition 

1 ICC> (R)2/+2 - R -; V(r}r dr>21 + 1. (17) 

Remark: The technical assumption on V needed for the 
validity of our arguments is VeL toc(HV) and limHCC> VIr} 
= O. This ensures that (a) Hunziker's theorem, 1.2 i.e., E2 = 0, 
holds and (b) since L toc(R")CL toc(HV} all integrals are well 
defined or equivalently, all trial wave functions cJ> ~ are in 
the form domain. Notice, also, that the condition of being 
"globally attractive," S V d Vx < 0, can be generalized as fol
lows: there exist R > 0 and I> 0 such that 

i V(x}d vx< - I, for all R ';;.R, (18) 
Ixl.;R· 

thus avoiding the requirement of integrability. 

III. BOUND STATES IN THE N-BODY PROBLEM· 

Sufficient conditions for the existence of bound states 
for all N>2 are derived inductively on N, that is, assuming 
that a certain sufficient condition for the existence of bound 
states for N = 2 is verified, and assuming the existence of a 
bound state of N particles, we prove the existence of a bound 
state of N + 1 particles. 

A. One and two dimensions 

Let all two-body interactions V;j be globally attractive, 
i.e., S Vij d Vx < O. Consider now the (N + 1 I-body system. 
Denoting by r i andm;.i = 1, ... ,N + 1, the particles' coordi
nates and masses, respectively, and introducing Jacobi co
ordinates 10 

the Hamiltonian H N + I reads 

N 1 
H N + I = - r -..1,;-, + r V;j (ri -rj ), 

I = I 2f-li i<j 

where 

f-li- I = m/~\ + (r mj ) -I, 
j.;i 

that is, 
N 

HN+ I = HN - (2PN}-I..1';-N + r Vi•N+ I (rN+ I - ri)' 
i=1 

where the Hamiltonian H N involves only the coordinates 

SI"'" SN-I' 
Let EN be the energy of the bound state of N particles 

(with EN <EN) and cJ>N(SI"'" SN- d its normalized wave 
function. Consider then 

cJ> (SH'''' SN - I , SN) = cJ>N(SI"'" SN - I } ¢> (SN), 

where ¢> is going to be conveniently chosen. 
It is clear that 

(cJ>, HN+ I cJ>) = EN + (¢>.(Ho + UN}¢», 

where Ho = - ..1,;-J2t-tN and 
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X Vi•N+ drN+ I - rl)d V sc··dv SN-I 

is the "effective" potential seen by the (N + 1 }th particle in 
the presence of the bound state of the other N particles. The 
important property of the effective potential UN is that it is 
also globally attractive. This follows from 

I UN(SN}d
V 

SN 

= i~1 f dvsI .. ·d
V 

SN-I 1 cJ>N(SI"'" SN- d 12 

X I dVsN Vi•N + dSN + UI)' 

where Ui is a linear combination of SH'''' SN _ I . The integral 
in S N can be performed and is independent of U/' and since 
S IcJ>N 1

2d v sc .. d vSN _ I = 1, we obtain 

I UN(SN}d
V 

SN = I~I [I Vi•N+ dX)d"x]. 

which proves the statement. By a simple limiting argument, 
this result follows even if we use the more general definition 
of globally attractive potentials introduced in (18). 

So, from the discussion in Sec. II it then follows that ¢> 
can be chosen such that (¢>, (Ho + UN)¢> } < O. For this choice 
of¢> we have 

(cJ>,HN+I cJ>}<EN<EN· 

Notice that the arguments can be repeated for any decompo
sition of the (N + 1 I-body system into two clusters of Nand 1 
particle(s), respectively. So, numbering the particles in such a 
way that EN is the smallest energy of all N-body bound states 
it then follows that (if€N + I = EN} (cJ>,HN+ I cJ>) <EN+ I' In 
the general case, the continuum is not necessarily given by 
EN (not even by a two bound cluster decompoSition). How
ever, the discussion below will inductively imply that the 
threshold is given by a two bound cluster decomposition. 
Assume that there exists a decomposition ofthe system into 
two disjoint clusters 

CI = [il ,···, iN,}, C2 = [jl, ... ,jN,}, NI +N2 =N, 

both admitting bound states with energies E c, and E c, (be
low the respective continuum thresholds) such that the "ef
fective" intercluster potential 

Vt, c, (S) = r Vij(S) 
ieC1 

jEC, 

(19) 

is globally attractive and such that the continuum spectrum 
of HN starts at EN = E C

' + E C
'. 

In fact, the Hamiltonian H N can be written as 

Hjy=HC'+H C,+ [Ho+ i: Vij(r/-ri }], 
IEC, 

jEC, 

where 
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and S denotes the position of the CM of C2 with respect to the 

CMofCI· 
Consider now 

</I (sf', ... , s~: -I' sf', ... , s~ - I' s) 
= </I c, (sf', ... , s~: _ I) </I c, (sf>, .. ·, s~ _ I) t/J (S), 

where s~', i = 1, ... , NI _ I , are the Jacobi coordinates for clus-

ter CI , 1= 1,2, </I c, are the normalized eigenfunctions of 

H c, (with energies E c~ and, as before, t/J will be conveniently 
chosen. For this trial function we have 

(</I H </I) = E c, + E c, + ( '" (H + veil' ) '" ) , N .."" 0 C 1 C2 'f' , 

where 

Vt. c,(S) = L f 1 </I c, (sf', .. ·, s~: _ I) 12 
leC, 
jeC, 

N,-I N,-I 

X II d
V sf' II d

V sf' 
k=1 1=1 

is the "effective" intercluster potential (19). This follows 
from 

f Vt.c,(s)dVs 

= ~ f NIT I d v s f' 1 </I c, (sf', ... , s~: _ 1 ) 12 
leC, k= 1 

jeC, 

X f ~ijll d V sf' 1 </IC' (sf', ... , S~-I) 12 

X f d v s Vij( s + uf' + u~'), 

where u~"'1 = 1,2, are linear combinations of s71
, ... , s~- I' 

The integral in S can be performed and is independent ofu~\ 
and as the functions </I f are normalized, we obtain 

f Vt. c, (S) d
V s = ~ f Vij(S) d

V S· 
leel 
jeC, 

So, as the "effective" intercluster potential Vt. c, is assumed 
to be globally attractive, from the discussion in Sec. II it 
follows that t/J can be chosen such that (t/J,(Ho + Vt. c,) t/J ) 
< O. For this choice of t/J we have 

(t/J, HN t/J) <E c , + E C' = EN' 

thus concluding the proof. 
Again, by a simple limiting argument this result follows 

even if we use the more general definition of globally attrac
tive potentials introduced in (18). 

B. Three dimensions 

Let CI = Iii"'" iN, I and C2 = UI, ... ,jN,1 be two dis
joint clusters, NI + N2 = N. The following set of relative co
ordinates will prove suitable for displaying the binding 
mechanism that we exploit in v = 3: 
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Xk = r l - r l , i = 1, ... , NI - 1, 
k N, 

YI = r J - r J ' j = 1, ... , N2 - 1, 
I N, 

(20) 

z=rl -r,. , 
NI Nl 

i.e., inside each cluster CI , 1= 1,2, we single out a given 
particle (for simplicity we always make it the last one in the 
cluster) and take coordinates relative to these particles. 

In the Appendix we show that the Hamiltonian H N 

written in terms of (20) is given by 

HN =Hc, +Hc, +HD + Vc,c, + TH - E , (21) 

where D is the two-body cluster 

D = IiN"jN,I=INI , N I, 

VC,C, = L Vlkh(xk -YI +z) 
k=I •...• N,-1 
I=I, ... ,N,-I 

(22) 

is the intercluster interaction excluding VN , N already in
cluded in H D, and 

N, - 1 p.k
l 

N, - I p.qj 
TH _ E = L --- L - (23) 

1= I 2mN , j= I 2mN 

is the Hughes-Eckart kinetic energy. I Here kit qj' and p de
note the canonically conjugate momenta to XI' Yj' and z, re
spectively. 

Let us now assume that there are eigenstates </I c, of H c', 
with energiesE c, < ECI

, i = 1, 2, where EC denotes the contin
uum threshold of H c. 

Considering then a state </IN of the N-body system of the 
form 

</IN = </I C'(xl, ... , xN, _ I) </I C'(Y I"'" Y N, _ I) t/J (z), (24) 

we get 

(</IN' HN </IN) = E C' + E C' + (t/J,HD t/J) + (</IN' Vc , C, </IN) 

+ (</IN' TH _ E </IN)' (25) 

Now, for purely attractive potentials V;j' 

(</IN' Vc, c, '</IN) <0, (26) 

and, if it is possible to choose t/J such that 

(t/J,HD t/J )<0 (27) 

and 

(t/J,pt/J) =0, (28) 

then 

(</IN,HN </IN) <E C' +E c,. (29) 

A few comments are in order. 
(a) Condition (27) is a sufficient condition for the exis

tence of a bound state for the cluster D = I Nit N I. 
(b) Condition (28) follows from symmetry requirements 

ont/J. 
(c) Equation (27) is automatically satisfied if the Vlj 's are 

central potentials and t/J is taken to be a bound state of H D 
with well-defined angular momentum. 

(d) For noncentral potentials a sufficient condition for 
the possibility of choosing t/J satisfying (27) is, for instance, 
(11). 

Under the above assumptions on Vlj we can draw the 
following conclusions. 8 
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(i) The threshold for the continuum spectrum is given 
by a two-cluster breakup 

(30) 

C,nC,=,p 

where E 5 denotes the ground state energy (the infimum of 
the spectrum) of H c. 

(ii) For all N-,2 there exists an eigenstate of HN with 
energy EN <EN' 

Proof (i) Suppose the minimum in (2) were attained at 
1-,3, i.e., 

EN =E5' +E5' + ... +E;'. 

Now, from (29) it follows that E 5'uc, < E 5' + E 5', therefore 
the only possibility left is 1 = 2. 

(ii) Follows trivially from (1) and (29). 

IV. IDENTICAL PARTICLES-LARGE N RESULTS 

The results of the previous section have one thing in 
common: they all assume the existence of bound states of 
two-particles. However, even if the two-body interaction is 
not strong enough for binding two-particles, there is a class 
of interactions for which we can prove the existence of bound 
states of N particles, provided N is large enough. To prove 
this let us consider a system of N identical bosons of mass m 
interacting via a two-body potential V. Using relative coordi
nates with respect to theN th particle, X; = r; - rN• i = 1, ... , 
N - 1, the Hamiltonian H N reads 

N-I k~ N-I 1 N-I 
HN = L -+ L V(x;)+- L V(x; -Xj) 

;=1 m ;=1 2 ;#j=1 

1 N-I k.·k. 
+- L -'-'. 

2 ;#j= I 2m 

For the trial wave function 
N-I 

tPN(XI,···, XN - I) = II tjJ (x;), 
;=1 

we have 

(31) 

(32) 

(!/IN' HN !/IN) = (N - 1){( tjJ, H2 tjJ) + [(N - 2)/2]u(tjJ )1, 
(33) 

where 

u(tjJ) = f I tjJ (XI) tjJ (x2W V(XI - X2) d 3XI d 3X2· (34) 

Notice that the Hughes-Eckart terms disappear by 
symmetry. 

It is clear from (33) that if there is a tjJ E L 2(RV) such that 
u(tjJ) <0, then for N>No(tjJ) = 2{ 1 + (tjJ, H2 tjJ )/lu(tjJ)1 I, it 
follows that (tPN' HN tPN) <0. So, for someNo<in~I,p1l No(tjJ) 
(by Hunziker's theorem) H No will have a bound state. Suffi
cient conditions on V for this to happen are as follows. 

(a) Vis purely attractive ( V(x)<O); in this case u(tjJ )<0 
for all tjJ. 

(b) V has an attractive core, i.e., V(x)<O for Ixi <R. 
Choosing tjJ (x) = ° for Ixl-,R /2 we have u(tjJ )<0. 

(c) Vis globally attractive. Let v = 3 (the case v = 1 or 2 
has been discussed in Sec. III A). FortjJp(x) =pv/2 tjJ ({3x)we 
have 
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u( tjJp) =p2v f V(x - y)ltjJ(,8xWltjJ(PYWd vxd Vy 

=pv f v( X - ; )ltjJ (pxWltjJ (yW dVx d" y 

= pv f d V yltjJ (yW[ f V(ro)ltjJ (Pro + yW d V UI]' 
where ro = x - yip. Since 

~ [f V(ro)ltjJ (Pro + yW d V UI] = ItjJ (yW f V(ro)d V UI, 

if f V(ro)d V UI <0 then u(tjJp) <0 for psmall enough. 
We now show the existence of an infinite sequence 

2<No<NI···<Nn' such that H N, has at least one bound state. 
Suppose this sequence is finite, i.e., 3 L such that for N > NL , 

H N has no bound state. In fact, by Hunziker's theorem, 1,2 

the continuum threshold is given by 

L 

EN = L k; EN" k; integer, 
;=1 

where 

H .1, -E .1, N, 'f'N, - N, 'f'N,' 

Now, since 
L 

L k;N;<N, 
;=1 

it follows that 

k,<N, i = 1, ... , L, 

so that 

(35) 

As we have seen, (33), in the case ofbosons, (tPN' HN tPN) has 
- CN 2 (C>O) for an upper bound. Due to the lineardepen

dence of EN on N it follows that there exists aN> N L such 
that H N has at least one bound state, thus proving that the 
sequence of N; such that H N, has at least one bound state is 
infinite. 

In fact all these interactions are catastrophic or collaps
ing since the binding energy per particle diverges as N-+ 00. 

Any two-body interaction is catastrophic if it is not stableS [a 
two-body interaction V is said to be stable if there exists a 
constant B>O such that U(rl, ... ,rN) =! l:~j= I VIr; - rJ) 

> - BN for all N>2 and for all rl>"" rNERV]. As proved in 
p. 35 of Ruelle's book,s if the interaction is not stable there 
exists a sequence of integers NI <N2 < ... <Nk <Nk + I "', a 
sequence of points SI>"" SkERV, and constants C> 0, /j > ° 
such that 

U (rl = O, ... ,rNJ< - CNL if Ir; - s,1 < /j for all i. 

Then, it is easy to construct a sequence of normalized wave 
functions such that 

(tPNk' VNk tPNJ < - CN~ 
and 
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Therefore there exists a ko> 1 such that (t/I, H Nt<" t/I) < 0 and so 
there exists 2<No<Nf<o such that for fermions HNo has at 
least a bound state if v>3 (and for bosons if v> 1, as already 
seen). 
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APPENDIX: KINEMATICS FOR v = 3 

Here we derive expression (21) of H N in terms of the 
relative coordinates X it Yj' and z defined in (20). The only 
thing we have to do to obtain expression (21) is to express the 
kinetic energy in terms of the momenta kit qj' and P canoni
cally conjugate to X;, Y j' and z, respectively. This is easily 
done since the transformation from the momenta k;, qj' and 
P to the momenta Prj canonically conjugate to fj is given by 

ReM =0 ml/M m21M 

x;, 1 0 

XiN,_1 
0 

Yj, 
0 

0 
YjN,-1 0 

z 

HN=HC'+HC'+HD+ Vc,c, +TH _ E , 

where 

2267 

N,-I 

+ L fj.},(y~ - YI)' 
k>l= 1 

2 

HD=_P_+ Viz), 
2/LN,N 

N, - 1 p.k
l 

N, - I poql 

TH _ E = L --- L -, 
1= I 2mN , 1= 1 2mN · 
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I 

0 

0 

0 
0 

Pr, P CM =0 

k;, 

k· 
'N,-I 

PrN, =[B] (AI) 

qj; 

P 
where P CM = 0 is the CM momentum canonically conjugate 
to 

RCM =0= f m;r; (M= f m;) 
;=1 M ;=1 

and the matrix B is the transpose of the matrix B defining 
transformation (20): 

mN,lM mNIM 

-1 0 0 

-1 0 0 

0 0 0 -1 

0 0 1 -1 

0 0 -1 

Vc, c, = L V;.h(Xk - YI + z), 
k=I •...• N,-1 
1= I •...• N,-I 

/Lij being the reduced masses. 
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This article examines the Einstein field of equations of general relativity, when the source of the 
gravitational field is a perfect fluid, and the geometry is static and possesses spherical, plane, or 
hyperbolic symmetry. This examination unifies, extends, and amends some earlier works. It is 
shown that a previous qualitative treatment of static spherically symmetric perfect fluids that 
obey a y-Iaw equation of state can be extended to include the cases of plane and hyperbolic 
symmetry. In the case of plane symmetry, the exact solution is provided for general values of y. 
This indicates defects in an earlier prescription that was given for a general equation of state. 

I. INTRODUCTION 

The first solution of Einstein's field equations of general 
relativity was provided by Schwarzschild 1 almost seventy 
years ago, when he published details of the static, spherically 
symmetric vacuum metric that now bears his name. Since 
that time, there have been numerous attempts to study the 
consequences of relaxing at least one of the conditions that 
originally characterized the Schwarzschild space-time (see, 
e.g., the articles cited in Ref. 2). In the particular case where 
a perfect fluid source for a static spherically symmetric gra
vitational field is introduced, there have been many exact 
solutions given, although, to the best of my knowledge, the 
most general solution has not been obtained. Frequently, for 
mathematical convenience, computations are performed 
prior to imposing conditions on the reasonability of the 
equation of state, with the unfortunate consequence that the 
resulting fluid might very well be physical in only a local 
region of space-time, or indeed it might be unphysical every
where. An alternative line of attack is first to impose an 
equation of state, and then to attempt to solve, or somehow 
to analyze, the resulting field equations. This generally leads 
to little advance from an analytic standpoint, and so investi
gators usually resort directly to numerical techniques. How
ever, if the fluid obeys a y-law equation of state, i.e., the 
energy density Jl and the pressure p of the fluid are related by 
an equation of state of the formp = (y- I)Jl, where y is a 
constant (which, for physical reasons/ satisfies the inequa
lity l<y<2), some analytical progress can be made. Under 
the given circumstances, the field equations may in general 
be reduced to a "plane autonomous system," whose solu
tions can be examined qualitatively by means offairly stan
dard techniques (see, e.g., Refs. 4-6). This was the approach 
used earlier by the present author,7 and it has several advan
tages. First, it highlights a special solution, in which the rel
evant variables are constant; this solution is often attributed 
to Misner and Zapolsky,7-9 although it is a special case of the 
class VI solutions of Tolman, 10 and has been discussed else
where by Wymanll and others? Another advantage is that 
the qualitative method yields a vivid pictorial description of 
all solutions, thereby providing an understanding of the 
"evolution" of the physical variables (in terms of spatial dis
tance from the center of symmetry), and, in particular, giv
ing fairly direct information about the "asymptotic" behav-

ior (i.e., far from and near to the center of symmetry). It will 
be shown in the present article that this qualitative descrip
tion can be readily extended to the cases of plane and hyper
bolic symmetry. In fact, the case of hyperbolic symmetry is 
related by means of a complex transformation to that of 
spherical symmetry, and so the system of field equations 
reduces to that previously considered, although its examina
tion must be made on a different domain. In the case of plane 
symmetry, the field equations simplify to a greater extent, 
thereby permitting an exact general solution. 

The particular choice of variables that reduces the Ein
stein field equations to a plane autonomous system, and 
which thus renders them amenable to the qualitative tech
nique, can be motivated by an examination of "quasihomo
logous" transformations, as was done in Ref. 7 in the spheri
cally symmetric case. It is not of course necessary to do this, 
since the variables could always be introduced in an ad hoc 
manner. Nevertheless, these transformations will be consid
ered, since the attendant discussion yields a more systematic 
derivation, and in particular provides a somewhat quantita
tive measure of the simplifications that result in the field 
equations in the plane symmetric case. 

In the following, it will be assumed that the fluid obeys 
an equation of state p = p(p,). This represents only a minor 
restriction, since the symmetries that are involved necessi
tate such an equation, except in the case when Jl is constant 
throughout space-time. In fact, it will be convenient to focus 
attention on those space-times in which neither Jl nor p is 
identically constant; this thereby requires the existence of an 
equation of state p = p(p,), while at the same time it forbids 
the situation in which p is also constant, as occurs, for in
stance, with dust (p = 0). Furthermore, I shall suppose that 
the cosmological constant is zero. Thus the following discus
sion is not concerned with space-times such as the Schwarz
schild interior solution, the generalized Einstein static solu
tion, and their possible counterparts with plane or 
hyperbolic symmetty.2 For physical reasons, I shall suppose 
that the condition Jl + p¥=O is satisfied. Later, it will be as
sumed that the fluid obeys a y-law equation of state, i.e., that 
p = (y - 1}J.L, whereJl > 0 and 1 < y<2, the case y = 1 being 
rejected by the assumption of nonconstant p. 

In summary, the space-times to be considered are those 
which are static and possess either spherical, plane, or hyper
bolic symmetry, and in which the source of the gravitational 
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field is a perfect fluid whose energy density I' and pressure p 
are not identically constant. It is initially assumed that the 
condition I' + P=l=O holds; the additional assumption that 
p = (r - 1)p, with I' > 0 and 1 < r<2 will later be made. 

The plan of this article is as follows. In Sec. II, the gen
eral form of the space-time metric is given, and the field 
equations are provided. Some implications are then de
duced, specifically with regard to the invariance properties 
of these equations, and to the homologous transformations 
that lead to a preferred choice of variables. The field equa
tions are expressed in terms of these quantities as an autono
mous system of ordinary differential equations. In Sec. III, 
plane autonomous systems are examined qualitatively in the 
cases of spherical, plane, and hyperbolic symmetry, when 
the fluid obeys a r-law equation of state. This leads to a 
prescription for finding the general exact solution in the 
plane symmetric case, and thereby points to defects in an 
earlier prescription. Conformal diagrams are given for the 
various types of solutions that can arise in all three cases. 

Throughout, geometric units are chosen, in which 
81TG = c = 1, where G is the Newtonian gravitational con
stant and c is the speed oflight in a vacuum. The space-time 
metric gij has signature (- + + +); the Riemann tensor 
Ri jkl is defined by the convention ui ;l;k - ui ;k;l = Ri jkl rI , 
where a semicolon denotes covariant differentiation; the 
Ricci tensor Rij isdefinedbyRij =Rk ikj; andR = Ri i is the 
Ricci scalar. 

II. THE FIELD EQUATIONS 

In this section, a study will be made of Einstein's field 
equations of general relativity, viz., 

Rij - ~ Rgij = Tij, (2.1) 

in the case when the energy-momentum tensor T ij is that of a 
perfect fluid, and when the space-time is static and possesses 
either spherical, plane, or hyperbolic symmetry. The re
quirement of a perfect fluid means that 

Tij = (p, + p)uiUj + pgij' (2.2) 
where I' is the fluid's energy density, p is the (isotropic) pres
sure, and u is the (timelike, future-pointing) unit vector that 
is tangent to the fluid flow-lines. With the assumed symme
tries, the space-time metric is of the form 

ds2 = _ g2(x)dt 2 + dx2 + f2(X)(dy2 + h 2(v)dz2), (2.3) 

where the function h satisfies the differential equation 

d
2
h +Kh=O 

dy2 ' 

K is a constant with K = + 1, 0, or - 1 according as the 
geometry possesses spherical, plane, or hyperbolic symme
try, and where, without loss of generality, the functions/' g, 
and h are positive (see, e.g., Ref. 2). With no further loss of 
generality, the function h = h (v) will be chosen as siny 
(K = + 1), y (K = 0) or sinhy (K = - 1). The field equa
tions (2.1) for the perfect fluid energy-momentum tensor 
(2.2) and metric (2.3) are 

and 

f" If + g" Ig + (f'lf) (g'lg) = p, 

2f" If + f'21j2 - K If2 = - 1', 
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(2.4a) 

(2.4b) 

2(f'lf) (g'lg) + f'21f2 - K If2 = p, (2.4c) 

where a prime (') denotes differentiation with respect to x. 
Equations (2.4) are compatible whenever the contracted 
Bianchi identities are satisfied, i.e., when 

(p, + p) (g'lg) + p' = O. (2.5) 

These equations provide for a uniform discussion of the class 
of solutions that is being studied. They have been given pre
viously by various authors, including Hojman and Santa
marina,12 whose article will be discussed later. The equa
tions are simple generalizations of those given for the 
spherically symmetric (K = + 1) case in Ref. 13. From the 
difference of (2.4b) and (2.4c), it follows thatf'=I=O, since oth
erwise I' + p=O. It is immediately clear by inspection that 
Eqs. (2.4) are invariant under the two-parameter group of 
transformations 

g -+ vg, (2.6a) 

x -+ K- 1X, f -+ K- 1. I' -+ ~I" P -+ ~p, (2.6b) 

where v and K are nonzero numbers; this generalizes the 
observation made by Ellis, Maartens, and Nel14 in the 
spherically symmetric (K = + 1) case (cf. Ref. 13). It is also 
clear that Eqs. (2.4) are invariant under the complex trans
formationf -+ if, K -+ - K, with g, x, 1', and p fixed. Hence 
the case of hyperbolic symmetry, where K = - 1 (andfis 
real), may alternatively be treated formally as the spherically 
symmetric case, where K = + 1, withfbeing purely imagi
nary. Following various authors (cf. Refs. 2, 13, and 15), Eq. 
(2.4b) may be written in the form 

1'2 = K - 2m(f)//, 

where 

dm 1 ,1"2 
df =TI'J , 

(2.7) 

(2.8) 

and the fact thatf'=I=O has been used. Equation (2.7) implies 
that 

m(f)/f<!K. (2.9) 

In the spherically symmetric (K = + 1) case, the quantity m 
may be physically interpreted in terms of the total mass with
in a given radius, assuming that there is a regular center of 
symmetry. Equations (2.4c) and (2.5) imply that 

dp = _ (p, + p)[2m + pf3] (2.10) 
df 1!(Kf - 2m) 

(cf. the case when K = + 1, in Ref. 13). The invariance of the 
field equations under the transformation (2.6b) suggests the 
introduction of the new variablesM: = ml/,D: = !1'j2, and 
P: = !pf2, since these are each also invariant under (2.6b). 
Then 

dM =J.-(D-M) 
df f ' 

where use has been made ofEq. (2.8). Moreover, from (2.10), 

dD =J.- 1 [W(K _ 2M) _ (D+P)(P+M)]. 
df f K - 2M dpldl' 

If the fluid satisfies a r-law equation of state, 
p = (r - 1)p" with 1 < r<2 and I' > 0, the substitution 
r = Inf reduces these equations to the autonomous system 
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and 

dD = D [2K- (5r-4) M-rD ] 
dr K -2M r-1 

dM =D-M, 
dr 

(2. 11 a) 

(2'l1b) 

in agreement withEqs. (3.4) of Ref. 12. WhenK = + 1, this 
system is equivalent to (2.2) of Ref. 13. Note that the denomi
nator K - 2M in Eq. (2.11a) cannot vanish identically, for, if 
it did, Eq. (2.7) would imply thatj'=O. 

While the system (2.11) is the one that will be employed 
in most of the remainder of this article, it might be thought 
that its derivation has been rather ad hoc, owing to a reliance 
on the observation of invariance of the field equations under 
the transformation (2.6b). An alternative and somewhat 
more systematic approach is to consider the invariance of 
the field equations (2.4) under "quasihomologous" transfor
mations, along the lines of the study in Ref. 7 for the spheri
cally symmetric case. Such an invariance arises from the fact 
that for Newtonian stars in equilibrium, a simple homolo
gous family of solutions exists, the individual members being 
related to each other by rescalings of the radius, the density, 
and the total mass.7.16 Because the radial coordinate is less 
well defined in general relativity, it is not necessarily justified 
to assert that homologous families may be specified by a 
similar rescaling. A generalization, which takes the ambigu
ity in the radial coordinate fully into account, has been con
sidered previously.7 In this, it is postulated that the individ
ual members of the family should be related by a 
transformation that maps each physically relevant variable 
into a function of itself. It is then proved that the only allowa
ble transformation involves a simple rescaling. This is done 
by making use of the result 17 that a system of ordinary differ
ential equations 

dui 
. 

-=f'(x,u), 
dx 

where l<i<n and u = (U I ,U
2

, ••• un
), is invariant under the 

action of the infinitesimal generator X: = S (x,u) 
X (a/ax) + ",i (x,u) (a/ aui ) if and only if [L,X] = rL, where 
[ ,] denotes the Lie bracket, L: = a/ax + fi (a/au i ), and 
r = L(5), which is obtained by action of the commutator on 
the independent variable x. In the particular case where X 
generates quasihomologous transformations, in which each 
variable is transformed into a function of itself, s = sIx) and 
",i = ",i(Ui), with no sum over i, and the invariance require
ment becomes 

f[d1J: (u i
) _ ds (X)] = X(t), 

du' dx 
(2.12) 

where l<i<n, and there is no sum over i. For any given 
system, Eqs. (2.12) can now be examined for compatibility in 
their functional dependence, and it was just such an exami
nation 7 that led to the rescaling property for homologous 
families in the spherically symmetric (K = + 1) case. 

In the present situation, it is possible to proceed in a 
similar fashion, starting with Eqs. (2.4). However, it is slight
ly more convenient to use Eqs. (2.8) and (2.10). The result of 
applying (2.12) leads to the following conclusions: either 
K = ± 1 and X = OorK = OandX =f(a/af) + 3m(a/am); 
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in any case, there is the extra symmetry X = f(a/af) - 2p, 
X (a/aJl) + mIa/am), if and only if p = (r - llu, for some 
constant r. 

Given an allowed symmetry vector X, it is a straightfor
ward matter to calculate a set of independent invariants, i.e., 
of functions of the given variables that are invariant under 
the finite transformation which X generates. This is done by 
solving the first-order differential equation X(F) = 0 for in
variants F. Thus in the present case, the variables are f, Jl, 
and m, and, if K = ± 1, in general these form a set of inde
pendent invariants, whereas if K = 0, there are in general 
only two independent invariants, e.g., m/f3 and Jl. If the 
equation of state is ofthe formp = (r - llu, for some con
stant r, the number of independent invariants is reduced by 
one, and these invariants may be written as m/fand !Jlf2 if 
K = ± 1, and as! /p/m)f3 if K = O. Division by fis allowa
ble, sincef> 0 in the metric (2.3). The factor! has been insert
ed for ease of comparison with other works.2.13

,IS The above 
provides a generalization of the result given previously7 that 
pertains to the particular case when K = ± 1. It also empha
sizes the fact that while (2.6b) represents a transformation 
under which the general system of equations is always invar
iant, it is necessary to bear in mind that the rather innocuous 
assumption of an equation of state forces p to be an extrane
ously posited function of Jl, which in general will be incom
patible with the transformation (2.6b). The above results 
confirm that (2.6b) is indeed a valid transformation, but that 
it is only meaningful if there is a r-Iaw equation of state. 

It is interesting to observe that in the general plane-sym
metric (K = 0) case, i.e., without there necessarily being a r
law equation of state, use of the invariants m/ f3 and Jl yields 
a two-dimensional system, viz., 

and 

dJl _ /p + p) (2m/p + p) 
dr - (4m/f3) (dp/dJl) 

but without an explicit equation of state little progress can be 
made in providing a qualitative description. However, for 
this situation, a prescription for an exact solution has already 
been given,12 and some further comments on this will be 
made in Sec. III, which in the main deals with the particular 
cases that now ensue, viz., K = ± 1 and K = 0, there being a 
r-Iaw equation of state in each case. The invariants M 
: = m/fandD: = !Jlf2 will be used as basic variables. When 
K = 0, use of the invariant D: = !/p/m)f3 would reduce 
(2.11a) and (2.11b) to the single equation 

dD D [7r - 6 - ] -=- ---(2-rlD . 
dr 2 r- 1 

(2.13) 

III. QUALITATIVE ANALYSIS 

In this section, the system of equations (2.11) will be 
analyzed qualitatively for the cases K = ± 1 and K = 0, as
suming an equation of state p = (r - 1lJ.t, where r is a con
stant satisfying 1 < r<2. The complex transformation that 
was observed in Sec. II could now be employed to give a 
simultaneous treatment of the two cases where K #0. The 
complex transformationf ~ if, K ~ - K, with g, x, Jl, and 
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P fixed, transforms M: = m/ / into - M, by (2.7), and 
D: = ~ p,j2 into - D. Since 1": = In/ _ 1" + i(1T/2), this 
means that Eqs. (2.11) are invariant under the transforma
tion K _ - K, D _ - D, M - - M, as may be readily 
checked, and that the case when K = - 1 (with D > 0) could 
be alternatively investigated by considering the case when 
K = + 1 (with D<O). By (2.9), it follows that M< -! if 
K = - 1, so that in the transformed treatment, M~ +!. 
Thus attention would be confined to the qualitative exami
nation of the system (2.11) with K = + 1, and with either 
D> 0 and M <! (corresponding to the case of spherical sym
metry, where K really is equal to + 1) or with D<O and 
M>! (corresponding to the case of hyperbolic symmetry, 
where K is really equal to - 1). The former case was treated 
in Ref. 7, but with slightly different coordinates and nota
tion, and so incorporation of the K = - 1 case involves an 
extension to the region in which D < 0 and M>!. For clarity 
and ease of discussion, the phase-plane diagrams for the 
cases K = ± 1 are drawn separately, as Figs. l(a) and 2(a), 
the symmetry under discussion manifesting itself in the fact 
that each figure is equivalent to the other under a reflection 
in the origin. It may also be noticed that the same symmetry 
applied to the K = 0 case leads to the result that the corre
sponding diagram for the plane-symmetric case, Fig. 3(a), is 
symmetric under a reflection in the origin. Conformal Pen
rose diagrams15.18 for the various types of solutions that can 
occur in each of the three cases are also provided, in Figs. 
l(b), 2(b) and 3(b). In each case, these depict the character of 
the two-spaces {y = const, Z = const J . The several possibili
ties will now be considered. In the following, it is interesting 
to note that there is one particular limit, in which D tends to 
zero and M becomes indefinitely large and negative, that is a 
common feature of all cases. From Eqs. (2.11), it follows that, 
in such a situation, the broad asymptotic behavior is inde
pendent of the sign of K, and that 1M I and D, respectively, 
grow and decay exponentially in 1". It follows from (2.7) that 
this occurs within a finite value of x, i.e., within a finite prop
er distance, and from (2.5) and the definition of D that the 
fluid's energy density p, tends to zero, while the fluid's accel
eration Ig'/gl becomes infinite, as would be expected from a 
consideration of the infinite growth of In p, within a finite 
distancex. Under these circumstances, there is a scalar-cur
vature singularity19 that is not a matter singularity. 

A.K= + 1 

In the spherically symmetric case, there are three quali
tative distinct types of solution. There is one degenerate case, 
represented by the center of the spiral in Fig. l(a). In this 
case, D = M = 2(y - l)/[(y + 2)2 - 8], and this represents 
the Misner-Zapolsky solution 7-9 that was mentioned earlier. 
By converting back to the former variables,/, g, x, and p" it is 
discovered that the central energy density (i.e., at x = 0) in 
this solution is infinite. The second type of solution is depict
ed in Fig. l(a) by the curve that starts at the origin (where/is 
zero) and which spirals into the central point. Such a solu
tion has the property7.13 that conditions are regular at the 
physical center at x = 0, and the space-time extends out to 
infinite proper distances, becoming asymptotically like the 
Misner-Zapolsky solution. The third type of spherically 
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FIG. 1. Spherical symmetry (K = + 1). Figure l(a) is the phase-plane dia
gram for a static perfect fluid obeying a r-law equation of state. Only the top 
left of the figure (M .q, D> 0) represents physically realistic situations. Ar
rows are drawn in the direction of increasing values of/in the metric (2.3). 
The three distinct types of behavior [(i) the Misner-Zapolsky focal solution, 
(ii) the solution starting at the origin, and (iii) the remainder] are demarcat
ed. For a fixed value of r, each curve depicts the "evolution" (in terms of a 
radial variable) of a single space-time. Conformal Penrose diagrams of the 
maximal analytic extensions for the three possibilities (i), (ii), and (iii) are 
drawn in Figs. l(b). Typically, each point in these diagrams represents a 
two-sphere. The family of curves with arrows indicates the fluid flow-lines, 
while the other family of curves represents the hypersurfaces ! t = const 1 
that are orthogonal to the flow. Note the symmetry between Figs. l(a) and 
2(a). 

symmetric solution is the most typical; the solution curves 
have the property that they cross the D axis at a finite value 
of 1", with the interpretation that M = 0 at some finite non- , 
zero radius. As observed in Ref. 7, this is impossible ifthere 
is to be a regular center of symmetry. Without this restric
tion, the central energy density (at x = 0) is zero and the 
fluid's acceleration Ig' /gl becomes infinite, resulting in a sca
lar curvature singularity that is not a matter singularity. At 
large radial distances, the space-time behaves like the 
Misner-Zapolsky solution. The three types of behavior that 
result in the spherically symmetric case are depicted in con
formal diagrams in Fig. l(b). These show the nature of the 
two-surfaces {y = const, Z = const J. It is interesting to ob
serve that in the y = 2 Misner-Zapolsky solution, these two
surfaces areJlat. In fact, regardless of the value of K, this is 
the only case when this is so. 

B.K= -1 

In the case of hyperbolic symmetry, there is essentially 
only one kind of behavior, since in Fig. 2(a) the solution 
curves of interest all begin at a large negative M with D close 
to zero, and end at the point where M = -! and D 
= - 1/[2(y - 1)]. At first sight, the situation is therefore 
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1 1 
M"-T.O"2'iY-TI 

Conformal 
SlnQularlly 

(b) 

o 

Conformal 
SlnQularlly 

M 

FIG. 2. Hyperbolic symmetry (K = - 1). Figure 2(a) is the phase-plane dia
gram for a static perfect fluid obeying a r-1aw equation of state. Only the top 
left of the figure (M" - ~. D> 0) represents physically realistic situations. 
Arrows are drawn in the direction of increasing values off in the metric 
(2.3). This mayor may not be in the direction of increasing x, giving rise to 
the possibility of analytic extension through the point where M = - ~ and 
D = - 1I[2(r - 1)), against the direction of the arrows (for further details, 
see text). Apart from this, there is essentially only one type of behavior. For 
a fixed value of r, each curve depicts the "evolution" (in terms of a spatial 
direction) of a single space-time. A conformal Penrose diagram of the maxi
mal analytic extension for such a space-time is drawn in Fig. 2(b). Typically, 
each point in this diagram represents a two-surface that is di1feomorphic to 
R2. The family of curves with arrows indicates the fluid flow-lines, while the 
other family of curves represents the hypersurfaces [t = const I that are or
thogonal to the flow. Note the symmetry between Fig. l(a) and 2(a). 

considerably simpler. However, a detailed examination re
veals that this latter limit does not necessarily signify an end 
to the space-time, since it corresponds to a finite limiting 
value of x (i.e., a finite proper distance) at which the metric 
coefficients / and g, and their first and second derivatives 
with respect to x, all approach finite limits [and hence, by the 
field equations (2.4), so also do the fluid variables p, and p). 
The difficulty arises in the present formalism because the 
denominator in Eq. (2.11a) approaches zero (and so also does 
the numerator). It can be overcome by temporarily reverting 
to the formulation of the field equations that is provided by 
(2.4). In the limit in question, the derivative/' in (2.7) tends to 
zero, and so, by (2.4b),f" tends to a negative value. Thus the 
limit may be equally well regarded either as one prior to 
which x and/are increasing, or as one prior to which x is 
decreasing and/is increasing, and in each case an analytic 
continuation through the limit would require /' to change 
sign. Thus it is possible to use the field equations (2.4) in 
order to obtain an analytic continuation through the limit, 
but since the construction of Fig. 2(a) was predicated upon 
the assumption of increasing T, such an analytic continu
ation must be accompanied by a change in the direction of 
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the arrows on passage through the limit point in the figure, 
whereM = - ~ andD = - l/[2(r - I)). A detailed exami
nation of the behavior of the solution curves near this point 
reveals that typically their slope becomes infinite, but that 
the derivative dD / dx tends to a nonzero finite limit, so that, 
in the analytic extension, D continues either to increase or to 
decrease. An exceptional situation arises for the one curve S 
that approaches the limiting point in Fig. 2(a) with a finite 
slope, and in this case dD /dx tends to zero. As may be ex
pected, a further study shows that in the analytic extension, 
D now changes from an increasing to a decreasing function 
of x, or vice versa. Thus the special curve S in Fig. 2(a) that 
exhibits this property divides the remaining curves in such a 
way that analytic continuation of the space-time associated 
with a typical curve is represented by a smooth passage along 
the curve from aboveS to below S, or vice versa, while analyt
ic extension of the space-time associated with the curve S 
itself is represented by a reflection at the point where 
M = - ~ and D = - l/[2(r - I)). The asymptotic behav
ior of the analytically extended solution is at both extremes 
depicted in Fig. 2(a) by M becoming indefinitely large and 
negative, and D tending to zero; the energy density ap
proaches zero, and the fluid's acceleration Ig'/gl becomes 
infinite, within a proper distance x. Thus the analytically 
extended solution is confined by two scalar curvature singu
larities (that are not matter singularities), which are encoun
tered in each hypersurface { t = const} orthogonal to the flu
id flow. This situation is depicted in a conformal diagram in 
Fig. 2(b), which exhibits the structure of any two-surface 
{y = const, Z = const} . 

C.K=O 

In the case of plane symmetry, the field equations are 
somewhat simpler. As observed in the previous section, it is 
possible to reduce them further to the single first-order equa
tion (2.13). However, in order to afford a comparison of the 
solutions in this case with those when K = ± 1, it will be 
more convenient to retain the system (2.11). The results of 
the qualitative analysis are depicted in Fig. 3(a). As in the 
case when K = - 1, there is only one possible pattern of 
behavior. The curves start at large negative M and with D 
small, and run into the origin, in a manner that requires D to 
dominate M. A study of the details of this latter limit, using 
(2.7), reveals that for each curve it takes place as x becomes 
infinite, i.e., that it represents points at infinity in the asso
ciated space-time. The asymptotic behavior in the opposite 
direction along the curves is similar to that obtained in the 
cases K = ± I, and corresponds to a scalar curvature singu
larity (within a finite proper distance x) at which the fluid's 
energy density is zero, but the fluid's acceleration Ig' /gl is 
infinite. This situation is depicted in a conformal diagram in 
Fig. 3(b), which shows the structure of the two-surfaces 
{y = const, z = const} . 

Some final remarks will now be made with regard to the 
case of plane symmetry (K = 0), and with particular refer
ence to the prescription given by Hojman and Santamarina 12 

for what is claimed to be the general solution with arbitrary 
cosmological constant A. It is claimed that, without loss of 
generality, A is zero. In a sense, this is always true for solu-
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• 
Conformal 
SlnQularlly 

(b) " 

FIG. 3. Plane symmetry (K = 0). Figure 3(a) is the phase-plane diagram for 
a static perfect fluid obeying a r-Iaw equation of state. Only the top left of 
the figure (M <0, D> 0) represents physically realistic situations. Arrows 
are drawn in the direction of increasing values of lin the metric (2.3). There 
is only one type of behavior. For a fixed value of r, each curve depicts the 
"evolution" (in terms of a spatial direction) of a one-parameter family of 
space-times. A conformal Penrose diagram of the maximal analytic exten
sion for such a space-time is drawn in Fig. 3(b). Typically, each point in this 
diagram represents a two-plane. The family of curves with arrows indicates 
the fluid flow-lines, while the other family of curves represents the hyper
surfaces It = const I that are orthogonal to the flow. Note the symmetry of 
Fig. 3(a) under a reftection in the origin. 

tions of Einstein's equations, since the physical effects of A 
can be incorporated in tenns of a perfect fluid with 
p. + p = 0 (see, e.g., Ref. 20). However, it must be remem
bered that not only does this involve an adjustment of the 
expressions for the energy density and pressure of a perfect 
fluid (as is done in Ref. 12), but also that this is such that it 
will not in general preserve any preassigned equation of state 
(a fact which is ignored in Ref. 12). Thus the system (3.4) of 
Ref. 12, which pertains to the case of arbitrary K and A, and 
a r-law equation of state, is not in general equivalent to the 
subsystem obtained by putting A = O. There is never a situa
tion when, under the adjustment of p. and p, a r-law equation 
of state is mapped into a r-law, and, in fact, the only situation 
when an equation of state is preserved is when it is of the 
fonnp = - p. + const. Henceforth, I shall therefore assume 
that A = 0 in referral to Ref. 12. The second point is that 
while, in the case of plane symmetry (K = 0), the prescrip
tion for the general solution is correct for P=l=O, so that the 
function G: = mlp is defined, it is one which is analogous to 
some of those prescriptions that are employed in the spheri
cally symmetric case and that were mentioned in Sec. I, i.e., 
as alluded to in Ref. 12, it is more adapted to a process that 
yields the equation of state at a final step, rather than being 
amenable to the imposition of an equation of state from the 
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start. This means that is may be safely concluded that if the 
function G is assumed to be proportional tof3, then the equa
tion of state is a r-law one, as observed in Ref. 12. However, 
it is also important to check that such an equation is of phys
ical interest, i.e., that p. > 0 and that 1 ~ r ~ 2, and it is easily 
shown that this is not the case. The most general function G 
that produces a r-law equation of state (1 <r<2) may be 
easily found from Eqs. (4.5) and (4.7) of Ref. 12, which in the 
present notation are 

1 dp (P + 2(dG Idf))(f3 + 2G) 
pdf = 2G(f3 - 2G) 

(3.1) 

and 

(3.2) 

respectively. Additional factors of 2 have been inserted, 
since the function m as defined in Ref. 12 differs by such a 
factor from the function m of the present article; it is to be 
noted that the denominator in (3.1) cannot vanish identical
ly. Upon substitution of the relation p = (r - llu, with 
1 < r<2, Eqs. (3.1) and (3.2) constrain G to satisfy the restric
tion 

dG + r G = (2 - rlf2 , 
df 2(r-1)f 4(r-l) 

whose general solution is 

G= (2-r)f3+Af- r12(r- I ), 

7r- 6 
(3.3) 

where A is an arbitrary constant. In this context, Hojman 
and Santamarina 12 considered the special case A = 0, when 
G = af3 for some constant a = (2 - r)/(7r - 6), where a is 
distinct from 0 and 1, because G=I=O and r# 1. However, Eq. 
(2.7) and the definition of G show that pG If<O, and with 
G = af3 this means that ap<O. Now if 1 < r<2, then 
O<a < 1, and since the case a = 0 is inadmissible, the re
quirement that ap be non positive now forces p to be strictly 
negative, and hence so also is p.. 

Finally, it may be noted that if there is a r-law of state, 
the general fonn (3.3) of G allows one to detennine, by quad
ratures, the functional fonns for p. andp, using Eqs. (3.1) and 
(3.2). From these relationships, the metric functionsfandg 
are detennined by quadratures from Eqs. (2.5) and (2.7), the 
expression for F being in general implicit. An alternative 
procedure is readily obtained from Eq. (2.13), which was 
derived by exploiting the extra symmetry of the system (2.11) 
that exists when K = O. It should first be recalled that since 
D =! (p.lmlf3, Eq. (2.7) implies th~ D<O, and so the ob
vious solutions of (2.13) in which D is constant are of no 
further interest. In order to obtain the remaining solutions, 
the variables jj and r can be separated in (2.13), and the 
resulting expression integrated to give 

D = BaeaT I( 1 + BbeaT
), (3.4) 

where a: = (7r - 6)/[2(r - 1)], b: =! (2 - r), and B is a 
negative constant. Equation (2.11b) can now be written in 
thefonn 

dM =M(D-l), 
dr 
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and integrated with the aid of (3.4), with the result that 

M = {Moe- T(l + Bbe
Q ll1b (b :f0), 

Mo exp( - r + Be41 (b = 0) , (3.5) 

where Mo is a negative constant. Since f = eT
, M is deter

mined explicitly as a function off, and, by (3.4), so also is 
D = DM. Now D = ! ftf2, and hence ft is given explicitly in 
terms off Insertingp = (y - 1),u in Eq. (2.5) results in the 
relationship 

g = grJl- 1r -l)Ir , (3.6) 

where go is a nonzero constant. Having determined ft as a 
function off, Eq. (3.6) yields g as a function off Thus all 
physical and geometrical variables are obtained explicitly as 
simple functions off, which, by means of (2.7), may be used 
in place of x in the metric (2.3). In terms of coordinates (t,f, 
y,z) the general exact solution is then provided by the metric 

dr = -idt2 +dj2/( - 2M) +j2(dy2 +dz2). 

Here, M is given by Eq. (3.5) in terms off = eT
, where it 

should be recalled that 0= (7y - 6)/[2(y - 1)), 
b = ! (2 - y), and g is determined in the manner explained 
above, i.e., 

g=go[2BMar- 2 /(1 +Bbr))-lr-I)lr . 

By an appropriate rescaling of the coordinates, it may be 
arranged that Mo = - 1 and go = 1, so that the solution 
depends on two essential parameters, y and B. In the particu
lar case when y = 2, the solution so obtained is readily seen 
to be equivalent to that ofTabensky and Taub,21 by means of 
thetransitionB -+ - 08/3/32,1 -+ aT 12112 J -+ 2Z 1/2/01/6, 
Y -+ (a2/3/2)x, andz -+ (a2/3/2lY, where the new coordinates 
(T, Z, x, y) and the new parameter a are those of Ref. 21. 
Similarly, in the particular case when y = f ' the above solu
tion is readily seen to be equivalent to that obtained by Teix
eira, Wolk, and Som,22 either by means of the transition 
B -+ - ~ (~)2/3POS/3, 1 -+ t, f -+! (5/[4PoJ)1/3Z , y 
-+ 3(4poI5)1/3X , and z -+ 3(4pol5)1/3y , where the new co-
ordinates (t, z, x, y) and the new parameter, Po, are those of 
Ref. 2, or by means ofthe transition B -+ - -1M' 42/3POS/3, 
t -+ (3PO)1/4XO, f -+ j . (4pO)-1/3f-1/2 = j . 61 IS/(4po) I 13 

6n!/2x] I 1/3 1/3 x[1+5e ru -IS, y-+~(4po) y, and z-+~(4po) z, 
where the new functionf, the new coordinates (XO, x, y, z), 
and the new parameter Po are those of Ref. 22. In view of this 
equivalence, the additional conditions that were imposed in 
Ref. 22, and which relate to the values of the metric coeffi
cients and their first derivatives on the plane x = 0, are seen 
to be superfluous. It should also be noted that the general 
treatment in Ref. 2 that is attributed to Taub23 amounts to no 
more than a formulation of the problem as the solution of 
two coupled nonlinear first-order ordinary differential equa
tions, and so it cannot be regarded as a proper prescription 
for the general solution; this observation persists upon spe
cialization to the case of a y-law equation of state. 
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It is also possible to obtain a quadrature expression for f 
in terms of the variable x in the metric (2.3), by employing 
(2.7): 

X= . d C f 1 
± (-2MifW/2 '1+ , (3.7) 

where C is an arbitrary constant, which, without loss of gen
erality, is zero. Thus all physical and geometrical variables of 
interest can also be expressed in the coordinates (t, x, y, z) of 
metric (2.3), at least up to a single quadrature given by (3.7), 
and subsequent inversion of the relationship so obtained. 
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of two equations 
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The introduction of a new system of coordinates permits a partial solution of Einstein's field 
equations for the interior of a uniformly rotating, stationary, axisymmetric perfect fluid, and 
reduces the problem to two second-order partial differential equations for two unknown 
functions. 

I. INTRODUCTION 

The study of the "interior" stationary axisymmetric 
problem in general relativity has been hampered by the fact 
that, contrary to what is true for the corresponding "exteri
or" problem, no significant reduction of Einstein's field 
equations to a simpler-but equivalent-system is known. 
Thus, while in the "exterior" problem there is a well-known 
choice of coordinates, 1 which reduces the problem to a sys
tem of two second-order partial differential equations for 
two unknown functions,2 no such reduction for the "interi
or" problem has been achieved, except for the important 
cases of Einstein-Maxwell fields3 and dust,4 where the same 
coordinate choice can be made. 

In this paper we present a different choice of coordi
nates which allows a similar reduction of the problem to two 
second-order partial differential equations for the case of a 
uniformly rotating perfect fluid (with nonconstant pressure). 

II. THE CHOICE OF COORDINATES 

The derivation of the form of the metric for stationary 
axially symmetric space times has been given repeatedly in 
the literature. We will therefore write down immediately the 
line element appropriate to our problem as follows5

: 

ds2 = gab dxa dxb 

= e2U (dt + A dq;)2 - e - 2UW2 dq;2 

- e- 2U
YMN dxM dxN

, (1) 

where t ( = XO) and q;( = Xl) are two coordinates adapted to 
the timelike and rotational Killing vectors implied by the 
assumed symmetries (s = a,,'TJ = a",), and the metric func
tions U, A, W, YMN depend only on the coordinates 
xM = (X2,x3) which label the points on the two-surfaces or
thogonal to the Killing orbits. The existence of these two
surfaces is guaranteed by the assumption that the source is a 
perfect fluid rotating about the symmetry axis, i.e., its four
velocity u satisfies the condition6 

U[aSb 'TJcj = 0. 
For uniformly rotating perfect fluids, i.e., when 

u'" = I1u t with 11 = const, the transformation q; = q;' + I1t, 
which preserves the form of (1), defines comoving coordi
nates where u",' = 0. Dropping the prime, we assume in the 
following that (1) is written in comoving coordinates. The 
equations of motion 'Pb;b = 0, where 

Tab = (p, + p)uQub _ p~b (2) 

is the energy-momentum tensor of a perfect fluid, with It the 

energy density and p the pressure, can be written in the form 

dp + (p, + p)dU = 0, (3) 

so that the surfaces of constant p(or It) and U coincide. 
The form of the metric (1) is unchanged under general 

coordinate transformations xM = xM (XN') in the two-space 
orthogonal to the Killing orbits. The usual choice of coordi
nates is to demand that Y22 = Y33 and Y23 = ° and allows the 
field equations to be written in a compact form. We shall 
make a different choice of coordinates in an attempt to re
duce the mathematical complexity of the system of equa
tions to be solved. That such a reduction might be possible is 
suggested by the following observation: the second deriva
tives of the metric functions enter four of the six nontrivial 
Einstein equations only through the second derivatives of W 
and a single combination of second derivatives of Y MN-the 
scalar curvature of the two-space YMN dxM dxN (see Ref, 7). 
This implies that choosing the function W as a coordinate 
makes three of these four equations first order in the un
knowns. Similarly, choosing either U or A as a second coor
dinate8 makes one of the remaining two field equations first 
order also. We shall choose U as the second coordinate so 
that our coordinate system remains valid even in the static 
case (A = 0). 

The choice of Wand U as coordinates can be made (lo
cally) provided that 

dWl\dUi=0. (4) 

Since W vanishes on the axis,9 we expect this condition to 
hold at least near the axis for realistic configurations (stars) 
which contain part of the axis and for which the pressure 
[and by (3), U] varies between the center and the surface 
along the axis, If the configurations have an additional sym
metry (equatorial) plane-as would be expected for isolated 
rotating object~ondition (4) would, by symmetry, be vio
lated in that plane (the vectors V Wand V U would have to be 
parallel there), We thus, a priori, expect our coordinate sys
tem to be good throughout the interior of realistic rotating 
stars except for points on a symmetry plane. 

The space-times excluded by condition (4)-in addition 
to the case that Wand U are functionally related which leads 
to unbounded configurations-are those of constant pres
sure (in particular, dust), where U = const. The case 
W = const does not arise since W vanishes on the axis but 
cannot vanish throughout the space-time. 

The choice of Wand U as coordinates, in addition to 
making four of the six field equations first order in the un-
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knowns, allows a simple description of the intrinsic geome
try of the equipressure surfaces in the three-space orthogo
nal to the motion of the fluid. The metric on these 
two-surfaces is given by 

dcr = (gab - Ua ub )dxa dxb I u = const 

= -e- 2U {Ywwlu=const dW2+ W2d~2l· 
(5) 

Recalling that the metric of a surface of revolution in Euclid
ean three-space, described (in cylindrical coordinates p,z,~) 
by the equation z = zlo), is 

dui = { 1 + (:; y}dP2 + p2 d ~ 2, (6) 

we can easily construct, for any given function Yww(U,W) 
the surfacezlo) in Euclidean three-space, the intrinsic geom
etry of which is the same as that of fluid's equipressure sur
faces. 

III. THE FIELD EQUATIONS 

Our choice of Wand U as coordinates leaves A, Yww, 
Yuu, and Yuw as the four unknown functions to be deter
mined by the field equations. It turns out that the field equa
tions becomes simpler if we express Y MN in terms of its in
verse yMN. With the notation 

yWW P, yUu =Q, yUw =R, 

det YMN==..:1 2 = 1/(PQ - R 2), 

the line element (1) becomes 

ds'l = e2U(dt +A d~)2 - e- 2UW 2 d~2 

(7) 

(8) 

- e- 2Uii 2{PdU2 + QdW2 - 2R dU dWl . 
(9) 

We shall further rename our coordinates using lowercase 
letters p,h, as follows: 

W=p, U= -lnh, (10) 

so that the line element finally becomes 

ds2 = (1/h 2) (dt +A d~)2 _ h 2p2 d~2 

- h 2 ii 2 {p ( ~h Y + Q dp2 + 2R ~h dP}' (11) 

Equation (3)nowreadsdp = (p + p) (dh /h ),andcanbeinte
grated once an equation of state has been given. To integrate 
Eq. (3) for an arbitrary equation of state we express both p 
and,u through an arbitrary function of h/(h ), so that (3) is an 
identity. The following parametrization is convenient 
([' = dl/dh ): 

81TP =1 /h 2, 8tr1p + p) = f'/h - 21/h 2 • (12) 

The field equations Eab = Gab - 81TTab = 0, where 
Gab = R ab - !R8i: is Einstein's tensor and Tab the energy
momentum tensor (2), will now be written in the orthonor
mal frame defined by the one-formslo 

(j)o = (1/h) (dt +A d~), (j)2 = (1/.JQ)dh, 

(j)1 = hp d~, (j)3 = ii .JQ[h dp + (R /Q )dh ] , 

so that ds'l = ((j)O)2 _ ((j)1)2 _ ((j)2)2 _ ((j)3t 
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(13) 

A straightforward calculation gives, for the nontrivial 
components of E" b, 

_h2(Ei +En =(1/pii){(Pii)p -h(Rii)hl-21 

=0, (14) 

- h 2(Ei - En = _1_ (1 _ ii 2R 2) (1-) 
piiQ ii p 

+ iiQ h (~) -2Q 
P iiQ h 

+ 2p!h 4 {Q (hAh)2 - 2RhAhAp 

(15) 

+(R2 __ 1 )A!}=o 
ii 2 Q ' 

_ h 2E~ = ~ (1-) + _1_ h (ii .JQ)h 
pQ ii p pii ii .JQ 

+ 2p2!4ii Ap (hAh - ~ Ap) = 0, (16) 

!h2(Eg -El -E~ -En 

= (1/ pii )( loRii )p - h loQii )h l + 2{t)2 - !h!' = 0, 

(17) 

UE? = {~PAp -RhAh)} 
ph p 

+ h {-;"(QhAh - RAp)} = 0, 
ph h 

- h 2E I = - K + Q + (j)2 - 1 = 0, 

where for brevity we have written 

K= - ! {[pap -Rhll.h + ~ a(pp -hRh)]p 

(18) 

(19) 

- h [Rap - Qhah + ~ a(Rp - hQh ) ] h (20) 

(
hPh hQh) (Pp Qp)} +(ll.R)p ---P-Q -h(ll.R)h -P-Q" 

for the scalar curvature of the two-space Y MN dxM dxN , and 

(j)2 = (1/4p2h 4){PA; + Q(hAh)2 - 2RhAhAp} 

= - h 2gab(j)a(j)b (21) 

for the magnitude (up to a factor h 2) of the vorticity vector of 
the fluid 

(22) 

As was anticipated in Sec. II, the first four field equations 
(14)-( 17) involve only first derivatives of the metric functions 
A, P, Q, R. The second derivatives of A appear in Eq. (18) 
only, while the second derivatives of P, Q, R appear in Eq. 
(19) only. Using the Bianchi identities one can show that Eqs. 
(18) and (19) are satisfied identically when A, P, Q, R satisfy 
Eqs. (14)-(17). 

IV. REDUCTION TO A SYSTEM OF TWO EQUATIONS 

Eliminating (1/ii)p between Eqs. (14), (15), and (16) in 
two different ways and using the definition of ii 2(Eq. 8), we 
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obtain 

(l/2.dQ}{.dR [Eq. (15)] - (1 -.d 2R 2) [Eq. (16)]} 

= hPh _pApAh -R {1- (~)2} = 0 
4p 4p2h 3 2ph 

(23) 
and 

UEq. (14)] + ![Eq. (15)] +.dR [Eq. (16)] 

= ~ -f-p(~~2r -Q{I-(~hr} =0. (24) 

We observe that Eqs. (23) and (24) can be trivially satisfied by 
using them to express the unknowns R and Q in terms of P 
andA (and their 1st derivatives). If we now substitute for R 
and Q in Eqs. (14) and (17) the expressionsll 

R = [hPh/4p - P(ApAh/4p2h 3)]/[ 1 - (Ah/2ph )2] (23') 

and 
Q = [Pp/2p - f - P(Ap/2ph 2)2]/[1_ (Ah/2ph f] , (24') 

we shall obtain two second-order partial differential equa
tions for the remaining unknown functions P and A. Equiv
alently, we can substitute for Rand Q in Eqs. (18) and (19) 
after using Eqs. (14) and (17) to eliminate the derivatives of .d. 
A long calculation gives the equations 

(
A 2) ( A 2) z2

p 
P 1 - f Pss + Ps - f - P z; f 

(
Zpz AsAz ) ( Zpz ) - T - 2P ---;r zPzs - zJz - 4t 

- (1 - A/) {(p s - f) (p s - 2f) 

- z;z (ps -f- ~ zJz)} 
1 - J{ 2Az (Ps -f) - PzAs 1 

{
I Az zPz } X PA~ +-P---A =0 

z. 25 5 z , 
(25) 

and 

(26) 

where we have introduced the new independent variables 
5 p2 and z=h 2. (27) 

In these equationsf(z) is an arbitrary function specifying 
the equation of state. If we letf = 0 we obtain the equations 
appropriate for a stationary axisymmetric vacuum space
time in our coordinates. In the static case (A = 0), Eq. (26) is 
satisfied identically. 

As might be expected, Eqs. (25) and (26) are derivable 
from a variational principle 
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c5 J .? ~ ds = O. 

It can be shown that an appropriate Lagrangian density is 

.? = (1 - A ;/5 )/P.d 

= [ Ps ; f (1 - A/) - ~ e~ r 
__ s + zZs 

(
A)2 P A A ] 1/2 

Z Ps 
(28) 

V. BEHAVIOR NEAR THE AXIS 

In the previous section it was shown that Einstein's 
equations for the interior of a uniformly rotating perfect flu
id reduce in our formalism to Eqs. (25) and (26); and any 
functions P(z,s), A (z,s), andf(z), satisfying these equations 

and the conditions A =l=z# and PQ - R 2=1=0, determine a 
space-time with G b = 81TTb . For the resulting metric to be 
nonsingular on the axis, however, we must impose on the 
functions P and A the boundary conditions 

P-+ 1 +PIS and A -+als as 5-+0, (29) 

wherepi anda l are arbitrary functions ofz. These conditions 
follow from the requirements of "elementary flatness" 12 and 
finite angular velocity of the locally nonrotating observers 13 

on the axis. They also ensure that the magnitude of the 
fluid's acceleration and vorticity remain finite on the axis. 
Finally, the arbitrary functions PI and a l must satisfy 
PI - f - (a l /z)2 > 0, so that the metric has the required sig
nature (PQ-R 2> 0) on the axis, whilef(z) must lead to a realis
tic equation of state. 

If we assume that P and A can be expanded in a power 
series in 5 near the axis, i.e., 

P=I+ LPnS
n
, A= L anS n , (30) 

n= I n= I 

Then Eqs. (25) and (26) determine successively the coeffi
cientsPn,an for n;>2 in terms Ofpn_1 ,,,,,PI and an_I , ... ,a l, 
and thus ultimately in terms of PI and al. The coefficients P2 
and a2, for example, are given by (a prime denoting differen
tiation w.r.t. z) 

and 

2P2= -p;'{r(PI-f)-an +rp;(ip; -!I') 

- 201a; (p; -f') + a;2(pl -f) - zp; (PI -f) 

+ (PI -f) (PI - 2f) , (31) 

202 = - a;'{r(PI -f) - an 
+ !za; (zp; - 2o Ia;/z) 

+ za; (PI -f) -zp;aI + (r/2)a;1' - fa l. (32) 

It can be verified that P = 1 + PIS and A = 0, PI satisfying 
Eq. (31) with P2 = a I = 0, is an exact solution of Eq. (25), 
describing a static and spherically symmetric space-time for 
any equation of statef(z). 

Futher applications of the formalism presented in this 
paper are given in the following paper. 
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lOIn this frame u· = 80 andu· = UbU~b = (,fQ/h ~ ,so",oand",2 areparal

lei to the fluid's velocity and accel~ration, respectively. Then ",I is orthog
onal to the velocity in the space spanned by the Killing vectors, while ",3 is 
orthogonal to the acceleration in the orthogonal two-space. 

II As shown in the next section, the denominator cannot vanish for a well
behaved manifold near the axis. 
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13J. Bardeen, Astrophys. J. 162, 71 (1970). These observers have angular 
velocitY"'NR = - g",,/g..,. = A /1p2h 4 - A 2) . Equivalently one can de
mand finiteness of the vorticity ",2 [(Eq. (21)] on the axis. 
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The formalism of the previous article is used to obtain solutions of Einstein's field equations for 
the interior of a rigidly rotating perfect fluid, with zero magnetic Weyl tensor. It is found that 
these solutions cannot represent isolated rotating masses. 

I. INTRODUCTION 

In the previous article (Ref. 1, hereinafter referred to as 
I) a formalism has been developed for the "interior" problem 
in the case of a rigidly rotating perfect fluid, with an arbi
trary equation of state. By an appropriate choice of the coor
dinate system and a suitable definition of the four functions 
characterizing the metric, a simplification of the field equa
tions is achieved: The four independent Einstein equations 
are reduced to a system of two differential equations of sec
ond order for two unknown functions, while the other two 
functions are obtained algebraically. 

As an application of the formalism in I, we present here 
the solutions with vanishing magnetic Weyl tensor, which 
can be expressed in our coordinate system. Although the 
existence of such solutions has been proved recently, 2 their 
explicit expressions have not been given before. In Sec. II we 
show that the condition that a single component of the mag
netic Weyl tensor vanishes restricts the equation of state to 
f.l = P + const and the two field equations of Ref. I reduce to 
one fourth-order ordinary differential equation. In Sec. III 
the solutions ofthat equation are obtained and their proper
ties are discussed. The solutions split into two families, the 
first of which is calculated analytically, and it is found that 
the equipressure surfaces are spherical. The second family of 
solutions is obtained up to quadratures and does not reduce 
to the spherically symmetric solution when there is no rota
tion. In both families it is found that the remaining compo
nents of the magnetic Weyl tensor also vanish. 

II. SOLUTIONS OF THE FIELD EQUATIONS WITH 
VANISHING MAGNETIC WEYL TENSOR 

In a recent paper Collins has proved the existence of 
shear-free rotating perfect fluids with zero magnetic Weyl 
tensor. The "magnetic" part of the Weyl tensor with respect 
to the fluid flow is defined by 

H -1 ghC c d 
ab - '].Eac ghbdU U , 

(1) 

where Cabcd is the Weyl tensor and ua is the four-velocity of 
the fluid. 

In the orthonormal frame defined in I [Eq. (13)], 

(j)o = (l/h )(dt + A dq'J), (j)1 = hp dq'J, 

(j)2 = (l/.jQldh, (j)3 = tih .jQ[dp + (R IhQ )dh ], 

the nonzero components of Hab are 

Hll = R 2310 = - (l/2p2h 4ti )(hA h - 2pAp), 

H22 = - H33 = R 1302 

(2) 

(3) 

1 { R ( Ap) = --- -hA h +4A +- A --2ph 4ti p p Q PP p 

hAhQp A~ } 
-~- 2ph 4Q (hQAh -RAp) , 

H 23 =H32 =!(R 1220 +R 1303) = __ 1-4- {QhNh -RNp 
2ph Q 

+N(!i.+ R _ hQh -6Q- ApN) 
P p 2 2ph4 

1 ( Ap tip )} +- A ---A-
ti 2 PP P p ti ' 

where N = RAp - hQAh' 

(4) 

(5) 

It is obvious that in a static field (A = 0) the conditions 

Hab =0 (6) 

are satisfied identically. It has been proven2 that even ifthe 
field is stationary (A ;f0) there exist solutions of the field 
equations compatible with (6). 

We shall use only the condition 

Hll =0, (7) 
and the field equations I [Eq. (25)] and I [Eq. (26)] to derive 
these solutions. Later it will be shown that all the conditions 
(6) are satisfied. 

Following I, we put 

p2=S' 

so (7) becomes 

(l/25h 4ti )(hAh - 45As) = 0 (8) 

and can immediately be integrated to give 

A =A(x), X=Sh4, (9) 

whereA (x) is an arbitrary function of x. The dependence of A 
on the angular velocity !J must be 

A (x) =!J.A (x), (10) 

where the function A (x) may depend on !J but is finite for 
!J=O. 

Now by changing the independent variable S to 

S -+- x = sh 4, (11) 

and noting that for any function N (h,s ) 

Nh (h,s) = Nh (h,x) + (4xlh )N" (h,x), 

Ns(h,s) = h4 .N,,(h,x), 

the field equation I [Eq. (26)] can be written3 as 
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h 4(A " + 2A '3) • ( - hPh + P) + A '(I - 4xA '2)(( - hl'/2) 

- 4x/(A" + 2A '3) = 0, (12) 

where 

A ' - dA A " _ d 2A I' = dl 
- dx' - dx2' dh . 

Two obvious solutions of (12) for any P(h,x) can be easily 
excluded. 

(i) A" + 2A ,3 = 0 and 1- !hl' = 0 because it gives 
as an equation of state It + p = 0, which is physically unac
ceptable. 

(ii) 1 - 4xA ,2 = 0, which implies A " + 2A 13 = 0, be-

cause it gives A = IX + const, which causes the denomina
tors in I [Eq. (23')] and I [Eq. (24')] to vanish. 

Setting 

g(x) =A '(I - 4xA '2)/(A " + 2A '3) + 4x, (13) 

Eq. (12) can be written as 

Ph -!... = g(x) 21- hI' _ 4x (21- hl'). (14) 
h 2h s h S 2 

This last equation is a linear first-order differential equation 
for P that can be integrated to give 

P(h,x) = hT(x) +g(x) 

Xhf 21- hI' dh - 4xh f 4f - hI' dh (15) 
2h 6 2h 6

' 

where T(x) is an arbitrary function of x. 
The function P must take the value 1 on the axis (I [Eq. 

(29)]), i.e., P (h,x = 0) = 1. This regularity condition restricts 
the function/(h), or equivalently the equation of state. We 
find that/(h ) must have the form 

1= -iKh2+ [1/g(0)]h4, (16) 

where g(0) = g(x = 0) and K = const. 
Using I [Eq. (12)], the equation of state is found to be 

It = P + ~/81T. (17) 
Now (15) can be rewritten in the form 

P(h,x) = [1/g(O)]g(x) + h.I (x) - Kx/h 2, (18) 

where.I (x) is an arbitrary function of x subject to the condi
tion .I (0) = O. 

Summarizing, the field equation I [Eq. (26)] has been 
satisfied with an equation of state given by ( 17) and functions 
A and P given by (9) and (18), respectively. We will examine 
now if there exists a choice of the functionsA (x) and.I (x) that 
will satisfy I [Eq. (25)]. Substituting the expressions found 
above for/(h), A (x), and P(h,x) in I [Eq. (25)] we obtain a 
polynomial of fifth degree with respect to h, with coefficients 
which are functions of x. It is found that three of these coeffi
cients vanish identically while the other three will vanish if 
A (x) and.I (x) satisfy the equations 

A '2(2gg' - 4g'x + 8x - 4g) +g"(g- 4x) +g' - 2 = 0, 

(19) 

A ,2.I (3 g/4x - 3 - 4 g') - (3/16x2).I (g - 4x) = 0, (20) 

4x.I' -.I = 0, (21) 

where g(x) is given by (13). 
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The choice.I (x) = 0 satisfies Eqs. (20) and (21) (see Ref. 
4) and we are left with Eq. (19) for the determination of A (x). 
Putting 

u(x) = 1/ A '2, (22) 

G (x) = g(x) - 2x, (23) 

and using (13) we have 

g(x) = (2u + 8x - 4xu')/(4 - u') 

and 

G (x) = (2u - 2xu')l(4 - u'), 

so that (19) becomes 

(1/u)2GG' + G"(G - 2x) + G' = O. 

(24) 

. (25) 

(26) 

Equation (26) [or equivalently Eq. (19)] is an ordinary differ
ential equation offourth order for the function A (x), as can be 
seen from (25) and (22). The function P(h,x) is given by (IS) 
with .I = 0, i.e., 

P(h,x) = [1/g(O)]g(x) - Kx/h 2. 

III. SOLUTIONS OF Ea. (26) 

A. Case (a): G = const 

(27) 

When G = const, Eq. (26) is an identity, and Eq. (25) 
implies that u(x) must be a linear function of x, while from 
(22) and (10) we may write for A (x) 

A (x) = l1a(~l - b 2X - 1), a,b = const, (2S) 

where the constants a and b are finite for (J = O. 
From (24) and (27) we find the function P(h,x): 

P(h,x) = 1 + b 2x(1 + b 2a211 2) - XK/h 2. (29) 

Finally from I [Eq. (24')] and I [Eq. (23')] we obtain Q (h,x) 
andR (h,x): 

Q (h,x) = (h 2/4){ - K + b 2h 2(2 + b 2a211 2)}, (30) 

2pR = (x/h 2){ - K + b 2h 2(2 + b 2a211 2)} 

= (4x/h4)Q. (31) 

We observe that the function P (h,x) has the form that corre
sponds to the spherically symmetric solution 

P = 1 + x .1T{h ). (32) 

Although the above stationary solution was derived by 
using the vanishing of only one component of the magnetic 
Weyl tensor [Eq. (7)] and the field equations, it is easily 
checked that all the conditions (6) are satisfied. So for this 
solution, the magnetic Weyl tensor vanishes. Also the accel
eration and vorticity four-vectors are parallel. These four
vectors, in our coordinate system, are given by 

aQ = UQ;bUb = (1/h )(O,O,Q, - R /h), 

(J)Q = (1/2~ - g)€"bcdUbUc;d 

= (1/2ph 3,a )(O,O,AP' - Ah), 

and it is seen from (S) and (31) that hQAh = RAp sotheaccel
eration and vorticity four-vectors are parallel. Because of the 
above properties this solution is Collins' case 2. The particu
lar case in which there is no acceleration (U2 = 0 = UI in 
Collins' notation) cannot be examined in our coordinate sys
tem because it implies h = const. 
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Another property of this solution is that, even though 
stationary, the equipressure surfaces are spherical. To prove 
that, let us look for an axially symmetric surface in Euclid
ean three-space described (in cylindrical coordinates R,z,q;) 
by z = z(R ) such that the geometry on that surface (I [Eq. 
(6)]) 

d~ = {I + (~~)2}dR 2 + R 2 dq;2 (33) 

is the same as that of the fluid's equipressure surfaces, 
h = const (I [Eq. (5)]), 

dcr = p2h 2 dq; 2 +.d 2Qh 2 dp2. (34) 

From (33) and (34) we find 

hp=R, (35) 

.d 2Q_l = (~~r (36) 

Using (29H31) and the definition of.d 2 = lI(PQ - R 2), (36) 
is written 

( 
dZ)2 _ h 2b 2 R 2 (37) 
dR - 1 - h 2b 2 R 2' 

The last equation can be integrated to give 

Z = ± ~lIh 2b 2 - R 2 + const, (38) 

which is the equation of a sphere in the Euclidean three
space. Without loss of generality we may put const = O. 

B. Case (b): G # const 

When G :;6const, we can partially integrate Eq. (26). In 
order to be able to find the static limit of this case it is conven
ient to write out explicitly the dependence of the various 
functions on the angular velocity n. In the following we shall 
denote by a tilde (-) every function finite for n = O. By Eqs. 
(13) and (23) the functionsg(x) and G (x) are finite for n = O. 
From (22) we can write for u(x) 

u = (lin 2)ii. (39) 

Defining the function fi,(x) by 

ii = 4xn 2 + (2x - G )fi" 

Eq. (25) gives 

2xfi,' = (fi,G y. 
The latter is solved formally if we put 

fi,=L', 
and 

G= 2(x -L/L '). 

(40) 

(41) 

(42) 

(43) 

The function L (x) will be determined from (26). Substituting 
for u and G from (40) and (43) we find the following equation 
for L (x): 

2281 J. Math. Phys., Vol. 26, No.9, September 1985 

- __ -.n2+--_- =0. d {XL w2 1 LL W2} 
dx L,4 2 L,4 

An integration of this equation gives 

(L w2/L '4)(n 2X +!l) = Ci, C1 = const. 

Now from (40), (42), and (43) we have 

!l = ii/4 _n2x, 
so (45) is written 

(ii" /16) . {U = C1(ii'/4 - n 2f 
The last equation can be integrated to give 

2 ii' I n 2 
- _ -Inln -- + 2 =2c11U +C2, 

4 n -ii'4 

(44) 

(45) 

(46) 

(47) 

C2 = const. (48) 

Equation (48) determines, in principle, the function u(x) 
and consequently A (x). When C1 = 0, this equation gives ii' 
= const, which leads to case (a). ThefunctionP (h,x) is given 

by (27) and Q and R by 

It is easily proved, using Eqs. (27) and (48H50) thatthe con
ditions (6) are satisfied, so for this solution the magnetic 
Weyl tensor vanishes. This is Collins' case 1. The particular 
case in which the acceleration is orthogonal to the vorticity 
vector(u 1 = OinCollins'notation) means that(lI.d )Ap = O. 
Either lI.d = 0, which cannot be examined in our coordi
nate system, or Ap = O. The second possibility, together with 
(8), gives Ah = 0 so the field is static. The main property of 
the above solution is that it does not reduce to the spherically 
symmetric solution when there is no rotation. In order that 
P(h,x)havetheformP = 1 + x ·1T{h ) of the static spherically 
symmetric field, ii(x) has to be a linear function of x. But this 
is not the case, when C1 :;60, as can be seen from (48). 

An isolated rotating perfect fluid mass is expected to 
have an oblate spheroidal shape which becomes spherical in 
the limit of no rotation. Neither of the solutions found above 
satisfies this criterion and hence neither can represent an 
isolated rotating mass. 

's. Bonanos and D. Sklavenites, J. Math. Phys. 26, 2275 (1985). 
2e. B. Collins, J. Math. Phys. 25, 995 (1984). 
3We use the field equations I [Eq. (25)) and I [Eq. (26)) putting z = h 2. 

"The solution I (x) = c • xl/4 
, C = const, of Eq. (21) is not compatible with 

Eqs. (19) and (20). 

D. Sklavenites 2281 



                                                                                                                                    

On the viscous fluid interpretation of some exact solutions 
J. Carot and J. Ibanez 
Departament de Fisica Teorica, Facultat de Ciencies. Universitat de Palma de Mal/orca. Palma de Mal/orca. 
Spain 

(Received 22 May 1984; accepted for pUblication 26 April 1985) 

An example of the equivalence between a perfect fluid and a viscous fluid is presented, showing 
that the Schwarzschild interior solution obtained from a perfect fluid can also be derived from a 
viscous fluid with heat conduction. The equivalence between a scalar field and a viscous fluid is 
investigated, showing that under certain circumstances, both can generate, from Einstein's 
equations, the same space-time geometry. Some examples are presented and, in particular, it is 
shown that every plane-symmetric solution deduced from a scalar field can also be derived from a 
viscous fluid. 

I. INTRODUCTION 

Recently attention has been devoted to the problem of 
obtaining the same space-time geometry from different 
stress-energy tensors. As is well known, a metric tensor does 
not lead to a unique stress-energy tensor. It has been shown 
in several examples that, under certain conditions, an exact 
solution of Einstein's field equations can be interpreted as 
due to different material distributions satisfying the energy 
conditions. Tupperl,2 and Raychaudhuri and Saha3.4 found 
conditions for the equivalence between a perfect fluid and a 
viscous magnetohydrodynamic fluid with heat conduction, 
both leading to the same metric tensor and therefore the 
same space-time geometry, 

Interesting cases arise when these ideas are applied to a 
number of important exact solutions to give them an alterna
tive interpretation. For example, Coley and Tupper showed 
that the zero-curvature Friedmann-Robertson-Walker 
(FR W) cosmological model can be deduced from a viscous 
fluid. On the other hand, there is an interest in viscous fluids 
as suitable models to describe, for example, the interior of a 
star in certain density ranges. 6, 

7 Also, in cosmology the effect 
of the viscosity has been taken into account by Belinskii et 
al. 8 

However, exact solutions for viscous fluids are difficult 
to find in the usual way. Therefore, the dual interpretation of 
known metrics can be seen as a useful tool either to better 
understand the effect of the viscosity or to obtain exact solu
tions for viscous fluid sources. 

In this paper we first apply the results obtained by Tup
perl,2 and Coley and Tupper to the Schwarzschild interior 
solution, so that it may be interpreted as due to a viscous 
fluid with heat conduction. 

In the second part of the paper we investigate the ana
logy between a scalar field and a viscous fluid. Tabensky and 
Taub9 considered the analogy between a scalar field and an 
irrotational stiff matter perfect fluid. However, such an ana
logy works only when the gradient of the scalar field (which 
is proportional to the velocity of the equivalent fluid) is time
like. Such a restriction upon the gradient of the scalar field is 
avoided when one considers a viscous fluid with heat con
duction. 

We illustrate these results with two examples; the first 
one concerns the plane-symmetric solutions which can be 
derived from a scalar field, as in the Tabensky and Taub 

paper, and we show that in this case the analogy is always 
possible, i.e., every plane-symmetric solution (derived from a 
scalar field) is equivalent to a viscous fluid. In the second 
example we study the scalar field solutions given by Tup
perlO; these solutions are static and spherically symmetric 
ones and they reproduce the same predictions as the 
Schwarzschild exterior solution with respect to the tests of 
general relativity (the three classical tests and the radar re
flection experiment). 

II. SCHWARZSCHILD INTERIOR SOLUTION 

In this section we summarize the results obtained by 
Tupper, 1.2 particularized to a perfect fluid and a viscous fluid 
with heat conduction, and we apply them to the Schwarzs
child interior solution. 

The stress-energy tensor of a perfect fluid is given by 

(1) 

where vava = - 1. The stress-energy tensor for a viscous 
fluid with heat conduction iSIl

•12 

'" Tab = rp + P)UaUb + pgab - 21/Uab + 2q(aUb) , (2) 

where uaua = - 1, ~ is the heat conduction vector, which is 
orthogonal to the velocity field (qaua = 0), 1J is the shear 
viscosity (1J > 0), and O'ab is the shear tensorll satisfying 

(3) 

The equivalence between both fluids, in the sense that 
both generate the same geometry, implies the equality 
between their respective stress-energy tensors; so, by equat
ing (1) and (2), the following results are obtained (a detailed 
discussion is given in Tupper, Refs. 1 and 2): 

p = a 2/p + p) _ p, p = jrp _ p) + p, 

qa = alp + p)(va - aua), 

- 21JO'ab = /P + P)VaVb - 1ft + p)uaub 

+ /P - p)gab - 2q(a Ub) , 

(4) 

The vector ua is obtained from the differential equation 
resulting from the substitution of the definition of the shear 
tensorll into (4): 

U(a;b) + U(aUb) - (O/3)(gab + uaub) 
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- [(p+p)/61/] [(a2-1)gab _(2a2 + l)uaub] 

= [(P + p)/21/1[2aU(aVb) - Va Vb ] . (5) 

Let us now apply these results to the particular case of 
the Schwarzschild interior solution, which is a static and 
spherically symmetric perfect fluid solutionl3 

dr= - a-b 1-- dt2+_--:~-::-
( ~

2 dr 

R2 l-r/R2 

+rdn 2, (6) 

a and b being constants whose value is taken to match with 
the Schwarzschild exterior solution onto a surface r = ro 
(20 = 3~1 - ro/R 2, b = !). The perfect fluid correspond
ing to this solution is characterized by 

2 . 3b.J 1 - ? / R 2 - a 
p = 3/R = const, p = , 

R 2(a - b.Jl - ?/R 2) 

Va = ([ a - b ~"-I-_-?"--I=R-""2] - 1 ,0,0,0) . (7) 

From the definition of a and the requirement of spheri-
cal symmetry, we have 

Ua = ( - aglf/, .,;ar=Tgll' 0,0). (8) 

Equations (4) read in this case 

p=R -2(a-b.Jl-?/RZ)-I[a(1 +2af 

- 3b.J 1 ~ ? / R 2] , 

P =! R -2(a - b.Jl - ?/R 2) -I[a(2a2 - 5) 

+9b.Jl-?/RZ] , (9) 

qa = - alP + p)((a2 
- 1)g~2 ,a.,;ar=TgW,O,O) , 

and (5) becomes a differential equation for a 

aa' = - (l/21/)et(p + p)(a2 
- lf/2 + (a2 

- I)(l/r - v'). 

(10) 

To integrate (10) we suppose that 1/ remains constant 
when r < ro and 1/ = 0 for r>ro. This leads to 

a 2 = I + b 21/2 R 2 r 
[Cb1/(aR - b .J R 2 - ?) - aR P 

(11) 
C= const. 

So we have completely determined a viscous fluid (with 
constant shear viscosity) which generates the same metric 
tensor as the perfect fluid (7). Taking into account the above 
value for the constants a and b we obtain 

p(ro) = ~(ro) = uab(rO) = 0, ua(ro) = Va . (12) 

Therefore, the solution (6) regarded as due to the vis
cous fluid can also match with the Schwarzschild exterior 
solution. Note that at the origin (r = 0) both fluids coincide 
and are regular (there are no singularities). 

III. EQUIVALENCE BETWEEN A SCALAR FIELD AND A 
VISCOUS FLUID 

In this section we investigate the equivalence between a 
scalar field and a viscous fluid. The stress-energy tensor cor
responding to a scalar field t/J is given by 
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Tab = t/Jat/Jb - !t/J ct/Jcgab , (13) 

wheret/Ja stands for the gradient of t/J, and satisfies 

t/Ja.a =0, (14) 

as a consequence of the conservation law T ab'b = O. 
Tabensky and Taub9 showed that (13) is ~quivalent to a 

stiff matter perfect fluid, the velocity of the perfect fluid be
ing proportional to t/Ja . This equivalence is only valid if 
t/Jat/Ja <0. 

As in the previous section, equivalence between ( 13) and 
the viscous fluid (2) implies 

t/Jat/Jb - !t/J ct/Jcgab = (p + p)uaub + pgab - 21/uab 

+ 2q(aUb) . (15) 

Contracting (IS) with~b, uaub, and Uaqb, we get 

3p-p= _t/Jat/Ja' p=~2+!t/Jat/Ja, 
qat/Ja = - Q2/~, (16) 

where Q2 = ~qa; ~ = t/J aUa and we have assumed ~ #0. 
Next, ~ can be obtained by contracting (15) with t/J aUb 

~2 =! {_ t/Jat/Ja + ~(t/Jat/Ja)2 + 4Q2}, (17) 

where the positive sign for the square root has been taken to 
keep p positive. 

From expressions (16) and (17) and after a straightfor
ward calculation we obtain 

p = ~(t/J at/Ja)2 + 4Q2 , 

p=!(P-t/Jat/Ja)' 

qa = - ~ (t/Ja + ~ua) . 
After substituting (18)-(20) into (13), we have 

21/Uab =! [~2+t/Jat/Ja](gab +UaUb) 

(18) 

(19) 

(20) 

o 2 0 

- t/J UaUb - 2t/Jt/J(a Ub) - t/Jat/Jb . (21) 

This last expression constitutes a differential equation 
for the components of the velocity field ua • Therefore, once it 
has been integrated, the viscous fluid equivalent to the scalar 
field is completely determined. 

Depending on the character of t/Ja (timelike, spacelike, 
or null) the pressure will vary continuously from values 
p>!p in the caset/J at/Ja <0 to valuesp <!p when t/Jat/Ja >0, 
with p = ! p in the case t/J at/J a = 0 , as it can be easily seen 
from (19). 

Note that now, conversely to the Tabensky and Taub 
results, the character of t/J a does not impose any other restric
tion, because from (20) it follows that uaua = - 1 is identi
cally satisfied whatever the character of t/J a . 

In the case t/J at/Ja = 0 we can see moreover that the vec
tor ua + r/ (where r/ stands for the space-like unit vector in 
the ~ direction) is lightlike and orthogonal to t/J a. 

From (21) it is easy to see that~ is an eigenvector of Uab 
with eigenvalue - Q2/31/~ 2. 

In the special case in which ~ = 0 we can distinguish 
two different situations: in thecaset/J aUa #0, 21/Uab = o and 
we trivially reproduce the Tabensky and Taub results.9 The 
other case t/Jaua = 0 leads to p = - !p, namely, negative 
pressure, which seems to be an unphysical situation. 
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If we set t/J aUa = 0 in the general case rf =1= 0, we obtain 
immediately rf = 0 and the consequent results given above. 

We have shown how we can determine a viscous fluid 
generating the same solution as a scalar field. Note that field 
equations can be written simply as Rab = t/Jat/Jb in the case of 
a scalar field; these equations can be easily integrated in 
some cases (e.g., for plane-symmetric solutions,9 Tabensky 
and Taub formulated the Cauchy problem for the field equa
tions by using a Riemann-Volterra representation). Then, 
taking into account all that was stated above, exact solutions 
for viscous fluid sources can be obtained in a more simple 
way; in this sense the scalar field could be seen as an interme
diate to obtain solutions for more complex stress-energy ten
sors. 

To illustrate the above results we apply them to two 
solutions corresponding to a scalar field. 

(a) The first is the general plane-symmetric solution for 
a scalar field9 

dr = (ell 1,[1)( - dt 2 + dil) + t(dx2 + dr), (22) 

where the scalar field satisfies 

t/Jzz = t/Jtt + t - It/J, , (23) 

and the derivatives of n are related to those of t/J by 

il, = t (t/J ~ + t/J~), n z = 2tt/J,t/Jz . (24) 

Our purpose is to show that every plane-symmetric so
lution of type (22) can always be derived from a viscous fluid 
source. To do this, we start from (21) by calculating the com
ponents of the shear tensor according to this expression and 
equating them to those calculated from the definition II of 
the shear tensor. 

The requirement of plane symmetry applied to the fluid 
imposes Ux = uy = O. So Eq. (21) leads only to one differen
tial equation 

u~(u", -!t -IU,) - u"zu,uz - (1/21])(eIl,[l) 

X [t/J, +,[Ie-nu,(t/Jzuz -t/J,U,)]2 

= - (eIl,[l)tt/J,t/Jzuz . (25) 

The normalization condition for the velocity field reads 

u~ - u~ = - ell 1,[1. (26) 

We take 

u, = (ell 1,[1)1/2 cosh () , Uz = (en 1,[1)1/2 sinh () . (27) 

Substituting (27) in (25) we obtain 

(ell 1,[I)1/2{(n, - ~ t -I - 2()z)cosh () + (2(), - nz)sinh ()} 

= 1] - I(t/Jz cosh () - t/J, sinh ())2 . (28) 

Equation (28) constitutes a quasilinear partial differential 
equation. 14 Therefore every plane-symmetric solution ob
tained from a scalar field t/J can also be derived from a viscous 
fluid. 

As an example illustrating this general case, let us con
sider the scalar field t/J = az, which generates the line ele
ment9 

dr = (ea1,l12I,[1)( - dt 2 + dil) + t(dx2 + dr). (29) 

Equation (25) can be easily integrated, assuming 1] constant, 
to give 
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u, = 21],[1 er,ll2 , 
Uz = ea>,l/4(41]2tea1,l/2 - 1/,[1)112 . (30) 

The other magnitudes characterizing the viscous fluid are 
easily calculated from Eqs. (18H20) 

q, = - 21]02t [ - 1 + 21]t 3/2er"I2] , 

qz = _41]2a2t 2[41]2er" -(1/,[I)er"I2]II2, 

(31) 
P = a2{161]2t 3(41]2t _ e- a·, l12I,[1) + te-a>,1}1I2 , 

p = !(p _ a2,[1 e - a>,112) . 
(b) Let us now study other solutions corresponding to a 

scalar field which have the interesting property of reproduc
ing the tests of general relativity.lo These solutions corre
spond to a static spherically symmetric asymptotically flat 
space-time with line element 

dr = - e2>i" dt 2 + e'+'("(dr + r dn 2) • (32) 

In order to satisfy the tests of general relativity, two solu
tions have been given. 

(i) exp 2p, = (1 +M Ir)2 + mlM (1 - M Ir)2-mlM, 

exp 2v = (1 - M Ir)mlM (l + M Ir) - mlM , (33) 

which corresponds to the scalar field 

t/J = (hml2M)ln[(I-M Ir)/(1 +M Ir)] , (34) 

where h, m, and M are constants. In this case the differential 
equation for the velocity field (21) is written 

h 2 m2,A (r_M)mIM 2 h 2 m2 

"", +2; (r_M2)4 r+M u, + 21] (r_M2)2 

- [(r + M2 - 3mr)/r(r - M2)] U, = O. (35) 

This equation always has a solution for every r different from 
r = 0 and r = M (provided 1]=1=0). 

(ii) exp 2p, = exp(2mlr) , 

exp 2v = exp - (2mlr) , 

which corresponds to the scalar field 

f/!= -hmlr. 

(36) 

(37) 

In this case the differential equation for the velocity field is 

u,,' + ~:n;: (1 + e - 2ml'u~) - (! - 3;) u, = 0 . (38) 
As in Eq. (35), this equation always has a solution, except in 
r=O. 
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Methods from the author's previous work and the classes of solutions which they produce are 
extended to the wave equations which govern the massive scalar field and the massless spin-! field 
on the Kerr-Newman geometry and the massless fields of spin 1 and 2 on the Kerr geometry. The 
solutions found are exact and expressed in simple closed forms in terms of elementary functions, 
but they only exist when appropriate constraints hold on some of the black hole parameters and 
on the frequency of the field in some cases. The behavior on the horizon, at null infinity, and with 
respect to the angular variables is analyzed for some example solutions. For the examples studied, 
it is found that the ones having radial behavior of a normal mode are not free of angular 
singularities. An exact relation is established between the scalar wave equation on the extreme 
Kerr-Newman geometry and the Whittaker-Hill equation. 

I. INTRODUCTION 

In a previous paperl (hereafter denoted by I) the radial 
differential equations which govern fields on the Schwarzs
child, Reissner-Nordstrom, and extreme Kerr black hole 
background geometries were examined with a view to find
ing exact solutions which may be written explicitly in terms 
of elementary functions in closed form. Several classes of 
simple closed-form solutions for the massless spin-zero field 
were displayed in detail. With a time dependence of 
exp( - i(j)t ) for the field, these special solutions were found to 
exist for countably infinite sets of particular values among 
some of the quantities (j), mass M of the black hole, charge e, 
angular momentum a, and separation constant A (for the 
angular differential equation resulting from separation of 
variables). For the extreme Reissner-Nordstrom and ex
treme Kerr geometries the special solutions discussed in I 
have singular angular dependence of the field, while some 
solutions on nonextreme Reissner-Nordstrom have nonsin
gular angular dependence. 

In this paper the methods of! will be used to find closed
form solutions in situations more general than those of I. 
One generalization will be to a massive spin-O field on the 
Kerr-Newman2 background geometry, and a second gener
alization will be to fields with nonzero spin: spin ! on the 
Kerr-Newman geometry, and spin 1 and 2 on the Kerr ge
ometry. We will also include a test electromagnetic field as 
part ofthe background in the spin-O and spino! cases. 

Our analysis will incidentally provide some of the proofs 
omitted in I. 

The Kerr-Newman metric in Boyer-Lindquist coordi
nates is given by 

dr = [1 - (2Mr - e2)1.I ] dt 2 - (.2" 21..::1 ) dr - .2" dO 2 

- [r + a2 + a2 sin2 0 (2Mr - e2)1.2" ]sin2 0 d¢ 2 

+ [2(2Mr - e2)a sin2 01.2" ] d¢ dt , (1) 

where ..::1 =r - 2Mr + a2 + ~ and .2" =r + a2 cos2 O. We 
restrict ourselves to physical values of the black hole param
eters, namely real values satisfying M2>a2 + e2, M> O. 

Inclusion of a test electromagnetic field means that the 
covariant derivative V v with respect to (1) is replaced by 

V v + iQd in the construction of covariant wave equations; 
here Q is the charge of the test field and the electromagnetic 
one-form is given by 

d = (erl.2" )(dt - a sin2 0 d¢ ) . (2) 

In Sec. II we list the radial differential equations which 
are considered in this paper, namely the spin-O and spin-! 
fields on the Kerr-Newman geometry and the spin-l and 
spin-2 fields on the Kerr geometry. Both extreme and nonex
treme geometries and all subclasses ae = 0 are included. All 
fields considered are separable, so field components may be 
expressed as f(r)S (0 )exp( - i(j)t + im¢ ). The following con
stant parameters occur in the field equations of Sec. II: M, e, 
a, Q, (j), m, the mass It of the field, andA. We require 1t2>O, 
m an integer for integer spin, and m a half-odd integer for 
spin !. 

In order to avoid proliferating special cases we shall re
quire (j)t=0 and thus not consider static fields. Static fields 
could be easily found by the methods of this paper, if desired, 
but in most, or maybe all, cases they are already known. 

All of the differential equations on black hole geome
tries which we consider have the property that they take the 
form 

"'xx +A",=O, (3) 

where A is a fourth-degree polynomial in r, and x is a coordi
nate defined by dx = ~ drl..::1, ~ = const. [In some cases a 
factor transformation on the radial field is used in addition to 
achieve (3).] In terms of x, A is a fourth-degree polynomial in 
coth x in the exterior of nonextreme geometries (coth x be
comes tanh x in the interior), and it is a fourth-degree poly
nomial in 1/x on extreme black hole geometries. The con
stant coefficients in A are different functions of 
( M,e,a,Q,(j),m, It, A ) in the various field equations of Sec. II. 

The methods used here and in I for obtaining closed
form solutions make use of the property (3), and the solutions 
exist for infinite classes of special values of the coefficients in 
A, and so for special values of some (but not all) of the pa
rameters ( M,e,a,Q,(j),m, 1£')" ). 

The extreme geometries ( M 2 = a2 + e2 and subclasses 
M 2 = a2 and M 2 = e2) are dealt with in Sec. III. There it is 
shown that the field equations considered in this paper when 
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taken on extreme geometries can, with restrictions on pa
rameters in some cases, be further transformed from (3) to a 
standard equation of mathematical physics, namely the 
Whittaker-Hill equation. In particular it is shown that on 
the extreme Kerr-Newman geometry the massless scalar 
field (with no restrictions on parameters) is governed by the 
Whittaker-Hill equation, thus the known properties of 
Whittaker functions can be used to analyze the massless sca
lar field. This fact was shown in I for the cases M 2 = a2 and 
M2 = e2. In order to obtain closed-form solutions we make 
use of special solutions to the Whittaker-Hill equation 
which exist for classes of special values of the constants in the 
equation and which can be obtained from finite trigonome
tric series known in the theory of the Whittaker-Hill equa
tion. The special classes of Whittaker-Hill constants, their 
relation to ( M,e,a,Q,w,m, J.L,A ), and the corresponding solu
tions are given in Sec. III. This method for extreme geome
tries yields no solutions in the case of spins 1 and 2. 

For nonextreme geometries the quantity A in (3) has the 
form 

(4) 

where the coefficients Ai> i = 0,1,2,3,4, are constant, and y 
is coth x or tanh x. In Sec. IVa method for obtaining closed
form solutions to (3) with A given by (4) is described and 
conditions sufficient for the applicability of the method are 
derived. By the method, a solution t/J is explicitly determined 
as a simple function of y from (42) when all Ai are specified, 
plus, for any non-negative integer n, n + 4 additional param
eters [a, /3, y, and n + 1 coefficients a i of a polynomial of 
degree n in (y + 1)] are also known. The method gives a 
simple way in which these additional parameters may al
ways be determined from the Ai; however, the determina
tion puts restrictions on the specification of the Ai and thus 
on the parameters ( M,e,a,Q,w,m, J.L,A ). For nonextreme ex
terior geometries, r is linear in coth x, and so the method 
determines, for each radial field, simple solutions tjJ(r) which 
are given explicitly by (62) as a function of rand of whichever 
of the parameters (M,e,a,Q,w,m, J.L,A) occur in the field 
equation. 

In Sec. V the method of Sec. IV is applied to the field 
equations listed in Sec. II, the allowed classes of black hole 
parameter values are thus found, and thus the corresponding 
closed-form solutions. For all spins, it turns out that at each 
fixed n there are infinite classes of allowed parameters. The 
domain of these solutions, and those of Sec. III, may be taken 
to be the region exterior to the horizon of the black hole, but 
it may alternatively be taken to be the interior region. 

In Sec. VI some properties of particular example solu
tions are discussed. Among the examples are the following. 
There is a massless scalar field (and also a spin-~ field) on the 
Kerr-Newman geometry which behaves radially as a nor
mal mode but is angularly singular. Another such scalar 
field [given by (98)] fails to be a normal mode for the opposite 
reason-it is angularly nonsingular but its radial depen
dence is not that of a normal mode. This field has finite null 
data on past null infinity and on the past horizon but blows 
up on the future horizon. The existence of an exact solution 
with this behavior shows that in order to obtain a finite field 
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from past data there must be conditions on the data in addi
tion to finiteness. That the data be bounded as the retarded 
time on the past horizon increases to infinity would be suffi
cient to exclude this solution. On the extreme Kerr-New
man geometry there is a nonstatic massive field [given by 
(96)] which is angularly nonsingular and has the same behav
ior at null infinity and on the horizons as does a static mass
less field. 

All examples in Sec. VI fail to be exact normal modes 
either in their radial behavior or their angular behavior. 
However, for n > 0 and law I not small some ofthe solutions 
(27) or (62) may be normal modes, or may be exact illustra
tions of other interesting kinds of solutions which have been 
shown or suggested to exist for fields on black hole back
ground geometries. We do not pursue an investigation of 
those possibilities here. 

II. THE DIFFERENTIAL EQUATIONS 

A. Massive spin-O field on a Kerr-Newman background 
geometry 

A spin-O field 1/1 of mass J.L on the background (1) satis
fies 

(5) 

This equation is separable, 1/1 = t/J(r)S (8 )exp( - iwt + imt/J ), 
and the resulting radial equation is (subscripts r, x, and x' 
will denote differentiation) 

~ (~t/Jr)r + cM2At/J = 0, (6) 

where 

E==.~ M2 - a2 - eZ/M, 0..;;;£..;;;1, (7) 

cM2A = - { ,A(J.L2 - ( 2
) + ~( - 2MJ.L2 + 2eQw) 

+ r[ J.L2(a2 + e21 + A. _ a2w2 _ e2Q2] 

+ r[ - 2MA. - 2Ma2w2 + 4Mamw 

+ 2a2weQ - 2ameQ ] 

+ A. (a2 + e2) + awe2(aw - 2m) _ a2m2
} • 

(8) 

The separation constant A. appears also in the angular differ
ential equation for S (8 ). 

B. Spln-} field on a Kerr-Newman background 
geometry 

A field of spin ! satisfies the covariant Dirac equation 
and this equation has been shown to be separable3

-
5 on the 

background (1). Both components of the radial field can be 
obtained from a single function R (r) which satisfies a second
order differential equation. We use the equation given by 
Page,4 which may be written 

$($Rrlr - iJ.L~ Rr + {K2 + i(r - M)K _ 2iwr 
b+IW ~ 

+ ieQ - J.L~ - J.L2r - b 2} R = 0 , (9) 
b + lJ.Lr 

where K ==(r + a2)w - eQr - am and b 2 = A. 
+ a2w2 

- 2amw. 
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C. Fields of spin 1 and 2 on Kerr and Relssner
NordstrOm geometries 

The physically interesting equations for fields of spin 1 
and 2 in connection with a Kerr-Newman geometry are 
those governing electromagnetic and gravitational perturba
tions3,6,7 of a charged, rotating black hole. Both perturba
tions are necessarily present and the equations governing 
them which have been derived in Refs. 3, 6, and 7 are cou
pled with respect to the two fields and do not by separation of 
variables split into radial and angular ordinary differential 
equations. So when ae:;i:O we have no radial equation to 
which our methods might be applied. 

When e = 0 (Kerr geometry) the perturbation equations 
are separable8 and we use the Teukolski equation8 

.d I-S(.d I +sR,), + BR = 0, (10) 

where 

B = (r + a2)2m2 - 4aMrmm + a2m2 + 2iams(r - M) 

- 2isMm(r - a2
) + 2zSmr.d - a2m2.d - A..d , (11) 

and s is the spin weight ± 1, ± 2 for fields of spin 1 and 2, 
respectively. 

When a = 0 (Reissner-Nordstrom) the equations for 
the spin-1 and -2 perturbations have been decoupled and 
separated by Chandrasekhar,9 Moncrief, \0 and others. How
ever, the method of obtaining (3) which works for (6), (9), and 
(10) does not work when applied to the radial equations of 
Chandrasekhar or Moncrief. The Moncrief equations are 
the simplest and most closely resemble (3), but for them, 
instead of being a fourth-degree polynomial in r, A is degree 
six plus 1/r and 1/r terms. There are Debye potentials for 
the spin-l perturbations, II but their governing equation also 
does not take the form (3) but rather has A of degree four 
plus 1/r and 1/r terms. Thus for spin-1 and -2 fields we have 
no radial equations of the form to which our method is appli
cable when e:;i:O. 

III. CLOSED-FORM SOLUTIONS ON EXTREME 
GEOMETRIES 

For the extreme (M2 = a2 + e2) black hole geometries 
the coordinate change from r to x' given by 

x'= -MI(r-M), (12) 

coupled with a factor transformation on the radial field in 
some cases, will transform each of the field equations of Sec. 
n into 

"'x'x' + A", = 0 , (13) 

where A is a polynomial offourth degree in 1/x', which we 
write as 

A = do + dl/x' + d21x,2 + d3/x'3 + d41x,4 . (14) 

[Equation (13) with (14) is the form of (3) on extreme geome
tries, the prime is on x merely to agree with the notation of I.] 
The method in I for obtaining closed-form solutions on ex
treme geometries is to transform (13) to the Whittaker-Hill 
equation 

Xxx + (80 + 281 cos 2x + 282 cos 4x)X = 0, (15) 
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because it has solutions expressible in terms of finite trigono
metric sereisl

•
12 when certain relations hold among the con

stants 80, 8 1, and 82, 

The sequence of transformations x' = c exp(2z), 
'" = X exp(z), z = ix, with c constant, will convert (13) into 
(15) if we impose conditions on the coefficients di , namely, 

d3 = c2d l , 

with the 8 i identified as 

80 = 1- 4d2 , 

81 = -4cdl , 

82 = - 4c2do , 

where c is known up to sign from (16b). 

(16a) 

(16b) 

(17a) 

(17b) 

(17c) 

The solutions to (15) are most conveniently described in 
terms of parameters S, p, and A.h defined by 

s2=1682 , 

(p+ l)s= - 281 , 

(18a) 

(18b) 

A.h = 80 + 282 , (18c) 

and in terms of a quantity, V, defined by 

X = Vexp( - S cos 2x/4) , (19) 

which satisfies Ince's equation 

Vxx + S (sin 2x)Vx + (A. h - PS cos 2x)V = 0 . (20) 

For 80, 8 1, 82 real and 82> 0, (20) has four types of finite 
series solutions, which are l ,I2 

V = C~o ak cos 2kx, k~O ak cos(2k + 1)x , 

k~1 ak sin 2kx, k~O ak.sin(2k + 1)x) , (21) 

and for each type in (21), P must satisfy the corresponding 
condition 

P = (2n,2n + 1,2n,2n + 1), (22) 

where n is any non-negative integer [n> 1 for type (iii)]. For 
each type, the column vector a = (ao, ... ,an f of coefficients 
and the quantity A.h are determined by an eigenvalue prob
lem 

(23) 

where .!l' is a tridiagonal matrix given correspondingly to 
the types in (21) by 

( 

- (n + l)s, (n + 2)s, (n + 3)s, 
0, 4· 12, 4.22

, 4.32, 

2ns, (n - l)s, (n - 2)s, (n - 3)s, 

(n+2)S, (n+3)s, ... , 
32

, 52, ... , 
(n -l)s, (n-2)s, .. ·s 

... , 

... , 
· .. s 

~). 
(24a) 

(2n + l)S) 
(2n + 1)2 , 

(24b) 
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(n + 2)5, 
4.22, 

(n -2)S, 

(n +3)S, 
4.32

, 

(n -3)S, 

... , 

... , 

···S 
(24c) 

(1 + (.-+ 11&. 
(n+2)s, (n +3)S, . .. , (20 + 11&) 

32, 52 ... , (2n + 1)2 , , 
ns, (n -l)S, (n-2)s, .. ·S 

(24d) 

The main diagonal of .!f is the middle row in each case of 
(24), the adjacent diagonals are the other two rows. All ele
ments of each .!f not on one of these diagonals are zero. The 
matrix .!f is n by n for type (iii) and (n + 1) by (n + 1) for the 
other types. 

Each matrix .!f is similar to a real, symmetric, Jacobi 
matrix and has (n + 1) real, distinct eigenvalues..th [n eigen
values for type (iii)]. Hence, in each type, there are (n + 1) 
conditions (18c) [n conditions for type (iii)) on (Jo + 2(J2' and 
each condition gives a finite series (21) for V. Each condition 
can always be satisfied since we may consider (J2 to be given, 
(JI to be defined by (18a) and (18b), and (Jo to be defined by 
(18c). After each eigenvalue..th is found, all the correspond
ing coefficients ak may be very easily generated recursively 
from (23); for example, starting at the last equation of (23) 
with an = 1, each successive equation determines a single ak 
in terms of known quantities. 

To insure that the transformation to (15) can actually be 
carried out and the types (24) obtained, we require (16)-(18) 
and 

(25) 

Note that these imply dodld3d4 /;0. As a separate case we 
sometimes allow (JI(J2 = ° if it leads to a nontrivial 
solution, but then (16) and (18) imply (JI = (J2 = do = d l 

= d3 = d4 = 0, and (15) is not needed since", is easily ob
tained from the single powers of Ix'i which solve (13). In 
many cases allowing (JO(JI = ° leads only to static fields and 
we shall not mention each such occurrence in what follows. 

In the following subsections the method described 
above will be applied to the field equations of Sec. II on the 
corresponding extreme geometry. This will be accomplished 
by obtaining the transformation to (15) and finding the di in 
terms of the parameters ( M,e,a,Q,{t),m, p,,). ). Our conditions 
(16), (18a), and (25) are then conditions on these parameters, 
since (Jo' (JI' (J2' and S are determined in terms of the param
eters via (17) and (18b). Each matrix.!f is then determined 
by (24), and for each n in each type the remaining conditions 
on the parameters are known from (18c) and 

(26) 

For each n in each type, X is given by (19) and a solution 
for the field is given by 

'" = Ix'II/2X = Ix'I I/2 Vexp [ - 1 (dlX' + d3
)] • 

(p+ 1) x' 
(27) 

Specializations of the parameters (M,e,a,Q,{t),m, p,,). ) 
other than (16)-( 18) and (25) can lead to solutions in terms of 
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standard functions; for example, when d3 = d4 = 0, (13) is 
solved by Coulomb functions, or when do = d I = d3 = 0, the 
solutions to (13) are simply expressed in terms of Bessel func
tions. 

A. Massive spln..() field on extreme Kerr-Newman 
geometry 

In this case, Eq. (6) of Sec. II A is the relevant field equa
tion which transforms into (13) with A of(14) given by 

do= T21M2, 

dl = - 2T[2M{t) - eQ]IM, 

d2 = 6M2{t)2 - M2p,2 - 6M{t)eQ 

+ a2{t)2 + e2Q 2 - ..t , 

d3 = 2M2p,2 - 4M2{t)2 + 2M{t)eQ, 

d
4 

= M2{t)2 - M2p,2 , 

(28a) 

(28b) 

(28c) 

(28d) 

(28e) 

where T=(M 2 + a2)w - am - eQM. With these coeffi
cients, (16) can be satisfied in two (and only two) instances: 

p, = 0, (29a) 

and 

(29b) 

No conditions beyond (29) are needed to obtain (15) and 
thus we have shown, as mentioned in the Introduction, that 
the scalar field is governed by the Whittaker-Hill equation if 
the field is massless [or also if (29b) holds]. 

We now give the results of applying our full conditions 
(16)-(18) and (25) to (28). 

It turns out that the case (29b) is empty unless we allow 
(JI(J2 = 0, and then p,2 = (t)2, eQ = M{t), a2{t) = am, 
d2 = a2{t)2 - ..t, and since all the di except d2 vanish we have 
from (13) 

'" = Ix'I(1 ± ~I + 4-< - 40'",')/2 • (30) 

If in this case a /; 0, then a{t) = m and we have the restriction 
m2 <M2{t)2 <M2Q2. 

In the case of (29a) our conditions (which include 
(JI(J2/;0) can be shown to imply 

2M{t) = eQ + iT , (31) 

where T is real and nonzero so that (t) is necessarily complex. 
Furthermore, two subclasses completely cover (29a): a = ° 
andaeQ=mM. 

In the first instance (a = 0) we have from (28) and (18) 

T = !(p + 1)2 , (32a) 

S= 4j(T/ITIN'!lp + W + e2Q2, (32b) 

(32c) 

where j = ± 1. For each value of eQ, each ofthe four types 
of.!f will now generate, via (26) and (32), a value for r, a 
value for..t, and a solution to (13) given by 

'" = Ix'II/2Vexp [_ (P: 1) (x' + :,) 

- ieQ _T_ (x' -1.)] , (33) 
21TI x' 
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where V, given by one of (21), is a polynomial in x' and 1!x' 
[times Ix'11/2 for types (ii) and (iv)]. IfQ = 0 is allowed in (32) 
and (33) they reduce to the results found in I for the extreme 
Reissner-Nordstrom geometry. 

In the subcase aeQ = mM we have 

72 = l(p + 1)2, (34a) 

s=4j(rllrJ)~1 +a2IM2~l(p+ W +ezQ2, (34b) 

Ah = 1 + 4A + l(8 + 3a21M2)(p + 1)2 + (4 + a21M2)e2Q2 

- 2ia2eQrlM2 , (34c) 

so that 1m A = a2eQr12M2. For given values of aiM and m, 
each type of.!f generates a value for 72, a value for A, and a 
solution to (13) given by 

1/1 = Ix'1 1/2Vexp{ - (rI2IrJ)[x'(1 + a21M2) 

X(r+ ieQ) + (r - ieQ)lx']] , (35) 

where again Vis one of(21). Equations (34) and (35) reduce to 
the results of I where e = m = O. 

In the case of (32) and (33) the angular function S(O) is 
well behaved only when A = 1(/ + 1) and / is a non-negative 
integer, but this can only occur if 
Ah;;;.1 + 2(p + W + 4e2Q2. For types (ii)-(iv), it can be 
shown that for each n the eigenvalues Ah are all bounded 
below 1 + 2(p + 1)2 + 4e2Q2, so / is not real (though A is) 
and S (0) is singular. For type (i) it can be shown that at most 
one eigenvalue is greater than or equal to 
1 + 2( p + 1)2 + e2Q 2. These bounds on A h and consequent 
behavior of S (0) are the same as found in I when Q = o. 

When a#O the angular function S(O) is well behaved 
when A is an eigenvalue of the spheroidal wave equation. 
Such eigenvalues are functions of a2w2 and may be deter
mined numerically when a2w2 is given. To confine our dis
cussion to real eigenvalues (this is possible even though aw is 
pure imaginary) we take Q = m = 0 in the case of (34) and 
(35). There the specification of aiM determines the value of 
a2w2 via (34a) and (31). Thus we will have a well-behavedS(O) 
if there are any choices of types of .!f, values of aiM, and 
values of n such that A determined by (34c) coincides with an 
eigenvalue. Like in the case of a = 0, bounds on Ah and 
hence on A may be established from the form of .!f, but since 
the eigenvalues are not known explicitly when a#O these 
bounds do not immediately preclude the real value of A de
termined by (34c) from being an eigenvalue. 

B. Spin-I field on extreme Kerr-Newman geometry 

The field equation in this case is (9) and it turns out that 
to obtain (13) we must set IL = 0 and R = ..1 1/41/1. Then we 
have 

In fact, they imply that we must have n = 0 and V constant 
with the parameters satisfying Ah = 0, eQ = 2Mw (so w is 
real), and A = 2amw - a2w2. The solution for 1/1 is then 

1/1 = M exp(iTx'IM - iMwlx'). (37) 

C. Spln-1 and -2 fields on extreme Kerr geometry 

The field equation in this case is (10) and it is trans
formed into (13) when x' is defined by (12) and when 
R =..1 - SI21/1. Then we have 

do = (2M 2w - am)2IM2, 

dl = - 2(2M 2w - am)(2Mw - is)IM, 

d2 = 7M 2w2 _S2 -S-A, 

d3 = - 2Mw(2Mw + is) , 

d4 =M 2w2
• 

(38a) 

(38b) 

(38c) 

(38d) 

(38e) 

These quantities are similar in structure to (36), but because 
of the absence of the eQ term the requirement (16) implies 
Mws = 0 so that the method yields no solutions in this case. 

IV. METHOD FOR OBTAINING CLOSED-FORM 
SOLUTIONS ON NONEXTREME GEOMETRIES 

In this section a method of solving 

1/Ixx + A 1/1 = 0, (39) 

A =Ao +AIy +A2y +A3Y +A4y4 , (40) 

with the Ai constant and y being coth x or tanh x, will be 
described and sufficient conditions for the applicability of 
the method will be proved. In Sec. V the method will be used 
to construct closed-form solutions to the field equations of 
Sec. II on nonextreme geometries. 

For definiteness we choose 

y=cothx, (41) 

and simple modifications of what follows would handle the 
choice y = tanh x. 

Introduce constants a, /3, and y, to be determined, and a 
function Vby letting 

1/1 = (sinh x)PVexp(ax + r.v) 

= exp(r.v)V I( y + 1 )(11- a1/2( y _ 1 )Ia + PI/2 • (42) 

It follows that V must satisfy 

d 2 V 
(y - W( y + 1)2 dy - 2( y + 1)( y - 1) 

X[a+y+(/3-1)y-~] dV +AV=O, (43) 
dy 

do = T21M2, (36a) where 

dl = - T[4Mw - 2eQ + z1fM, (36b) A = A + (a + y)2 + /3 + 2(a/3 + y/3 - y) y 
d2 = [(6M2 + a2)w2 - eQ (6Mw - eQ) + l-A] , 

d3 = - Mw(4Mw - 2eQ - i) , 

(36c) 

(36d) 

d4 = M 2w2 
• (36e) 

This case of the spin-! field on the Kerr-Newman geom
etry is degenerate in that the conditions (16)-(18) and (25) 
when applied to (36) do not yield solutions at each integer n. 
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+ (/32 - /3 - 2ay - 2r)y2 

+ 2y(1 _/3)y3 + r y4. 

Define coefficients Ai in A by 

A =Ao -AI(Y + 1) +A2(y + W 
-A3(Y + If +A4(Y + 1)4. 

w. E. Couch 

(44) 

(45) 
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Then 

- 2 ( Ao = (a - {3) + Ao - A I + A2 - A3 + A4 , 46a) 

A I = 2,B 2 - 2(a + 1) {3 - 4r(a - {3 + 1) 

-AI + 2A2 - 3A3 + 4A4 , (46b) 

A2 = 4r + 2r(3{3 - a - 3) + {3 2 - {3 + A2 - 3A3 + 6A4 , 

(46c) 

A3=4r+2({3-1)r- A3+ 4A4' 

A4=r+ A4' 

(46d) 

(46e) 

It is also useful to define coefficients A 1- by rearranging (45) 
into 

A - =A 0- -A I-(Y - 1) +A 2-(Y - 1)2 

-A 3-(Y - W +A 4-(Y - 1)4; (47) 

then 

A 0" =Ao - 2AI + 4A2 - SA3 + 16A4 , (4S) 

and similarly for the other A ;- . 
We want to require that (43) be satisfied when V is a 

polynomial in Y of degree n. The simplest recursion relation 
for coefficients in V results if the coefficients are those of 
powers of (y ± 1) rather than of y, hence we write 

n 

V= L (-1)kak(y+1)k, an#O, 
k=O ! 

(49) 

where the ak are constants, and substitute into (43). Because 
of the form of (42) we may assume without loss of generality 
that ao#O; the substitution then yields 

A4 =0, 

Ao=O, 

A3 = 2nr, 

4(k+ l)(k+ 1 +a-{3)ak+ 1 

+ [AI + 2k (k + a - 3{3 - 4r + l)]ak 

+ [A2 + (k - l)(k - 2,B - Sr)]ak_ I 

+ 2r(n + 2 - k )ak _ 2 = 0 , 

(50a) 

(SOb) 

(SOC) 

k = 0,1,2, ... ,n, (51) 

[A2 + n(n + 1 - 2,B - Sr)]an + 2ran _ I = 0, (52) 

where ak=O if k <0 or k>n + 1. 
Note that (49) may be rearranged into a polynomial in 

(y - 1) whose leading term ao- is given by ao-
= ~Z=o( - 1) k2 k+ lak. 

The following result allows for a nice formulation of the 
determination of the ak and hence of Vand "': if (50) holds 
and if A 0- ao- = 0 then (52) is linearly dependent on (51). 

Proof Let the left-hand sides of (51) and (52) be denoted 
by Ek for k = 0,1,2, ... ,(n + 1). Then direct calculation gives 
,,+1 
L (- 1)k2kEk 

k=O 

=(J..AI-A2+4nr) i (-1)k2 k+lak . 
2 k=O 

(53) 

Since by (4S) and (50), 

!AI -A2 + 4nr= !AI -A2 + 2A3 = -l A 0-' 
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we see that (53) is 

,,+ I 1 L (-1)k2kEk = --Ao-ao- . (54) 
k=O 4 

Thus we see that (52) is linearly dependent on (51) if 

A o-ao- = O. (55) 

We therefore have the following method of insuring that 
(49) solves (43) and of determining the ak' We require (50), 
and we make (52) hold by requiring (51), ao- #0, and 

Ao- =0. 

We also require 

detvll =0, 

(56) 

(57) 

where vii is the (n + 1) by (n + 1) matrix of coefficients of 
the ak in (51) with elements 

vii k; = 4(k + 1 )(k + 1 + a - {3 )8~ + I 

+ [AI +2k(k+a - 3{3-4r+ 1)]8~ 

+ [A2 + (k - l)(k - 2,B - Sr)]8~ _ I 

+ 2r(n + 2 - k )8~ _ 2 , (5S) 

where O<i,k<n, and 8~ is the Kronecker delta. Then (51) 
may be considered to be n + 1 linear homogeneous equa
tions vila = 0 which are guaranteed by (57) to have nonzero 
solutions for the column vector a = (ao,a 1o ... ,an f. 

Note that because of (46b) and (46c) the condition (57) is 
explicit in terms of the parameters a, {3, r, and the constants 
A; as are our conditions (50) and (56) which may be written 

A4=r+A4=0, (59a) 

Ao = (a _{3)2 +Ao -AI +A2 -A3 +A4 = 0, (59b) 

A 0- = (a +{3)2 +Ao +AI +A2 +A3 +A4 = 0, (59c) 

A3 - 2nr= 2({3 - n -1)r-A3 = O. (59d) 

The conditions which are being imposed on the con
stants A; are now clear. We may consider (59aH59c) to 
determine a, {3, and r and then (59d) is a constraint on the 
A;, and we have as well the constraint (57). 

After all conditions (57) and (59) are satisfied and a, {3, 
and r determined, and the ak are found from (51) (easily 
done, for example, by iteration starting with ao = 1), then a 
solution to (39) is given by the elementary function (42). 

The apparent alternative for obtaining linear depen
dence of (52) on (51) by allowing ao- = 0 in (55) can actually 
be disregarded, because the form of (42) implies that any 
solution corresponding to some a, {3, and n values with 
ao- = 0 is the same as one with ao- # 0 and some appropriate 
other values of a, {3, and n. 

Note that since our method requires Ao = A 0- = 0, it 
makes all three terms in (43) have a factor of(y + l)(y - 1) 
so that the order of the regular singular points at y = 1 and 
y = - 1 is reduced. 

v. CLOSED-FORM SOLUTIONS ON NONEXTREME 
GEOMETRIES 

When M 2> a2 + e2
, each one of the differential equa

tions in Sec. II may be transformed to (39) by a coordinate 
change from r to x given by 
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(60) 

where r ± M ± ME, E is given by (7) with 0 < E';;; 1, and we 
have 

r=M(I-EY), (61) 

with y = coth x. [In some cases a factor transformation on 
the radial field is also involved and in the case of (9) we also 
require /l = 0.] Thus the method of Sec. IV may be applied 
to obtain closed-form solutions to the equations of Sec. II. 

The application will be carried out in this section, and 
will consist of the following. The Ai will be displayed in 
terms of the parameters M, E, a, Q, w, m, /l, andA occurring 
in the radial field equations, and (59) will be solved algebrai
cally for a, /3, y, and w in terms of M, E, a, Q, m, /l, and n. It 
turns out that A enters only in (57) and not in (59), so a, /3, y, 
and w can be expressed independently of A. The fact that we 
are solving for w in addition to a, /3, and y reflects the con
straint which (59) puts on the parameters. After solving (59), 
(57) will be imposed; then it happens that at each n, (57) is 
equivalent to an eigenvalue problem for A with respect to an 
(n + 1) by (n + 1) matrix whose elements may be expressed 
in terms of M, E, a, Q, w, m, and /l. Further explicit algebra
ic analysis of allowed parameter values cannot proceed for 
arbitrary n because that would entail solving (57) for A with n 
arbitrary. The analysis may be done easily, however, for 
small n. For example, for n = 0 the condition is that which 
results from setting A2 = 0 in (44c). With a computer one 
may easily go up to n = 30 or more. 

A solution for the field in every case is obtained once the 
algebraic steps just described are completed and the a k 's are 
found from (51). The solution is given by 

exp( - yr/EM) n (r _ r +) k 
7/1= Ir- r+I(P-a)/2 Ir _ r_l(a+P)l2 k~O ak ~ . 

(62) 

A. Massive spln-O field on nonextreme Kerr-Newman 
geometry 

From (8), (44), (59), and (61) we have 

A4 = r + M 2e2w2 - M 2e2/l2 = 0 , (63a) 

Ao = (a - /3)2 + (1/ M 2e2)[M 2( 1 + E)2W + a2w - am 

-eQM(I+EW=O, (63b) 

A 0- = (a + /3)2 + (1/M 2e2)[M2(1 - E)2W + a2w - am 

- eQM(1 - EW = 0, (63c) 

A3 - 2ny = 4r + 2( /3 - 1 - n)y + 4€(E + I)M 2w2 

- 2eQMEW - 2(2E + 1)M2E/l2 = 0, (63d) 

and the quantities AI andA2 which specify vii are given by 

AI = (2/E){2(E + WM 2w2 + (E + 2)a2
W

2 + e2Q2(E + 1) 

- E(E + WM2/l2 - eQ [3(E + WMw 

- am/M + a2w/M] 

- 2amw - EA + 2( /3 - a-I )EY + f3 ( f3 - a-l)E} , 
(64) 
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A2 = 6(E + WM 2w2 + a2w2 - (5E + I)(E + 1)M2/l2 

+ e2Q 2 - 6eQ (E + l)Mw - A 

+ 2y(2y + 3f3 - a - 3) +f3(/3 - 1). (65) 

Because of(64) and (65), vii as given by (58) has the form 
vii = vii' - A.,AI", where vii' is independent of A and 
ffij = 81 + 81+ I' Thus (51) becomes the eigenvalue prob
lem ff- I vII'a = Aa and (57) becomes 

det(ff- I vii' -AI) = O. (66) 

The conditions (59) are now expressed as (63) and these 
we solve for (a, /3,y,w). Equations (63b) and (63c) have four 
solutions for (a, /3) given by 

(a, /3) = [lao, /30),( /3o,ao), - (ao, f30 ), - (f3o,ao)] , (67) 

where a o and /30 are defined by 

a o = i(2Mw - eQ), (68) 

/30 = - i[M2(1 + e2)w + a2w - am - eQM]/EM. (69) 

In the case (a, /3 ) = (ao, /30) the desired formulas for 
(a, /3,y,w) in terms of M, E, a, Q, m, and /l are obtained as 
follows. Define w to be a root of the quartic 

(w2 + ,u2)[(e2 + 1 - a2)w - (am + E + E W 
- e2[w(2(ij - E) + ,u2j2 = 0 , (70) 

where ,u = M/l/(n + 1), a = a/iM, m = m/(n + 1), and 
E = eQ /i(n + 1). Then w is given by 

w = i(n + l)w/M, (71) 

substitution into (68) and (69), respectively, produces a and 
/3, and y is given by 

y = E{[/l2M 2 - Mw(2Mw - eQ)]/[/3 - (n + I)]} , (72) 

where (63) requires /3 ¥=n + 1. 
In the case (a, /3 ) = ( /3o,ao), w is obtained from (71) and 

4(ij3 + (1 _ 2E )(ij2 + 2,u2(2 - E)(ij 

- ,u2[,u2 - (1 - E)2] = 0, (73) 

instead of(70), and yis given by (72), where a and f3 are given 
by (69) and (68), respectively. 

The results for the last two choices of (a, /3) in (67) may 
be obtained by the formal replacements (w,a,eQ ) 
_ - (w,a,eQ) in the results just discussed for the first two 
choices. Thus the dependence of (a, /3,y,w) on the other pa
rameters has been established explicitly in all cases for arbi
trary n since the solutions to (70) and (73) may be written in 
terms of radicals. 

We now give some illustrative results in special cases. 
When /l = 0 possible values of (a, /3, y,w) are 

w = - [i(n + 1) + 2eQ]/4M = iY/EM, 

/3=(n+l)/2, 

(74a) 

(74b) 

a= -
[(e2 + 1)M2 + a2](n + 1) - 2i[2aMm + e3Q ] 

4EM2 

(74c) 

and 

iEM(n + 1) + am + eQM(1 ± E) =Fiy 
W= =--

(E± IfM2 +a2 EM ' 
(75a) 
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/3 = [(~ + 1)M2 + a2](n + 1) + i[2aMm + e3Q] , 
(€± IfM2 +a2 

2€M 2(n + 1) - i[2aMm + e3Q ] 
a= - , 

(€ ± 1)2M2 + a2 

(75b) 

(75c) 

plus those values obtained upon replacing i by - i every
where in (74) and (75). Equations (74) and (75) provide gener
alizations of the Reissner-Nordstrom case with Q = 0 given 
by Eqs. (46) and (47) in I to the present case of Kerr-Newman 
geometry with an electromagnetic test field possibly present. 

Next consider n = 0, Q = O. In that case there is a solu
tion with real A for which all quantities may be expressed in 
terms of a real quantity u, constrained only by u> 1, and we 
have 

Y= - €~/4, a = u(u- 2)[M2(l +~) + a2]/4€M2, 

/3 = - !u(u - 2), w = iu(u - 2)/4M, 

J.t2 = ~(u - 1)/4M2, A = u[a2~ + 4e2u - 16M 2]116M 2, 

m=O. 

Note that w is pure imaginary and all other quantities are 
real in this case. 

A set of parameter values with both wand A real can be 
found by requiring n = 0, 1m w = 0, eQ ¥=O. In that case we 
must have 0 < u < (€ + 1)2 /2€, and then 

e2Q 2 = S€u[(€ + W - 2u€]/(€ + 1)4, W = eQ /2M , 

Y = - 2~u/(€ + W, J.t2 = 2€u/M2(€ + 1)2, 

a=O, /3=0, 

A = 2€u{ - 2€u[2M2(~ - 1) + a2] + M2(€ + If(~ - 3) 

+ a2(€ + W}/M2(€ + 1)4, 

2Mma= _e3Q. 

The last equation is a constraint on M, e, a, and u since we 
require m to be an integer. 

A final simple case occurs when J.t2 = w2
• 

Then for all n we must have Y = 0, eQ = Mw, /30 
= i[am - M2~W - a2w]/€M, ao = iMw. Checking A 
when n = 0 we find that A is not real unless we choose 
M 2w + a2w - am = o and the first or third caseof(67); then 

A = M2~W2 + a2w2 and m¥=O. 

B. Spin-i field on nonextreme Kerr-Newman 
background geometry 

The field equation in this case is (9) and we want to put it 
into the form of(39), but eliminating all first-derivative terms 
in (9) by a pure coordinate transformation to a complex x 
does not accomplish this. Eliminating all first-derivative 
terms by a coordinate transformation to x as given by (60) 
coupled with the appropriate factor transformation on R 
results in (39) only if J.t = O. Hence we restrict ourselves to 
J.t = 0, and then wehave(39)holdingforf/! = R /..::1 I/\X giv
en by (60), and A given by 

M2~A = K2 + i(r - M)K - 2iwr..::1 + ieQ..::1 + ¥:1 
- !(r - M)2 - A..::1 - a2w2..::1 + 2amw..::1 . (76) 

From (61) and (76) we obtain the form which (59), (46b), 
and (46c), take in this case 
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- 2..2 2 .;2 A4 = M to w + r = 0 , 

Ao = (a -/3)2 + (l/~M2){[M2(€ + W + a2]w - am 

- eQ(1 + €)M + (i/2)M€) 2 = 0, 

(77a) 

(77b) 

A 0- = (a + /3)2 + (l/~M2){ [M2(1 - €)2 + a2]w - am 

- eQ(I- €)M - (i/2)M€) 2 = 0, (77c) 

A3 = 4€(€ + I)M 2w2 - 2eQ€Mw + 4f 

+ 2(/3 - l)y - i€Mw = 2ny, (77d) 

Al = (2/€){2(€ + WM 2w2 + (€ + 2)a2w2 + (€ + l)e2Q2 

- eQ [3(€ + 1)2Mw - am/M + a2w/M] - 2amw 

- €A + 2( /3 - a-l)EY + /3 ( /3 - a-l)€} 

- (i/€M)[(~ -1)M2w -a2w +am +M€] +!, 

(7S) 

A2 = 6(€ + 1)2M 2w2 + a2w2 + e2Q2 - 6eQ(€ + I)Mw-A 

+ 2y(2y+ 3/3 - a - 3) +/3(/3 - 1) - 3i€Mw +!. 

(79) 

The condition which determines A is (66) withAl andA2 
given by (7S) and (79). 

From (77) the quantities (a, /3,y,w) may be found in 
terms of n and the other parameters in the same manner as 
they were obtained in Sec. V A for the spin-zero case. 

Defining (a I / 2' /31/2) by 

a l/2 = il[2Mw - eQ + il2], (SO) 

/31/2 = - il[M2(1 + ~)w + a2w - am - eQM]/€M, (SI) 

the solutions for (a, /3,y,w) are then the following three sets 
given by (S2)-(S4): 

Mw = [2i2(n + 1) - (2ili2/€)(am/M + eQ) + 2eQ + i] 

X[4-2ili2((~+ 1)/€+ a2/€M2)]-1 , (S2a) 

y = i2€Mw , (S2b) 

/3 = /31/2' (S2c) 

a = a1/2' (S2d) 

where there are four solutions in (S2) corresponding to 
i l = ± i and, independently, i2 = ± i: 
Mw = - il(n + 1)/4 + eQ /2 , 

y= - (n + 1)€/4 - il€eQ/2, 

/3 = (n + 1)/2 + ii l /2, 

a = _ (n + 1) (€2 + 1 +~) + ile
3
Q + ilam; 

4€ M2 2€M 2 €M 

y= -i€Mw, 

/3 = a 1/2' i l = - i, 

a=/31/2' il = -i, 

n =0, 

where w is arbitrary in (S4). 

W. E. Couch 
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(S3d) 

(S4a) 

(S4b) 

(S4c) 
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C. Spln-1 and -2 fields on nonextreme Kerr geometry 

The field equation in this case is (10) and it is trans
formed into (39) by introducing x again by (60) and letting 
R =.d - '/2",. The result for A is then 

A = (lIM2~)[B - s.d - r(r - M)2] , (85) 

where B is given by (11). 
The form which (59), (46b), and (46c) take in this case is 

the following: 

Ao=(a-p)2+ M~~ {[(E+ WM2+a2]llJ 

-am -iSEMj2=0, 

- 1 2 
Ao- =(a+p)2+ M2~{[(I-E)2M +a2]llJ 

-am + isEMj2 = 0, 
- -'2 2 2 .;1. A4 = f: M llJ + r = 0 , 

.13 = 4E(E + 1)M2llJ2 + 2isEMllJ + 4f + 2(P - l)r 

= 2nr, 
.12 = 6(E + 1)2 M 2llJ2 + a2llJ2 + 6isEMllJ - r - S - A 

+ 2r(2r+ 3P- 3 - a) +P(P- 1), 
Al = (lIE){ 4(E + 1)3M2llJ2 + 2(E + 2)a2llJ2 

+ is[4(~ - l)MllJ + 2amIM] 

- 4amllJ - 2Er - 2ES - 2EA j 

+4(p-a-l)r+2,B(p-a-l). 

(86a) 

(86b) 

(86c) 

(86d) 

(87) 

(88) 

The condition for A is again (66) with this A I and .12' 

Algebraic expressions for (a, P,r,llJ) may be found also 
in this case of fields of spin 1 and 2. The solutions to (86) for 
(a, P,r,llJ) are given by 

AI 2isE + iSEi3(i l + i2) - 2i3E(n + 1) + i3(il - i2)amlM 
lY~llJ - --:.....----:!~-'--""--....::.....'--.:..-~~'-"---'~--

- 4E - 2Ei3(il + i2) - 2i3(il - i2) , 
(89) 

r = i3EMllJ , (90a) 

2MEa = (il + i2)(2M 2llJ - am) + (il - i2)(2M2EllJ - iSEM), 

(90b) 

2MEP = (il + i2)( - 2EM 2llJ + iSEM) 

+ (il - i2)( - 2M 2llJ + am), (9Oc) 

where S = ± 1, ± 2, and il> i2, and i3 may independently 
take the values ± i with the following exceptions. For 
(i l,i2,i3) = ( -, -, + )i, (89) is to be disregarded and the so
lution is given by (90) with llJ arbitrary but with the con
straint 2s = n + 1 so that the only possible values of (s,n) in 
this special case are (1,1) and (2,3). For a=O and 
(i l,i2,i3) = ± (+, -, -)i the solutions are given by (90) 
with E = 1, llJ arbitrary, and (s,n) = [( =1= 1,0),( =1= 2,1)]. 

VI. BEHAVIOR OF CLOSED-FORM SOLUTIONS 

Because the number of solutions found in this paper is so 
large, we do not give here an exhaustive description of their 
behavior. We do, however, summarize some of the main re
sults, and for particularly interesting example solutions we 
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point out some which have well-behaved angular depen
dence and some which do not, analyze field behavior as the 
conformal boundaries K± and f± of the space-time are 
approached, and compare our radial fields to normal modes. 

Two interesting sorts of solutions which we might wish 
to find in closed form (but seemingly do not) would be (a) an 
exact physically reasonable radiation field or (b) a normal 
mode radial solution (one representing only outgoing radi
ation as r_ 00 and satisfying the proper boundary condi
tionsl3 as r_r +; the mode would be stable if 1m w <0 and 
unstable if 1m w > 0). Since spherically symmetric geome
tries (a = 0) have been shown to be stable to perturbation by 
massless fields no unstable normal modes can be found in 
those cases. For the Kerr geometry, stability with respect to 
massless fields probably holds although it is not yet rigorous
ly proven,14 so we might not expect to find any unstable 
normal modes; however, some authors do think that they 
exist. IS Other authorsl6 believe unstable normal modes exist 
for a massive perturbing scalar field of the Kerr geometry . 
None of the examples which we analyze prove to be of sorts 
(a) or (b), though some could be normal modes for large n or 
values of a at which it is difficult to discover whether A is an 
angular eigenvalue. For those parameter values for which 
the analysis is easily completed we find some exact fields 
which have the proper normal mode radial behavior but fail 
to have A be an eigenvalue at least for smalllallJl, and we find 
the reverse-angularly well-behaved fields which fail to 
have normal mode behavior either as r_ 00 or as r_r +. 
The care with which our solutions avoid being normal 
modes leads one to suspect that the conditions which have 
been imposed to obtain closed forms may put one outside the 
class of normal mode solutions. 

Other types of fields which we find are ones which, 
though nonstatic, behave just as some static massless fields 
are known to do in the respect that they blow up on K+ or 
K- if they are well behaved onf+ andf- and blow up on 
f+ or f- if finite on K+ and K-. These types of fields 
occur frequently when w has a nonzero imaginary part. 

Another closed-form field which we have found has the 
properties that it goes to zero like 11 r, is nonradiative at f - , 
is finite on,W'-, has outgoing radiation at f+ (with a profile 
exponentially increasing towards the future on f+), and is 
infinite on K+ but is infinite nowhere inside the boundaries 
K± and f ±. Such a field is not well behaved but has finite 
null data on f- and finite but unbounded null data on K- . 

To discuss behavior at,W'± and f ± we define null co
ordinates u and v by 2u = t - r*, 2v = t + r*, where 

r +a2 r +a2 
r* = r + + Inl r - r + 1 - - Inl r - r -I, 

2EM 2EM 
(91) 

on nonextreme geometries, and 

r* = r- (M2 +a2)/(r-M) + 2Mlnl r-MI, (92) 

on extreme geometries ( r + = r _ = M). Then at fixed u we 
approach f+ via v- 00 (or r_ 00 ) and,W'- via v- - 00 (or 
r-r +), and at fixed v we approach f- via u- - 00 (or 
r_ 00 ) and,W'+ via u_ + 00 (or r_r +). 
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On extreme geometries the behavior of 

'" exp( - iwt) = '" exp( - 2iwu - iwr*) 

= '" exp( - 2iwv + iwr*) , (93) 

at the conformal boundaries is easily obtained from (27) us
ing (12) and (92). Similarly, on nonextreme geometries we use 
(60H62) and (91), from which we obtain 

tP---+exp( - yr*/EM)/rP - n
- 2Y/", as r-oo , (94) 

and 

tP--+const exp(EM (a - f3 )r* /(r+ + a2
)), as r_r +. (95) 

Our notation for behaviors of", exp( - iwt) at the con
formal boundaries will be to list them in square brackets in 
the order JIr-, JIr+, f-, f+. 

A. Solutions on extreme geometries 

The variety of closed-form solutions generated on ex
treme geometries by the method of Sec. III is considerably 
less than that obtained on nonextreme geometries in Sec. V. 
For spins 1 and 2 on the extreme Kerr geometry the method 
employed gives no solutions, and for the spin-! field on the 
extreme Kerr-Newman geometry it yields a solution, given 
by (37), only if the field is massless (p = 0), n = 0, and a 
nonvanishing electromagnetic test field is present. The spin
! field has real w, but its angular part S (8) cannot be nonsin
gular for allaw and I because we have A = 2amw - a2w2 and 
this expression cannot be an eigenvalue since it goes to zero 
instead of I (I + ~)2 as aw goes to zero. 

The only solution on an extreme geometry for a massive 
field (p #0) i~ the spin-O field, specialized by p2 = w2 and 
other conditions, on the extreme Kerr-Newman geometry. 
The radial field in this case is given by (30), w is real, and the 
angular factor S(8) is nonsingular. Though w#O, this field 
behaves in the same fashion as the static field with 
m = p = Q = 0; namely, it goes as [00,00 ,0,0] or [0,0,00,00] 
at the conformal boundaries. In fact, for a = 0, (30) gives 
exactly the static formulas for "', so we have 

'" exp( - iwt ) 

= (1/(r - M)l+ 1,(r - M)l)exp( - iw(u + v)). (96) 

In particular, the first case of (96) has, for / = 0, a nontrivial 
radiation field at f- and f+, and 

'" exp( - iwt )_[ 00,00 ,exp( _ iwv) exp( ~ iwu) , 

( . ) exp( - iwv) ] exp -IWU . 
r 

(97) 

When the spin-O field is massless, w has a nonvanishing 
imaginary part and if am # 0 then Q = 0 so that the presence 
of an electromagnetic test field is required unless we restrict 
to extreme Reissner-Nordstrom or to only m = 0 modes. 
When a = 0 the radial massless scalar field is (33) and S (8 ) is 
singular except possibly for only one eigenvalue at each n out 
of the 4n + 3 eigenvalues of the four types of .!f in (24). 
Whena#O, the radial field is (35), we must have aeQ = mM, 
and a numerical investigation is needed to show whether S (0 ) 
may be nonsingular. 
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B. Solutions on nonextreme geometries 

On the appropriate nonextreme geometries there are 
closed-form solutions given in Sec. V for fields of any spins 0, 
!, 1, 2. Restrictions on the parameters are not as severe as 
with the extreme geometries; in particular, the presence of an 
electromagnetic test field is not required except in highly 
special cases. We are still restricted, however, to massless 
fields when the spin is nonzero. There are several classes of 
solutions with real w, several with complex w, and several 
with nonsingular S (8). The explicit formula for the radial 
field is (62). 

A massless scalar field on the Kerr-Newman geometry 
which results from (75) (with the lower sign chosen) provides 
an example of an angularly nonsingular field which behaves 
well at JIr- and f- but badly at JIr+ and has an exponen
tial radiation profile on f+. This is easily seen explicitly by 
setting n = Q = 0 in (75); then from (62) the solution to (5) is 

I r - r I - jam/2M" 

'" exp( - iwt) = +). M exp( - 2iwu) , (98) I r-r_1 -lam/2 " 

where w = (am + iEM)/(r_ + a2
), and the asymptotic be

havior when m = 0 is 

'" exp( - iwt ) 

-[const exp( - 2iwu),00,0/r,exp( - 2iwu)/r]. (99) 

It can be shown [by examining the expression for A which 
results from setting A2 = 0 in (65)] that for m = 0 and suffi
ciently small lawl there exists a choice of E,O < E < I, such 
that A is an eigenvalue in the angular differential equation 
and S (8) is therefore nonsingular. This radial field has pure 
imaginary w and proper behavior as r_ 00, but it is not a 
normal mode as is clear from (98). If am # 0 in (75) then w has 
a non vanishing real part, as expected for a normal mode, but 
S (8) may be singular. 

When the upper sign is chosen in (75) we can show for 
n = Q = m = 0 that A < 0 and so A is not an eigenvalue as 
aw-O. 

The scalar field characterized in Sec. V A by 
n = Q = m = 0, w = ia(u - 2)/4M, p2 = ~(u - 1)/4M2, 

u;;d behavesasrp-r-uexp(i~w2-p2 r*)for r-oo and as 
rp-exp( - iwr*) for r_r +. For u = 1 the field is massless 
and behaves radially as a stable normal mode, but A < 0 so 
the field is angularly singular at least as aw-D. The field is 
massive if u > 1 and for aw-D (or a = 0) it can be shown that 
for every e, 0<;e2 <M2, there exists a value of u, 

u> 2(1 + ~1 + /(/ + 1)) + o(a»4, such that A is an eigen
value with the exception that a = e = 0 is excluded. The 
field then behaves radially like an unstable normal mode 
except that the r falloff is at the faster rate 1/,u, u> 4, in
stead of 1/r as r-oo. 

The scalar field discussed last in Sec. V A having 
p2 = w2

, n = 0, and eQm # 0 is angularly nonsingular when 
we restrict w by w2 = / (/ + 1 )/(M 2 _ e2

). 

As an example of nonzero spin field consider the spin-! 
field determined by (83) with i) = i and Q = O. Then from 
(62) and (91) we find 
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where (t) = - i(n + 1)/4M and g ± = - i(t)(rj. + a2)/€M 
+ iam/2€M ± 1. Recalling that '" =.R.::i 1 4 we find 

R-+exp(fu)r*) as r-+~ and R-+eonst ~ 1/2 exp( - iKr*) 
as r-+r +, where I\=EUJ) - am/(2Mr + - e2

). For all n, this is 
the proper r dependence of a stable normal mode; but for 
n = 0 we find A. = - (1 + e)/4 + 3a2(t)2 + iam/2M, which 
cannot be an eigenvalue at least as a(t)-+Q. 
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We propose a new method to build exact solutions of Einstein field equations in case of 
"hypersurface-homogeneous space-times." The energy-momentum tensor is of perfect fluid type. 
Starting from SE solutions we are able to build new classes of solutions which add to the rare 
solutions not satisfying the equation ofstatep = (r - 1}Jl. We study the geometrical and physical 
properties of some of the solutions obtained. 

I. INTRODUCTION 

In a previous article I we proved the utility of a new 
technique to generate exact solutions of Einstein's field equa
tions with spherical symmetry and an energy-momentum 
tensor of perfect fluid type. 

Using the same idea we present a method to generate 
exact solutions (always for an energy-momentum tensor of 
perfect fluid type) for what is known as a homogeneous-hy
persurface space time. These are spaces having a group of 
motions G4 on V3, the isotropy group being spatial rotations. 
The metric used is 

d~ = - dt 2 +A 2(t)dx2 +B2(t) (dy2 + L2 (y,K)dr). 

(1.1) 

Starting from a metric of form (1.1), Stewart and Ellis2 

(SE) already obtained general solutions for the Einstein field 
equations satisfying the equation of state 

p = (r- 1}Jl, (1.2) 

where p is the pressure, /1- is the energy density, and r is a 
parameter such that 

1 <r<2. 
Starting from the SE (Stewart-Ellis) metric, and using 

our technique, we obtain new classes of solutions. 
It is interesting to notice that the classes of metrics we 

obtain do not satisfy (1.2). 
As far as we know, these classes are new and can be 

added to the rare perfect fluid solutions3--6 not satisfying the 
relation (1.2). 

II. FIELD EQUATIONS 

The field equations in general relativity are 

Rab - !Rgab + Agab = KoTab' (2.1) 

The energy momentum tensor Tab for a perfect fluid is 

Tab = (/1- + P)UaUb + pgab' uaua = - 1. (2.2) 

We consider metrics admitting a group of motions G4 

on V3 which are locally rotationally symmetric (LRS). 
Among the metrics mentioned above, we choose one 

which has been used often as a cosmological model7 and 
whose importance is clear. 

This metric is 

d~= _dt2+A2(t)dx2+B2(t)(dy2+ L2(U,K)d:?) , 

(2.3) 

where .I( y,K ) = sin y, y, sinh y, respectively, when 
K = 1,0, - 1. For a Ricci tensor of type [(111),1], in Segre 
notation, the field equations are7 

BN B'2 K 
2li + Ji2 + Ji2 =A -KoP, (2.4) 

BN AN A' B' 
li+A+AXIi=A-KoP, (2.5) 

A' B' B,2 K 
2A X Ii + Ji2 + Ji2 =A + Ko/1-· (2.6) 

We have to consider two cases. 

A.K=O 

Equations (2.4) and (2.5) give 

B N B ,2 A N A ' B' 
li + Ji2 = A + AXli' (2.7) 

We associate to the couple (A,B ) another one (Y,Z) given by 

A'/A=Y, B'/B=Z. (2.8) 

Using (2.8), Eq. (2.7) becomes 

1. (2.9) is a Riccati equation in Y 

By the change of function 

Y= Yo+ l/U, 

we obtain 

U'- (2Yo+Z)U= 1, 

(2.9) 

(2.10) 

(2.11) 

where Yo is a particular solution of (2.9) with Y being the 
more general one. By quadrature (2.11) gives 

U(t)= {exp I(2Yo +Z)dt} 

X {I (exp I - (2Yo + Z)dt) dt + c} , (2.12) 

Cbeing a constant. From (2.8) and (2.12) we obtain 

U(t) =A ~B (I Ad;B + c l ). (2.13) 

Equations (2.10) and (2.13) yield 
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A (t) = Ao(t)exp {I A~B [fdt:~ ~B + Cd + C2}, 

(2.14) 

C2 being a constant. Then from the couple [Ao(t),B (t )] our 
method allows us to obtain [A (t),B (t I], where A (t) is 
given by (2.14) and B (t ) stays invariable. 

2. (2.9) is a Riccati equation in Z 

By the change of function 

Z=Zo+ l/V, 

we obtain 

V' + V(Y -4Zo) = 2, 

(2.15) 

(2.16) 

where Zo is a particular solution of (2.9) with Z being the 
more general one. By quadrature (2.16) gives 

VItI = {exp I (4Zo - Y)dt} 

X {2 I [exp I (Y - 4Zo)dt ] dt + c3} , (2.17) 

C3 being a constant. From (2.8) and (2.17) we obtain 

V(t) = (:~) (I2 :~ dt+ c4). (2.18) 

Equations (2.15) and (2.18) yield 

B(t) = Bo(t)exp {I (B~/A )[f(2Ad;B~)dt + C4] + cs} , 

(2.19) 

where Cs is a constant. Then from the couple [Bo(t ), A (t)] we 
obtain[B (t), A (t )], whereB (t )isgivenby(2.19)andA (t ) stays 
invariable. 

B.K;i:O(K= ± 1) 

From (2.4), (2.5), and (2.8) we obtain 

Y' + y2+ YZ=Z' +2Z2+KIB2. (2.20) 

By a similar procedure to the one used in Sec. II A, Eq. 
(2.20), which is of Riccati type in Y, admits the solution 

A (t) =AJt)exp {I A ~B [fdt:~ ~B + C
6

] + C7 } , 

(2.21) 

where C6 and C7 are two constants. 

III. SOLUTIONS 

We confine ourselves to particular solutions of the SE 
type, i.e., 

dr = - dt 2 +A ~It Idx2 + B2(t)[dy2 + Y dr). (3.1) 

Here, A, B, and t are given in parametric form such that 

dt = 2C dK, (3.2) 

C = a 12Y/(2 - n(cosh K sinh K)Y/(2 - n, (3.3) 

Ao = d22
213(2 - n(cosh K)2I(2 - Y)(sinh K) - 213(2 - Y), (3.4) 

B = a 32
213(2 - Y)(sinh K)4/3(2 - n, (3.5) 
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where a lfa2,a3 are given in Ref. 7. For this case we must 
apply the results of Sec. II A. 

(1) Starting from the results of Sec. II A 1, the formula 
(2.13) yields 

U(t) =A ~B XII' 

where II is given by 

I dt 
11 = -- +C, 

A~B 

and can be written as 

(3.6) 

(3.7) 

II = ~ [I 1 (tanh K)Y/(2- Y)dK + C I ], 
a~a3 (cosh K)2 

where 

CI = C(a~a3/al)' 

By quadrature we obtain 

(3.8) 

II = ~ [(2 - r) (tanhK)2/(2- n + C I ] . (3.9) 
a 2 a 3 2 

Thus, (3.6) becomes 

A~B XII =al[221(2-n(coshK)4/(2-Y)j 

x{2;r (tanhK)2!(2- Y)+CI }. (3.10) 

Evaluating 

I - I dt 
2- A~B[fdtIA~B+Cd' 

which is in the formula (3.14), we obtain 

12 = I (sinh KjY/(2 - y) dK 
(cosh K)(4 - n/(2 - n [ [(2 - r)/2) (tanh K)2!(2 - y) + C

I
] 

(3.11) 
- I (tanh KjY/(2 - y) dK 
- COSh2K[[(2-r)l2](tanhK)2I(2-Y)+CI ]' 

(3.12) 
Setting 

w = (tanh(K)2I(2- n + 2CI /(2 - r), 

we obtain 

I = In [(tanh K)2/(2 - y) + 2C 1/(2 - r) ] 
2 C ,(3.13) 

2 

where C2 is a constant. From (3.14) and (3.13) we obtain 

A (t) = Ao(t) {(tanh K)2!(2 - Y~: 2CI /(2 - r)} , (3.14) 

where Ao(t ) is given by (3.4). In the case C I = 0, C2 = 1 we 
obtain 

A (t) = a22213(2-n[sinh(K))4/3(2-Y). (3.15) 

The new class of metrics reads 

dr = - 4C 2 d~ +A 2(f)dx2 +B2(t)[dy2 + y2 dr), 

(3.16) 

where C,A,B are given, respectively, by (3.3), (3.14), and (3.5). 
We call this classFI (1 <r< 2). 

In the case (3.15) we have 
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dil = - 4C 2 d~ + a~ 24/3(2 - rI(sinh K)8/3(2 - yl dx2 

(3.17) 

We call this class F2. 
(2) Starting from the results of Sec. II A 2 and using the 

class F2 as a particular solution we can obtain from (2.18) 

VItI = (B~/A )13' Bo = a32213(2-YI(sinhK)4/3(2-YI, 

where 13 is given by 

(3.18) 

By suitable arrangement (3.18) becomes 

a a f (ooth K)Y/(2 - YI 
13= _1_2 dK 

a1 sinh2 
K 

= a 1a2 [_ (2 - r) (COthK)2/(2-rI + C4] . (3.19) 
a1 2 

Evaluating the integral 

1 - f dt 
4 - (B~/A )[S2A dllB~ + C4]' 

which arises in the formula (2.19), we have 

f (cosh Kt/(2 - yl dK 

14 = 2(sinhK)(4- rl/(2- rl [ _ [(2 - r)/2](cothK)2I(2- YI + C4] . 
(3.20) 

By suitable arrangement (3.20) becomes 

f (coth Kt/(2 - yl dK 

14 = 2(sinh K)2[ _ [(2 - r)/2](coth K)2I(2- YI + C4] . 

(3.21) 

By a change of variable, 

S = (ooth K)2/(2 - yl - 2C¥(2 - r), (3.22) 

(3.21) becomes 

14= f ~: . (3.23) 

And by quadrature we obtain 

[ 
(ooth K)2I(2 - rI - 2C4/(2 - r) ] 112 

~=~ , 
Cs 

(3.24) 

where Cs is a constant. From (2.19) and (3.24) we obtain 

(
(CothK)2I(2- YI - 2C¥(2 - r))I12 

B (t ) = Bo(t ) , 
Cs 

(3.25) 

and the new class of metrics obtained becomes 

dil = - 4C 2 d~ + A 2(t )dx2 + B 2(t )(dr + y2 dr), 
(3.26) 

where C,A,B are given, respectively, by (3.3), (3.15), and 
(3.25). We call this class F3 (1 < r < 2). 

For C4 = 0 and Cs = 1 we obtain 

dil = - 4C 2 d~ + a~ 24/3(2 - YI(sinh K)8/3(2 - rI d~ 

+ a~ 24/3(2 - rI(sinh K)2I3(2 - yl 

X (cosh K)2I(2-rl[dy2 + y2 dr]. (3.27) 

I 
IV. PRESSUREp AND DENSITY Jl 

The pressure p and the energy density p are given by the 
formulas (2.4) and (2.6). For solutions (SE) we obtain 

A' 
[ 

tanh K _ coth K ] 2 - y/(2 - rI 

2 - r 3(2 - r) a l (cosh K sinh K)Y/(2 - YI' 
-= 
A 

B' 2cothK 2- 112 - YI 
- = ---------------..,. 
B 3(2 - r) a I(oosh K sinh Kt/(2 - YI' 

KoP +A = (1 - r)[-A 

(4.1) 

(4.2) 

+ 4/22y/(2 - rlat(sinh K cosh X )Y/(I- YI], (4.3) 

-Kop+A =(I-rl[ -A +4/3(2-r)2af22Y/(2-YI 

X (sinh K cosh K)2Y/(2 - YI] + A, (4.4) 

and therefore 

p=(r- 1).u. (4.5) 

Starting from the F2 class, we evaluate the ratio A I I A and we 
obtain 

2 coth(K) - = ------~~----
3(2 - rIa 12Y/(2 - YI(cosh K sin K)Y/(2 - YI' 

A' 
(4.6) 

A 

and B 'iB is given by (4.2). Using again the formulas (2.4) and 
(2.6) we obtain 

+ A _ 4 coth2(K) 
Ko P - 3(2 _ r)at 22y/(2 - rI(cosh K sinh K)2y/(2 - rI ' 

(4.7) 

- KoP +A = (1 - r)[ -A + 4/3ar(2 - r)222Y/(2- rI 

X (sinh K cosh K)2y/(2 - rI] + A. 
(4.8) 

We call this class F4 (1 <r<2). The equation of state is 
I 

KoJl = [ - Kopl(1 - r) + A] [1 + 2I..J 1 + lilA (1 - r) - KnO/(1 - r)]at(2 - r)2}Y/(2 yl - 1]. (4.9) 

By a similar procedure we evaluate the pressure and energy 
density for the class of metric F4 and we obtain 
KoP +A = [at(2 - r)(sinhK cosh K)Y/(2- YI ] -2 

X [l coth2 
K +! tanh2 

K + i] , (4.10) 
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1- KoP + A = [a l (2 - r)(sinh K cosh K)Y/(2 - YI]-2 

X { - ! coth2 
K - ! tanh2 

K + 1J - ~ }. 

Thuspandpdonotverifytheequationofstatep = (r - 1).u. 
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V. GEOMETRICAL AND PHYSICAL PROPERTIES OF 
THE SOLUTIONS UNDER STUDY 

We discuss the properties of the shear tensor U ij' It has 
been pointed out by Collins and WainwrightS that the shear 
tensor uij plays an important role in general relativistic cos
mological and stellar models. 

The shear tensor arises in the decomposition of four
vector velocity of the fluid; i.e., 

Ua;b = - UaUb + {J)ab + Uab + ehab/3, 

ua = Ua;bub, uaua = 0, 
• b 0 {J)ab = U[a;b J + U[aub J' {J)ab U = , 

hab =gab + UaUb' habUb = 0, 

Uab = u(a;bl + u(aubl - ehab/3, Uab ub = 0, 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

and e = u~a' where Ua,{J)ab' e, Uab are called acceleration, 
rotation, e~pansion, and shear, respectively, and a ; means a 
covariant derivative. 

If we use Cartesian coordinates in the orbits the metric 
(1.1) (K = 0) reads 

A natural choice of a basis {{J)a } of a one-form is 

{J)I = A (t )dx, {J)2 = B (t )dy, {J)3 = B (t )dz, {J)4 = dt. 

The tetrad metric gab reads 

gab = (1,1,1, - 1). 

By straightforward calculations we get 

(5.6) 

(5.7) 

(5.8) 

a~ 24/3(2 - oJ(sinh K)2/(3 - Y1cosh KII(2 - rl 

6(2-y)C(K) 

x [tanh K - coth K], (5.13) 

where 

C(K) = aI2y/(2-rl(cosh K sinh Kt/(2- YI. (5.14) 

Formulas (3.2) and (3.3) show us directly that tis a monoton
ic function of K verifying the following properties: 

t--+O when K--+O, 

t-CXJ whenK-CXJ. 

From the above results we deduce the following facts. 
(a) The shear tensor uij is nonzero for all values of t 

o < t < CXJ; thus the model is anisotropic. 
(b) At infinite time (t_CXJ) the shear tensor uij drops to 

zero; the universe is then shear-free, there is no anisotropy. 
We are now going to prove that F4 goes to a FRW 

model. For t-CXJ (K_CXJ), we have 

cosh K_sinh K. 

Thus the class F4 reads 

dSZ = - 4C 2 d~ + a~ 24/3(2 - Yl(sinh K)8/3(2 - yl dx2 

+ a~ 2413(2 - Yl(sinh K)8/3(2 - YI(dy2 + tiz2). (5.15) 

By the scale transformations 

dX=a2 dx, 

dY=a3 dy, 

dZ=a3dz, 

dT=dt, 

we get 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.9) dSZ = 24/3(2 - rl(sinh (K))8/3(2 -rl[dX2 + dy2 + dZ 2] - dT2, 

B2[B .4] 
U22= 3""" Ii - A ' (5.10) 

U33 = ~2 [! _ ~], (5.11) 

(. = :t)' uij = 0 for all other i andj. 

Applying now the above formula for the class F2 we get 

Ul1 = U22 = U33 = O. 

Thus the class F2 is isotropic. Furthermore we are going to 
prove that F2 can be reduced by appropriate scale transfor
mations to Friedmann-Roberston-Walker9--13 (FRW) form. 

It is useful to summarize here the physical properties of 
the FWR model. This universe is the same at all points in 
space (spatial homogeneity); all directions at a point are equi
valent. 

For geometrical properties and singularity we refer to 
Hawking and Ellis. 14 

For the class F4 we get 

a 2 24/3(2 - Yl(sinh K)8/3(2 - yl 
2 [cothK-tanhK], 

3(2-y)C(K) 

(5.12) 
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(5.20) 

where K is a function of time [(3.2), (3.3)]. 
A similar scale transformation is used for reduced F2 to 

a FWR model, so (5.20) is manifestly a FRW metric; the 
factor 22/3(2 - yl [sinh(K)] 4/3(2 - yl is a universal expansion fac
tor or scale factor. At zero time (t--+O) formulas (4.10) and 
(4.11) imply infinite pressure and density. 

From formulas (3.2) and (3.3) we get (at first order) 

t = al(2 - y)2Y/(2-YI~(2-YI. (5.21) 

The class F4 takes the limiting form (t--+O) 

dSZ = a~ [a l(2 - y)] - 4/324(1- Y1/3(2 - Y1t 4/3 dx2 

+ [a l(2 - y)] -1/3a~2(4-rl/(2-rlt 1/3 dy2 

+ (a l(2 - y))-1/3a~2(4-rl/3(2-rlt 1/3 dr - dt 2. 

(5.22) 

We recognize the well-known Kasner modells thus the 
singularityl6 is of Kasner's type. 

Before studying if the pressure and density obey the 
usual energy conditions, i.e., 

(5.23) 

where a = 1,2,3. We notice that the physical properties ofp 
andp cannot be largely affected ifwe setA = O. This fact has 
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been used to evaluate the correct value for perihelion preces
sion by means of the Schwarzschild 17 exterior solution. 18 

From formula (4.7) we get (A = O) 

4 coth2 
K 

KO I' = 3(2 _ r}2a~ 22r/(2 - r)(cosh K sinh K}2r/(2 r) 

(5.24) 

The relation I < r < 2 implies 2r /(2 - r) > 2, hence the ener
gy density for the class F2 is always positive. For t approach
ing infinity Ko I' drops to zero. For t approaching zero Ko I' 
becomes infinite. Before analyzing the nature of the singular
ity present here we look for the pressure. The formula (4.8) 
yields 

KoP = 4/3(2 - r}2a~22r/(2-r)(sinhKcoshK}2r/(2-r). 

(5.25) 

So P is always positive and goes to zero when t_ 00 • For t-o 
we also have a singularity. 

We conclude by noting the fact that I' + 3p is positive, 
and I' goes to an infinite value; this is the most striking fea
ture of the FRW metric. 14 From formulas (5.24) and (5.25) 
we get 

p = [(r - 1}/coth2 K] 1', (5.26) 

sop verifies the inequality p<'1' for any value of K(t). Thus the 
usual energy conditions are everywhere verified for the class 
F2. For the class F4 the density I' reads 

I' = (a3(2 - r)(sinh K cosh Kr/(2 - r) }-2 

X [lIcoth2 K + tanh2 
K} + n; (5.27) 

hence I' is always positive (0 < t < 00 ) and goes to zero when 
K-oo(t-oo}. For the pressure we have the formula 

KoP = [a l (2 - r}(sinh K cosh Kr/(2 - r)]-2 

X U(coth2 
K + tanh2 

K} + \I + ~r]. (5.28) 

Thus p is always positive; furthermore, P<'I' for r < 2, so the 
energy conditions are always verified for the class F4. 

We conclude by noting the relation between density I' 
and expansion factor a(t} for the universe F2. From (4.7) and 
from the expression for the expansion factor a(t} we have 
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(t-o) 

4 
Kol' +A = -3-' 

3(2 - r}2a~22(r-I)/(2-r) a (t) 
(5.29) 

From the general formula l9 

I'(t} =l'mO [a~/a3(t)] +1',0 [a~/a4(t}], (5.30) 

wherel'mQ is the density of matter today,I',o is the density of 
radiation today, ao is the expansion factor for the universe 
today. We can deduce that the universe F2 is at time zero 
"matter dominated"; this differs from the so-called standard 
model of the universe, which becomes matter dominated for 
-lOS years. We can then introduce a temperature of mat
terl9 by the relation T a: 1/ a2(t }, a(t } being the expansion fac
tor, hence at zero time we can relate I' and temperature Tby 
means of the relation 

I' a: T 3/2, 

which is to be compared with the r law (for a perfect fluid). 
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Some exact analytical solutions of the static Einstein-Maxwell equations for perfect and 
anisotropic fluids were found under the assumption of spherical symmetry and the existence of a 
one-parameter group of conformal motions. All solutions are matched to the Reissner
Nordstrom metric and possess positive energy density larger than the stresses, everywhere within 
the sphere. 

I. INTRODUCTION 

Several papers have been focused on finding interior 
solutions to the Einstein-Maxwell equations corresponding 
to static charged spheres. 1-7 More recently, new interior so
lutions to these equations in spherical symmetry were found 
by introducing some assumptions on the equation of state or 
ad hoc functional relations between the metric coeffi
cients.8•9 It is our purpose in this paper to integrate the Ein
stein-Maxwell equations for spherically symmetric and stat
ic distributions of matter under the assumption that the 
space-time admits a one-parameter group of conformal mo
tions, i.e., 

Lgp,v = f/lgp,v, (1) 
5 

where the left-hand side is the Lie derivative of the metric 
tensor with respect to the vector field S 1', and '" is an arbi
trary function of the coordinates. 

Furthermore we generalize the discussion on charged 
interior solutions, considering anisotropic matter (principal 
stresses unequal). The introduction of anisotropic matter is 
suggested by some theoretical works on more realistic equa
tions of state and stellar models,lO·ll which indicate that 
compact objects could have anisotropic pressures. 

The paper is organized as follows. The field equations as 
well as the conventions used are given in Sec. II. In Sec. III 
we integrate the field equations considering some models of 
isotropic charged matter and in Sec. IV, we display solutions 
for anisotropic charged fluid. The discussion of the results 
and conclusions are in Sec. V. 

II. THE FIELD EQUATIONS AND CONVENTIONS 

Let us consider a static distribution of matter represent
ed by charged spherically symmetric fluid which may be 
anisotropic. 

-) This work was completed when one of the authors (L.H.) was on leave at 
the Department of Mathematics, University of California. Berkeley, Cali
fornia 94720. 

b) Postal address: Apartado Postal 80793, Caracas 1080-A, Venezuela. 

In Schwarzschild coordinates the line element takes the 
following form: 

dr = e1'(r) dt 2 - e-t(r) dil - il dIJ 2, (2) 

with 

dIJ 2 = dO 2 + sin2 0 dt/J 2, xO,I,2,3=t,r,O,t/J. 

The total energy-momentum tensor T; is assumed to 
be the sum of two parts, M; and E;, for matter and electro
magnetic contributions, respectively, i.e., 

T~ =M~ +E~. (3) 

The energy-momentum tensor for anisotropic matter has the 
usual expression 

M~ = (Pm +Pl)Up,Uv -PLB~ + (p, -PL)X"Xv' (4) 

where UP, is the four-velocity UP, = B I' of - v12, X I' is the unit 
spacelike vector in the radial direction X I' = B p,le -;. 12, Pm 
is the energy density, P, is the pressure in the direction of XI" 
and P 1 is the pressure on the two-space orthogonal to XI" 

The electromagnetic contribution can be written asl2 

E~ = -(1/41T)(FvPPtP-!B~FaPFatJ), (5) 

where Fp,v is the electromagnetic field tensor defined in 
terms of the four-potential AI' as 

Fp,v = AVJl - Ap,;v' (6) 

Because we are in the rest frame we adopt the gauge 

AI' (t/J (r),O,O,O). (7) 

The combined Einstein-Maxwell equations can be ex-
pressed as l2 

R~- !B~R=81TT~, (8) 

(9) 

F':: = - 41TJp" (10) 

where J I' is the four-current density that becomes J I' 
= Pe UP, (Pe is the proper charge density) for nonconducting 

fluids. 
Using the line element (2), the field equations (8HIO) 

read 

(11) 
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- 81TP, + E2 = - e-..t(1/,-2 + v'lr) + 1/,-2, (12) 

e-..t ( V,2 v'-A' _ V'A') 
81TPl + E2 = -- v" + - + 2 ' 

2 2 r 
(13) 

(14) 

Primes denote differentiation with respect to r, and E is 
the usual electric field intensity defined as 

FOIF
oI = - E 2, 

E(r) = - e-(v+..t)l2(J '(r), 

(J '(r) = FlO = - FOI • 

(15) 

The charge density Pe defined inEq. (14) is related to the 
proper charge density P e by 

Pe =Pe~12· (16) 

Now we shall assume that space-time admits a one-pa
rameter group of conformal motions, i.e., 

Lgl'V = SI';V + S"',iJ = 7{lgI'V' (17) 
5 

where r/J is an arbitrary function of r. Thus, using (2), Eq. (17) 
explicitly reads 

S lV' = r/J (18) 
o -S = C= const, 

S 1 = r/JrI2, 

A 's 1 + 2S 1.1 = r/J, 

(19) 

(20) 

(21) 

where a comma denotes partial derivatives. It can be seen at 
once from (18)--(21) that 

eV = A 2,-2, 

r/J=Be-..t12, 

(22) 

(23) 

(24) S I' = C«5 ~ + (r/Jr12j<5 f, 

where A and B are constants of integration. Expressions 
(22)--(24) contain all the implications derived from the exis
tence of the conformal motion. 

Now substituting (22) and (23) into (11)--(13), we have 

81TPm + E 2 = (1/,-2)( 1 - ~ I B 2) - 2#'1 B 2r, (25) 

- 81TP, + E2 = (1/,-2)(1 - 3~/B 2), (26) 

81TP 1 + E 2 = ~ I B 2,-2 + 2#'/ B 2r. (27) 

In what follows, it will be useful to define as a measure 
of anisotropy the function 

A = 41T{Pl - p,), (28) 

in terms of which we can formally solve (25)--(27) in order to 
have 

81TPm = - 3X'/2r + 1/2,-2 + A, 

E2 = (1 - 2X)/2,-2 + X'/2r - A, 

81TP, = (4X - 1)12,-2 + X'/2r - A, 

X=~/B2, 

(29) 

(30) 

(31) 

(32) 

and the line element (2), using (22)--(23) and (32), becomes 

ds'l = A 2,-2 dt 2 - d,-2 IX - ,-2 dlJ 2. (33) 

Thus, if the function r/J (or X) and an equation ofstate for the 
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stresses are specified a priori, then the problem will be fully 
determined. 

Let us now consider that the charged sphere extends to 
radius roo Then the solution of Einstein-Maxwell equations 
for r> ro is given by the Reissner-Nordstrom metric as 

and the radial electric field is 

E = ql,-2, 

(34) 

(35) 

where M and q are the total mass and charge, respectively. 
To match the line element (33) with the Reissner-Nordstrom 
metric across the boundary r = ro, (i) we require continuity 
of gravitational potential gl'v at r = ro, 

A 2ro = X (ro) = (1 - 2M Ir + q2/ro); (36) 

(ii) we require vanishing of the radial pressure at the 
boundary 

~~=~ (m 

and (iii) in the absence of surface concentration of charge at 
r = ro, we require the continuity of the field tensor Fl'v. 
Thus, it follows from (16) and (36) the continuity of the radial 
electric field 

E (ro) = q/ro. (38) 

Evaluating Eq. (26) at r = ro and using (38), the vanish-
ing pressure condition gives us 

q2/ro = 1 - 3X(ro). (39) 

Feeding this expression back into (36) we obtain 

M Iro = 1 - 2X (ro), (40) 

or eliminating X (r 0)' 

M = rol3 + ~ q2lro. (41) 

This equation gives us the increase of the total mass 
caused by the charge. For noncharged spheres the total mass 
is rol3 in agreement with previous results. 13 

Another relation between q and M is easily obtained 
integrating Eq. (31): 

(4X -1)Z2 = 16triZ(p, +Pl)Z2dZ +D, (42) 

whereZ =,-2, andDis a constant. Assumingthatp"Pl' and 
D are non-negative (in the examples we shall show, D is non
zero only for charged nonhomothetic dust) we have 

(43) 

Finally, using this inequality together with the relation 

q2/M2 = [1 - 3X(ro)]I[ 1 - 2X(roW, X (ro) <~, 

we obtain 

q2<.M2. (44) 

We finish this section by noticing that all the above
mentioned configurations are outside the horizon. 

In fact, using(39)and(4O)theequation.(~t = Obecomes 
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~~t = (1 _ 2M/r + q2/r) 

= { 1 - 2(ro/r) [1 - 2X(ro)] + (ro/r)Z [1 - 3X(ro)] J = 0 

(45) 

from which it is obvious [using the inequality 1 <X (ro) <!] 
that r g < r 0' where r g is the radius of the horizon. 

III. PERFECT FLUID SOLUTIONS 

In order to determine the unknown functions Pm' E2, 
P" Pi' and f/!, it is necessary to introduce additional assump
tions. In this section, we consider that the fluid is locally 
isotropic, i.e., P, = Pl. According to (29)-(32), different so
lutions may be obtained by specifying the choice of f/!. 

(i) Homothetic charged spheres: Considering X = C1 

= Cte, from Eqs. (29)-(31) we get 

81TPm = 1I2r, (46) 

81TP = (4CI - 1)12r, (47) 

E2 = (1 - 2C1)/2r. (48) 

Since p and E Z must be non-negative throughout we 
have the following condition on C I : 

1<C1<!· (49) 

The state equation is 

p = (4C1 - llom· (50) 

Consequently the inequality (49) also ensures the fulfillment 
ofdp/dPm<1. 

Equation (47) implies that it is not possible to find a 
finite radius r = ro such that boundary condition (37) can be 
satisfied unless C I = 1 when we have charged dust. For other 
values of C I' Eqs. (46)-( 50) represent a distribution of infinite 
extent. For C 1 = !, we recover a previously known solution 13 

for neutral matter. 
We would like to point out that some known charged 

perfect fluid solutions in the literature admit a one-param
eter group of conformal motions. For example, the solutions 
of Pant and Sah,s withn = 1, andofTikekar,8 fora =/3 = 0 
and (a + b) = 1, are homothetic. Furthermore, the spheri
cally symmetric solutions of Humi and Mansour given by 
Eqs. 2.21 and 2.22 and 4.1 and 4.2 of their paper,9 with 
KI = K z = 1 and K = 1, respectively, have conformal sym
metry. 

In what follows, instead of arbitrarily assuming func
tion X, we shall find some solutions from physical consider
ations. 

m) Charged dust spheres: Let us consider the case of 
spheresofchargeddustwhoseradiusisr = ro. Ifp = OinEq. 
(31) we obtain an equation for X, 

81TP = (4X - 1)/2r + X'/2r = 0, (51) 

whose solution is 
X= C/r4+1, 

where C is a constant of integration. 
Feeding (52) back into (29)-(30) we get 

81TPm = 6C /f> + l/2r, 

E Z = (~- 12C)/4r6, 

(52) 

(53) 

(54) 

the requirement Pm> 0 throughout the distribution implies 
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that C must be non-negative. However, (54) gives E Z <0 in 
the central region. Thus we have obtained an analytical solu
tion of Einstein-Maxwell equations in the region ~ > 12C 
(for further discussion see Sec. V). If C = 0, we recover the 
homothetic charged dust solution. 

S~tting C = ar~ and using (39) and (40) we obtain the 
total mass and the total charge: 

t//ti = (1- 12a)l4, O<a<-b, (55) 

2M fro = (1- 4a). (56) 

We note that qZ <M 2 and notice that the equality will only be 
valid in case of homothetic (a = 0) charged dust spheres. 

Finally, using (33), (36), (52), and (55); it is easy to write 
the interior metric in terms of a parameter a: 

ds
z 

= (a + !)(~r dt
2 

- [ae:r + !r l 

dr-rdfl2. (57) 

To obtain other solutions, we can specify, in some way, the 
electric field or charge distribution throughout the interior 
of the sphere. Then, we integrate Eq. (30) and get 

(1 - 2X)l2r + X'/2r = E2(r) (58) 

to obtain 

X = Cr + ! + rF(r), (59) 

where C is a constant of integration and 

F(r) = 2 f E;(r) dr. (60) 

(iii) Conformally symmetric charged spheres: First we 
shall give the electric field. For the sake of simplicity we 
suppose that the electric field is the same as in the homothe
tic solution. Putting (48) into (60) and integrating, we get 

X= CI + Cr. (61) 

Feeding (61) back into (29)-(31), we get 

81TPm = 1I2r + (4C1 - l)1ti, 

81TP = [(4CI - 1)/2ti ]{(ro/r)Z -l}, 

E2 = (1 - 2CI )l2r, 

where ro is the vanishing pressure surface 

ti = (1 - 4Cd/6C. 

(62) 

(63) 

(64) 

(65) 

Taking 1 < C I <! we ensure the positiveness of p and E 2, with 
CI =!, we recover the previously known solution13 for neu
tral matter. When C I = 1 we have homothetic charged dust. 

From the equation of state 

p = (4CI - llom - (8CI - 1)(4C1 - 1)/161Tti, (66) 

we see that dpldPm < 1. 
From the fulfillment of the boundary conditions, we 

obtain the mass and charge. Using (39) and (40), 

q2/ti = (1 - 2Cd/2, 

M Iro = ~(1 - CI). 

(67) 

(68) 

Finally the interior metric is obtained from (33), (36), 
(61), (65), (67), and (68) as 
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dr = ((1 + 2CI)/6)(r/ro)2 dt 2 

-dr/[CI + [(I-4CI )/6](r/rofJ -rdn2. 
(69) 

It is obvious from the condition 1 < C I <!, that all the 
roots of the equation 

CI + [(1 - 4CI)/6](r/ro)2 = 0 

are larger than r o' 

(iv) Uniform charge density: The simplest form of the 
charge distribution throughout the interior is the uniform 
charge density. 

We integrate Eq. (14) withPe = const, taking the arbi
trary constant of integration equal to zero. We obtain 

E= {J)r, (70) 

with (J) = ~ 1TPe' Putting (70) into (60), we get from (59) 

X = ! + Cr + {J)2r4. (71) 

Feeding (71) back into (29) and (31), we get 

81TPm = _1 {I + (.!....)2} + ~ {I- ~ (.!....)2}, 
2r ro 2ti 2 ro 

(72) 

81TP = 2~ {I - (~r} {I - a
2 (~)l (73) 

where ro is the radius ofthe configuration 

4w2ti + l/2ti = - 3C, (74) 

and a 2 = 8~{J)2. Because Pm and p are decreasing functions 
of r, taking a 2 <;; 1, we ensure their positiveness; in addition 
the derivative dp/dPm is not larger than unity, i.e., 

..!!L = (dP )(~) = [ 1 - a
2
(r/ro)4 ] <;; 1 (75) 

dPm dr dPm 1 + ~a2(r/ro)4 . 

Using (71), (74), and (39) we obtain the total charge 

q2 = {J)2,g = (a2/8)ti. (76) 

Of course the same result may be obtained from the expres
sion 

q = 41T LOPer dr. 

Equation (41) gives the total mass as 

M fro = !(I + ;\a2). 

(77) 

(78) 

Finally the interior metric is obtained from (33), (36), 
(71), (74), (76), and (78) as 

2 1 ( a
2
)( r )2 2 ds = "3 1 - 8 ro dt 

- { ~ [ 1 - +(~r] + ~2 (~r 
x[(~r - ~]) -I dr-rdIJ 2. (79) 

Until now we have considered that the charge is distrib
uted continuously throughout the sphere. With the aim of 
better understanding the role played by the charge distribu
tion we shall consider the following case. 

(v) Shell 0/ charge: Let us consider a spherical shell of 
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charge which surrounds a neutral core of a self-similar per
fect fluid. The radius of the core and the outer surface of the 
shell are r l and r2, respectively. 

Since the core (region I) contains a neutral perfect fluid, 
the metric functions are given by (33) and (59), withF(r) = 0, 
as 

e~ =A 2r, 

X = eI- A. = ! + Cr. 

From (29) and (31) we get 

81TPm = l/2r - 3C, 

81TP = l/2r + 3C. 

(80) 

(81) 

(82) 

(83) 

The field equations for the space of the shell (region II) 
are given by (llHI4) with Pm =Pr =P1 =0. To integrate 
(14) we consider for simplicity Pe = const and obtain 

EII(r) = (J)r + D1/r, (J) = ~ 1TPe, (84) 

where DI is a constant of integration. 
Equation (11) (with Pm = 0) is easily integrated to give 

- A. 1 1 IE 2_2 d D2 ell = - - r r + -. 
r r 

(85) 

Now, putting (84) into (85), we take 

-A. 1 {J)2r4 Di D D2 
ell = - -- + - - l{J)r + -. 

5 r r 
(86) 

Subtracting Eq. (12) from (11) we get 

e~1 = D3eIIA., (87) 

where D3 is a new constant of integration. 
Finally, for r> r2 (region III) we have the Reissner

Nordstrom solution 

e~II = eii/ = (1 - 2M /r + q2/r), 
Em = q/r. 

(88) 

(89) 

Let us now apply the boundary conditions: continuity 
of gl'v at r = r2 gives 

(90) 

(91) 

(92) 

24 D2 (J) r l 1 D2 2..2 
1- -- + - -DI{J)rl + - =A 'I' 

5 ri r l 

(93) 

From the conditionp(rtl = 0, 

l/2ri + 3C = 0; (94) 

from the continuity of Fl'v, at r = r l , 

{J)rl + D1/ri = 0; (95) 

at r = r2, 

{J)r2 + DI/~ = q/~. (96) 
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We have six equations (91H96) for the six unknown D), 
D2, C, A, q, M. 

Solving the system we obtain 

3C = - 1/2,.f, (97) 

A 2 = 1/3ri, 

D) = -wt1, 

D2 = - jr) _ ~2~ , 

(98) 

(99) 

(100) 

(101) 

1 q2 w
2 { ~ 9 r~ } M=-r)+-+- -+-~-t1~--. 

3 2r2 2 5 5 r2 
(102) 

(vi) Surface charge: Let us now consider self-similar 
spheres for which the charge resides entirely on the surface. 
This case may be easily obtained4 from the preceding exam
ple taking the limit (r2 - r))-<>, and defining the surface 
charge density U as 

lim Pe(r2 - rIl = u. (103) 
(" - ,,)---+0 

Thus, from (101) we obtain the total charge 

q = 4miu (104) 

(as before ro denotes the radius of the sphere, so then ro=rIl. 
Equation (102) gives the total mass as 

M = jro + q2/2rO' (105) 

The comparison between Eq. (41) and Eq. (105) shows 
that (with respect to surface charge) any continuous distribu
tion of charge throughout the sphere leads to more massive 
configurations. 

Now, let us consider two self-similar perfect fluid 
spheres with the same total charge and the same radius, one 
of these spheres has mass M) and a charge somehow distrib
uted throughout while the other has mass M2 with a charge 
distributed only on the surface. Then, the difference 

.tJM = M) - M2 = f,q2/ro (106) 

is identifiable as the contribution to the total mass due to the 
electric field inside the sphere. 

Finally we write the interior metric. Using (80), (81), 
(97), and (98), 

ds'l = ~ (.!..-)2 dt2 _ 2 dr 2 _ r d{J 2, 
3 ro [1 - j(r/ro) ] 

and the electric field on the surface will be 

E=41TU. 

IV. ANISOTROPIC SOLUTIONS 

(107) 

(108) 

In this section we obtain some solutions for anisotropic 
matter, i.e.,p,#Pl' 

(i) Homothetic spheres with constant anisotropy: For the 
sake of simplicity we begin by considering X = C) = const 
and making a rough model of constant anisotropy through
out the interior: 

.tJ = 41T(Pl - p,) = k 2 = const. (109) 

2306 J. Math. Phys., Vol. 26, No.9, September 1985 

Then, we obtain from (29)-(31), 

8 
1 4C) - 1 

1TPm = 2-2 + 
r 2ti 

(110) 

81TP, = 4C~i 1 {(;Y -I}, (111) 

81Th = 4C~i 1 {(; Y + I}, (112) 

E2 = 4C) - 1 {(ro)2(1 - 2C)) _ I}, 
2ti r 4C) - 1 

(113) 

where ro is the radius of the configuration defined by 

ti = (4C) - 1)12k 2, (114) 

taking! < c).q, we ensure the positiveness ofp,p"Pl' 

and E 2. On the other hand we have 

as 

dp, dpl 1 -<-, -<-. (115) 
dPm 3 dPm 3 

The total mass and charge are given by Eqs. (39) and (40) 

q2/ti = 1 - 3C), 

M/ro= 1-2C). 

(116) 

(117) 

It is worthwhile to note that, unlike perfect fluid ho
mothetic solutions (which have a boundary only in case of 
charged dust), the introduction of anisotropy allows us to fit 
all solutions with the Reissner-Nordstrom metric. Finally, 
we remark that for C) = j, the electric field vanishes at the 
surface r = r 0' and according to (116) the total charge is zero, 
i.e., Eqs. (110HI17) will represent a sphere that as a whole is 
neutral. It is also interesting to note that the equation of 
state, in this case, will be Pm = p, + 2Pl' 

(ii) Homothetic ice spheres: As our second model we con
sider homothetic spheres sustained only by tangential pres
sures. These kinds of solutions have been considered by Le
maitre.)4 

Setting X = C) and p, = 0 in (29)-(31), we obtain 

81TPm = 2C)/r, (118) 

81TPl = (4C) - l)1r, (119) 

E2 = (1 - 3CIl/r, (120) 

.tJ = (4C) - 1)12r, (121) 

taking! < C) < j we ensure the positiveness of Pm' P l' E 2 

and we also get 

dpl 2 -<-. 
dPm 3 

(122) 

Now, from the fulfillment of the boundary conditions 
we obtain the total mass and charge of the sphere. They are 
given by the above equations (116) and (117). Finally we 
write the line element, which is the same for all homothetic 
bounded charged spheres, as 

ds'l = C) (r/ro)2dt 2 - dr/C) - r d{J 2. (123) 

(iii) Uniform charge density anisotropic spheres: As a 
final example we consider the model with uniform charge 
distribution. According to Eq. (71), in the case of an isotropic 
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fluid this consideration was sufficient for defining uniquely 
the function X (or t/J). Then it is obvious that any function of 
the form 

X = ! + Cr + (r)2,A + H(r), 

with H (r) arbitrary, will correspond to anisotropic matter. 
For the sake of simplicity we shall take H = const. Thus, we 
have 

X = CI + C2r + (r)2,A. (124) 

Feeding back this function into (29)-(31) and using that 
[from Eq. (70)] E2 = (r)2r, we obtain 

.:i = 41T{Pl - Prj = (1 - 2CI )12r, 

where the radius ro is defined by the equation 

4m2~ + (3CI - 1)/~ + 3C2 = 0 

and 

a2 = 4m2r~/(3CI - 1). 

(125) 

(126) 

(127) 

(128) 

For the positiveness of Pm' Pr' and PI we choose! < C I 

<! and a 2< 1. It is also easy to prove that 

dpl 
-- <1. 
dPm 

The total mass and charge are 

q2 = a2~(3CI - 1)/4, 

M=(rol3)[1 + !(3CI -l)a2]. 

V. DISCUSSION AND CONCLUSIONS 

(129) 

(130) 

(131) 

In Sees. III and IV we have explicitly displayed some 
interior solutions to the Einstein-Maxwell equations for iso
tropic and anisotropic matter, respectively. They have the 
following properties. 

(i) The stressesPr andpl' the mass energy density Pm' 
and E 2 are non-negative throughout the matter. 

(ii) The following inequalities hold: 

dPr <1, dpl <1. 
dpm dPm 

(iii) eV and e" are positive, continuous, and nonsingular 
for r<ro. 

(iv) All solutions are matched with the Reissner-Nord
strom metric at r = r o' 

Finally, since our solutions are not valid at the center 
r = 0, we can consider the sphere as composed, in the central 
region, by a core, inside of which all physical quantities are 
finite, and outside, above the core, by a self-similar fluid de
scribed by any of the solutions ofSecs. III and IV. 

To illustrate this idea, let us match the interior 
Schwarzschild solution (Pm = const) with a charged dust 
solution given by Eqs. (51)-(57), across the surface r = r l. 
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The interior Schwarzschild solution is given bylS 

dr = [A - B (1 - a2r)I/2]2 dt 2 

- (1 - a2r)-1 dr - r d1l 2, (132) 

Pm = (3/81T)a2, (133) 

81T]J=3a2{2A/3/[A -B(I_a2r)I/2] -l}, (134) 

where a, A, and B are constants to be determined from the 
boundary conditions. 

Thus, from the continuity of gpv at r = r I and using (57), 
we have 

[A - B (1 - a2r1)1/2]2 = (a + !)(rl/ro)2, (135) 

(l-a2r1)= [a(rolrl)4+!]; (136) 

using (134) and the continuity pressure condition at r = r l, 
we get 

2A 131 [A -B(I- a2r1)1/2] - 1 = O. (137) 

Finally, from (54), the continuity of Fpv gives 

r~ -12C= 0 (138) 

(we remember that C = ar~). 
Thus, we have four equations which can be solved to 

obtain A, B, a, and a2 in terms ofro and r l: 

12C = 11, a = -b (rl/ro)4, 

a2 = 2/3r1, Pm = 1/41Tr1, 

A =J3B, 

B = J3 (!i)[_1 (!i)4 + .!.] 112. 

2 ro 12 ro 4 
The total charge will be 

q2/~ = ! [1 - (rl/ro)4]. 

The mass of the whole configuration will be 

2M Iro = [1 - !(rl/ro)4]. 
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The four-dimensional field equations in an algebraically extended Kaluza-Klein theory are 
solved in the static spherically symmetric case. Eight distinct classes of solutions are found, some 
of which are free of singularities in both the metric and the electromagnetic field. 

I. INTRODUCTION 

Recently a new technique for extending general relativi
ty (GR) has been introduced. 1 This technique, called the 
method of algebraic extension (AE), assumes that tensor 
fields take their values not in the algebra of real numbers H, 
but in some arbitrary algebra d. Under some very general 
assumptions, it has been shown using AE that GR may be 
consistently extended for only five algebras, yielding five 
theories of gravity. 1-3 The algebras are H, C, lE, !!2, and lEI 
(denoting the real, complex, hypercomplex, quatemion, and 
hyperquatemion numbers. respectively); d = H yields GR. 
Lagrangians for these theories have been constructed that 
are linear in the curvatures; these take their values in the real 
algebra H no matter what dis. 1 

The theories based on C and lE have been investigated by 
Moffat and co-workers in some detail.4 Although the theory 
based on C has ghosts, the theory based on lE does not5 and is, 
in fact, testable in the solar system.6 A Kaluza-Klein 7 exten
sion of the lE theory has been constructed by Kalinowski, for 
both the Abelian8 and non-Abelian cases.9 The lE theory is 
referred to in the literature as N.G.T.4 

The Abelian case, which is a generalization of Einstein
Maxwell (EM) theory, is quite interesting. The unifying of 
the lE algebra with the Kaluza-Klein extension yields new 
interference effects between the gravitational and electro
magnetic fields which are not present in EM theory. 8 It has 
been shown that in the linear approximation the graviton
photon coupling is the same as in EM theorylO and that the 
new effects do not contradict any present-day solar-system 
data. 8 

By finding an exact solution to the field equations of the 
AE Kaluza-Klein theory, Kalinowski and Kunstatterll 

were able to demonstrate the consequences of the new effects 
in the static spherically symmetric case. These are as follows. 

(1) The electric field is nonsingular at r = 0 and has Cou
lomb-like behavior for large r. There is, therefore, a maximal 
value for the electric field. Asymptotically the full solution 
behaves like the Reissner-Nordstrom solution. 12 

(2) The energy distribution is nonsingular. 
(3) The total energy of the solution is the same as the 

Newtonian mass (the mass seen at r-+oo). 

-I Now at the Department of Physics, University of Toronto, Toronto, On
tario, Canada M5S lA7. 

(4) At r = 0 (or anywhere else) there are no Coulomb
like or Newton-like first- and second-order poles with mass 
and charge as residues in the solution; hence, in this sense, 
the solution describes "mass without mass" and "charge 
without charge." 

The aim of the present work is to investigate the field 
equations in the Kaluza-Klein lE theory in the four-dimen
sional static spherically symmetric case. Several new exact 
solutions are found, some of which are nonsingular in both 
the metric and the electromagnetic field. All solutions re
duce to GR in well-defined limits. The solution of Kalin
owski and Kunstatter is found as a special case of a more 
general class of solutions. 

The organization of the paper is as follows. In Sec. II the 
Kaluza-Klein lE theory is outlined. The metric, energy-mo
mentum tensor, and field equations are presented in Sec. III 
and are solved in a variety of special cases in Sec. IV. Section 
V contains a discussion of the results. 

II. KALUZA-KLEIN E THEORY 

In the hypercomplex (d = lE) case the algebra has basis 
elements (l,eo). where e~ = + 1. Using the method of AE, 1,3 

it was shown that an lE-valued metric may be given for a real 
four-dimensional manifold M, with lE-valued connection W 
such that 

VJ.lgaf3 =gaf3,J.l - WragYf3 +gay(Wrf3)*=O, (2.1) 

where the operator "*,, is defined by 

(a + eob )* = a - eoh. (2.2) 

The ordering of tensor indices is important, but ordering of 
factors is not, since lE is Abelian. The curvature and Lagran
gian of the lE theory are 

R a - wa W f3 + W CT wa W CT w a 
J.lvf3 - J.lf3,v - vf3,J.l J.lf3 VCT - vf3 J.lCT' 

(2.3) 

(2.4) 

where A 1 and A2 are real constants and g J.lV = ~ - g g J.lV. 

The Kaluza-Klein extension of the lE theory is given in 
Ref. 8. An outline of its derivation is as follows. Let P be a 
principal fiber bundle with structure group U( 1) bver a 
space-time M with projection 1T and connection one-form a. 
A curvature form for a is 
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n = da = !1T*( FI')~ I' t\ e ), 

where 

FI''' = al'A" - a"AI' , 

e*a =Ae. 

(2.5) 

(2.6) 

(2.7) 

HereA is the electromagnetic four-potential, e is a local cross 
section of ~, e I' is a frame on M, and FI''' is the electromag
netic field. Using the metric of (2.1), with 

gaP gYP = g{Ja gPY = o~, 
connections (j).o and w.o may be defined such that 

(j)a -ra 0- Y P- PY , 
a _ W a -OY wp - PY , 

wp = (j).o - ~ o.ow, 

where W.oy is the connection in (2.1) and 

w = WyO y==! (W~(7 - W~)e y. 

By introducing a frame 

OA = (1T*(oa), Ka = 0 5), 

(2.8) 

(2.9a) 

(2.9b) 

(2.10) 

(2.11) 

(2.12) 

the metrization of P may now be carried out. From Ref. 8, 
quantities yand r may be defined so that 

r= 1T*(gapoa®OP) - OS®05, 

r = 1T*(gaP0 a t\ 0 P). 

(2.13a) 

(2.13b) 

The constant K = 2{G /c2
; in this paper units G = c = 1 are 

used. The metric YAB of ~ is given bY' 

(2.14) 

By requiring Vy = 0, a metric connection W~ on P may be 
defined having components -

.. A __ (1T*(W.o ) +gy
a
H yp0

5 
HpyOj 

w~ (2.15) 
B ~P(Hyp + 2Fpy)O YO' 

where HaP is defined in terms of Fap by the equation 

guf3g YUHya + gaugarHpy = 2gaug<7YFpy , (2.16) 

with HaP = - H{Ja' A complete derivation of Eqs. (2.13)
(2.16) is given in Ref. 8. The ~ connection may be rewritten 
in terms of a connection (j)~ as in Eq. (2.10). The four-dimen
sional Lagrangian for the theory is conveniently written in 
terms of the connection r .oy and isS 

Y = g I'''RI',,(r) + ~g PI' WI p,l' I 

+ (2(gI'''FI',,)2 - HI'''FI'''~' (2.17) 

where the constants A I and A2 in Eq. (2.4) are chosen so 
that13 

RI'"(r)=r~,,,p - !(FfI'P),,, 

+ rfvfJ),I') - r~"r~ + r~pr~". 
The field equations which follow from (2.17) are 

RaP(W) - !l5apR (W) = 81TT aP' 

gl''''u - gyvr ~u - gl'yr:;" = 0, 

gll'''I,,, = 0, 

(Hal' - 2glal'lgvfJF"p)-I' = 0, 
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(2.18) 

(2. 19a) 

(2. 19b) 

(2. 19c) 

(2. 19d) 

using the notation RaP(W) = RaP(r) - ~W[a,p I' The elec
tromagnetic energy-momentum tensor is given by the 
expression 

TaP = - (1I41T)(guf3H l'uF ~ - 2g I'''FI'"F aP 

- !gaP(HI'''HI''' - 2(gI'''FI',,)2)), (2.20) 

with 

H ~ = g Pl'g yaHpy . 

It is easy to show that 

~PTaP =0. 

(2.21) 

(2.22) 

Note that a coupling of the form g I'''FI''' appears. It is 
the presence of this term in Eqs. (2.19) and (2.20) that yields 
the interesting behavior for the gravitational and electro
magnetic fields mentioned previously. Solutions of Eqs. 
(2.19) in the absence of this term may be found in Ref. 14. 

The derivation of Eqs. (2. 19d) and (2.20) is perhaps a bit 
subtle. From (2.16) it is clear that HI''' implicitly depends on 
the metric and the electromagnetic potential; from this equa
tion it can be shown that H I'''FI''' = H I'''HI'''' Variations of 
HI''' therefore always occur as grag1rY(oHyaH1rT 
+ H yaoH1rT ). This variational combination is straightfor
wardly solved using (2.16) for variations with respect to both 
gl''' andAI" Equations (2. 19d) and (2.20) correct the results of 
Refs. 8 and 11, in which variations of HI''' werenotappropri
ately accounted for l5

; this error is corrected in Ref. 16. 

III. THE STATIC SPHERICALLY SYMMETRIC CASE 

In the case of spherical symmetry the metric tensor has 
the form l7 

(

-a 

gl''' = ~ 
-(j) 

o 
-f3 

-usinO 

o 

o 
u sinO 

-f3sin2 0 
o 

(3.1) 

where a, f3, Y, and (j) are functions of rand t. The tensor g 1''' 

has components 

Y 0 0 
(j) 

(j)2 _ ay (j)2 - ay 

0 
-f3 u cscO 

0 
f32 + u2 f32 + u2 

= 
-f3csc2 0 

0 
-ucscO 0 
f32 + u2 f32 + u2 

-(j) 
0 0 

-a 
(j)2 _ ay (j)2 - ar 

(3.2) 

The electromagnetic field tensor FI''' has components 

FI4 = ~(r,t), (3.3a) 

F23 = ~(r,t)sin 0, (3.3b) 

all other components being zero. The tensor HaP may be 
shown to be identical toFaP usingEqs. (3.1)-(3.3) and (2.16). 
Using the relation 

(3.4) 
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which follows from (2.6), the value of ~(r,t) is found to be 
constant and shall be denoted by Bo. It corresponds to the 
magnetic charge of the particle. 18 

The components of H afJ are all zero except for 

H 14 = - ~ I(ar - (ii), 

H 23 = Bo csc () I( {J 2 + u2 ). 

(3.Sa) 

(3.Sb) 

The determinant of the metric is given by 

[=g = sin () (ar - (ii)1/2( {J2 + u2)1/2. (3.6) 

Before writing down the components of T afJ' it is useful 
to first solve Eqs. (2. 19c) and (2.19d). Equation (2. 19c) has 
the solution 

(Ii = 14ar/({J2 + u2 + 14), (3.7) 

where I is an arbitrary constant of integration. Equation 
(2. 19d) has the solution 

~(r,t) E = ((i)112)[( - Qp2 + 4uBo)/(p2 + 4/ 4)], (3.8) 

where Q is an aribitrary constant corresponding to the elec
tric charge of the particle l8 and 

p2 ={J2 + u2
• (3.9) 

The expression for E in (3.8) depends crucially on the pres
ence of the (g I'''FI''') term in (2.19) and (2.20). If this term 
were absent, then (3.8) would become 

E = - Q(i)112 = ~ (ar - (i)Z)/( {J 2 + UZ). (3.10) 

If 1= 0, then (3.10) yields E with (i) = O. Note that in (3.8) 
both the electric and magnetic charges of a particle contri
bute to the electric field E. 

The components of TaP follow straightforwardly from 
(2.20). They are 

41rTII = _ 1..- (E12 )2~ _ i aB~ 
2 (i) p2 2 p2 

+ 2a(UBo + Q/2)2, (3. 11 a) 
p2 + 4/4 

41TT22 = 1..- {JB ~ + 1..- (E12 )2.!!.... + 2{:J (UBo + Q/2)2, 
2 p2 2 (i) p2 p2 + 4/4 

41rT14 = -=rZ ( EI2 )2 ~ + 4uBoE 
(i) p2 p2 

(3.11b) 

(3.11c) 

(3.11d) 

+ 1..- (i)B~ _ 2ti.l(UBo + Q/2)2. (3. lIt) 
2 p2 p2 +4/4 

The field equations (2. 19a) may now be written down, using 
Eqs. (2.l9bH2.19d) and (3.11). In the static case these are 

1+ +B' (
UB' -{JA ')' ({JB' + uA ') 

2a 2a 
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+ ~ (UB I ~{JA I )In(arU)' 

= .!!.... [B~ + (E12 )2] + 4{J [UBo + Q/2]2, 
p2 (i) p2 + 4/4 

(3.l2a) 

(3. 12b) 

-A" + !(lna)'A' - WA ')2 + (B ')2] - pn(rU)" 

+! In(rU ), In(alrU)' = ~2a [B~ + (E~2 y] 
+ 4a(UBo + Q/2)2, 

p2 + 4/4 

(3.12c) 

:a [(1-U)[(A/)2+(B /)2] + ~(lnr)'ln(r:2), 

+ 1..-(ln U)' In (rp4) I 
2 a 2 

+ 1..- (2U - 1) [(In U)']2 + In(rU2 ),,] 
2 1- U 

= L [B~ + (E12 )2] _ 4r (UBo + Q/2)2. (3.12d) 
p2 (i) p2 + 4/4 

The quantities A, B, and U are defined by 

A =lnp, B=tan-I({Jlu), 
(3.13) 

and 

A I = BA, etc. (3.14) 
Br 

Furthermore, by using the definitions 

x~fila, y=rU, eq~eA+lB=u+i{J, (3.15) 

the field equations (3.12) may be written as 

2A " - (A ')2 + (B ')2 + A I In(xly)' = 0, (3.16) 

(lny)" + !(lny)'ln(xy)' = (2/x)F, (3.17) 

q" + !q' In(xy)' + 2(i + c)(e qlx) = (e qlx)G - (2/x)F, 
(3.18) 

where 

G=16[ UBO+QI2][B _e_qUBo+Q/2], (3.19) 
p2 + 4/4 0 (p2 + 4/4) 

F B~ + (EI2/(i))2 - 4p2[(uBo + QI2)/(p2 + 4/4J]2. 

(3.20) 

The details of the calculations that are used in obtaining 
(3. 12H3.20) are given in Appendix A. 

Equations (3.16H3.18) are the field equations for the 
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AE Kaluza-Klein theory in the electromagnetic case. In the 
next section these equations will be solved in a variety of 
special cases. 

IV. SOLUTIONS OF THE FIELD EQUATIONS 

The field equations (3.16H3.18) are most easily solved 
by defining a quantity A (see Ref. 19) 

(y')2 =A (r)(y/x). (4.1) 

Equation (3.17) becomes 

A'=4y'F. 

By writing 

q + z = p, z = In y, 

Eq. (3.18) becomes 

2 d
2
p A + dA dp + 4(i + c)e P = 2Ge P, 

dr dz dz 

(4.2) 

(4.3) 

(4.4) 

where (4.2) has been used. Equation (4.4) integrates to 

( dP )2A + 4(i + c)e P = f2G de
P 

dz + CJ> 
dz dz 

(4.5) 

where CI is a complex constant. This equation may be rein
serted into (4.4); the resulting equation is then consistent 
with Eq. (3.16) provided 

dA [f dG] - =4eF=2Re e P - -(RecI)+A, 
dz dz 

(4.6) 

which follows from comparison with the real part of (3.16). 
The condition (4.6) on F and G makes the system of 

equations (3.16H3.18) difficult to solve in general. Solutions 
may, however, be easily obtained in two special cases: B ' = 0 
and uBo = - Q12. In each case exact solutions to the field 
equations will be obtained by considering a variety of bound
ary conditions. These equations are now Eqs. (3.17), (4.5), 

This solution is therefore 

(

a 

gpv = ~ 
-12/r~1 + u~ 

o 
-r 

- uor sin () 

o 

o 
uor sin () 
- r sin2 

() 

o 

I 

where a is given in (4.11). The Kalinowski-Kunstatter solu
tion has Uo = O. All of the properties of their solution that 
were mentioned in the Introduction hold for this solution 
except that as r_ 00, u-uor. However, the line element still 
behaves like the Reissner-Nordstrom line element for large 
r. If the boundary conditions are such that u-o as r- 00, 

then u==O (i.e., Uo = 0). 
The case uBo = - Q1 2 shall now be examined. In this 

case (3.19) and (3.20) imply 

G = 0, F = B ~ + Q 2 = const. (4.15) 

Equation (4.6) then gives 

A = 4eF + Ao, (Re c l ) = Ao, (4.16) 

where Ao is a real constant. Finally, (4.4) yields 

2311 J. Math. Phys., Vol. 26, No.9, September 1985 

and (4.6). The fact that all variables now depend on r viay is 
merely a reflection of the coordinate degree offreedom left in 
the system. Anyone of /3, r, or a may be chosen freely, 
corresponding to a choice of coordinates. Alternatively, co
ordinate invariance implies that the functions y may be cho
sen freely. 

Case (Aj B' =0: In this case (3.13) implies u = uo/3, and 
a comparison of(3. 12a) and (3. 12b) shows thatc = - uo.ltis 
convenient in this case to choose coordinates so that/3 = r. 
In this case Eq. (3.16) integrates to 

y/x=arU=A~(A'f, (4.7) 

which is 

ar=4Ao(1 +L4/r4~1 +u~, 

where 

(4.8) 

L 4 = 14/(1 + u~). (4.9) 

By examining (4.6) [or alternatively (3. 12a) and (3. 12b)] one 
finds Bo = 0 (otherwise /3 = const and ar = 0). Solving 
(3.17) yields 

(r/a)' = 1 - [rQ 2/(1 + u~)](r" + 4L 4)-2, (4.10) 

which integrates to 

a = (1 + aolr+ [Q2/(1 + u~)]r-IK(r,L ))-1, (4.11) 

where 

K(r,L) = - f r(r" + 4L 4)-2 dr. (4.12) 

This is a generalization of the solution obtained by Ka
linowski and Kunstatter, 11,16 which in turn extended the so
lution of Papapetrou. 17 Here, aIr) is nonsingular if ao = 0; 
letting r-oo gives the Newtonian mass to be 

(4.13) 

12/r~1 + u~ ) 
o 
o ' 

(1 + 14/(1 + u~)r4)a-1 

(4.14) 

2 . h-
'
[ --sm rc; 

(i - C)cl e-PI2] - f dy 
4(c2 + 1) - y(4yF + Ao)1/2 . 

There are two distinct solutions to (4.17). 
(a) Aoi=O: Here C1 = Ao(1 + ;co), and 

(4.17) 

(u + i/3)y sinh2[(1 + iCo)'/2(sinh-'(~AoI4yF) + a)] 

= Ao(i - c)(1 + ico)/4(1 + c2). (4. 18a) 

(b) Ao = 0: Here C1 = ico, and 

(u + i/3)y Sinh2[ (:; )'/2(l + a)] = 
(ico)(i - c) 
4(1 +c2) • 

(4.18b) 

In both cases a is a complex constant to be chosen to satisfy 
certain boundary conditions, and 
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(J) = [2(y')(4yF + 11.0)-1/2, 

where y is an arbitrary function of r. 

(4.19) 

The solutions (4.18) must now be chosen to satisfy physi
cally realistic boundary conditions. These shall be taken to 
be, for r_<XJ, 

a-I, r-1, /3-r. (4.20) 

The condition/3-r impliesy-l; for (4. 18a) this means 

a = - sinh-1~lI.o/4F 

and for (4. 18b) 

(4.21a) 

for Co = O. For (4. 26a), a, r, and{J) are given by (4.19), withy 
an arbitrary function of r, and for (4.28b) and (4.28c), a, r, 
and (J) are 

r = (1 + [4/(U2 + /3 2)}yo, 

a = (u2 +/32)(Z')2, 

(J) = [2.JYo(Z'). 

(4.27a) 

(4.27b) 

(4.27c) 

The constants c, Co, zo, and Yo are determined by the bound
ary conditions on u [and on a, r, /3 from (4.20)]. 

Consider the case U-Uo as r_ <XJ • Since y_l + & (1/r), 
Eq. (4.26a) yields 

c=O, Co = 12uo, (4.28) 

a= -1, (4.21b) and so u and/3 take the form 

since the right-hand side (rhs) of both sides must remain fin
ite as r - <XJ. The two solutions may be power series expand
ed for large r [y = 1 + &(1/r)]; an equation of the form 

cc r anr- n = const 
m=1 

(4.22) 

is obtained, which can only be true if r is a constant implying 
a = O. In fact, by series expanding u and /3 in powers of r it 
can be shown that u is constant only for Co = 0, which then 
yields u==O. Hence u is not a nonzero constant; since 
uBo = - Q[2, both the left- and right-hand sides separately 
vanish. There are four possibilities, leading to seven distinct 
solutions, denoted by cases (B)-(H). 

Case (B) u=[2=O: This case is general relativity. The 
solution is the Reissner-Nordstrom-type I2 solution with 
electric charge Q, magnetic charge Bo' and mass M 2 = !A.o 
+ F. The functiony is, from (4. 18a) 

y = I - 2M /r+ (Q2 +B~)/r. (4.23) 

The solution (4. 18b) yields (4.23) but with M 2 = F. The func
tions a, r, and (J) are (/3 = r) 

r=y=I-2M/r+(Q2+B~)/r, a=r- 1
, {J)=O. 

(4.24) 

Case (C) u=Q=O: The solution takes the form 

r= (1 + [4/1')(1- 2M /r+B~/r), 

a=(I-2Mlr+B~/r)-" (J)=[2/r (4.25) 

in coordinates where/3 = r, whereM = !A. 0 + B~. IUo = 0 
then (4.25) holds with M = Bo. 

Cases (D)-(F) Bo=Q=O: This is a general case ofa re
sult obtained by Vanstone. 19 The functions u and /3 are most 
easily expressed in terms of the function y 

(D) u +;/3 = [11.0(; - c)/4(1 + c2lY](1 + ico) 

Xcsch2[(~1 + ico/2)lny], (4.26a) 

if 11.0#0 and by 

(E) u + i/3 = ico(i - c) csch2(1ko (z - Zo)), 
4(1 +c2

) 2 
(4.26b) 

for co#O and by 

(F) u+;/3= [(i-c)/(1 +c2)](Z_ZO)-2, (4.26c) 
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u= 11.0 
2y 

x[Sinht,6+ sint,6_ + 12uo(l-cosht,6+ cost,6_)], 

(cosh t,6 + - cos t,6 _ )2 

/3= 11.0 
2y 

(4.29a) 

X [ 12uo sinh t,6 + sin t,6 - - (1 - cosh t,6 + cosh t,6 _ ) ], 

(cosh t,6 + - cos t,6 - f 
where 

t,6± = (1/~)(~1 + (12uo)2 ± 1)1/2(lny). (4.30) 

For Eq. (4.26b), Eq. (4.28) holds, but now 

u = _ 6u
o 

cosh((z - zo)/~)cos((z - zo)/~) - 1 , 

(cosh((z - zo)/~) - cos((z - ZO)/~))2 
(4.29b) 

/3 = 6u
o 

sinh((1/~)(z - zo))sin((l/~)(z - zo)) . 

(cosh((z - zo)/~) - cos((z - ZO)/~))2 

Finally, Eq. (4.26c) can only satisfy the given boundary con
ditions for c = uo = O. 

Note that in all three cases, the functions y (or z) may be 
chosen arbitrarily. It is possible to choose coordinates so that 
as r-o, y-yo and y' -Yo. In this case a, /3, u, and (J) are all 
finite as r-o, and so the solutions obtained will at most 
contain coordinate singularities. For example, if z in (4.26c) 
is chosen to be 

(4.31) 

then a, /3, r, and (J) are finite for all values of r in this coordi
nate system. 

Finally, if boundary conditions are chosen so that 
u-ur as r-<XJ then c#O#uo in (4.26c) and so u#O. 

Cases (G) and (H) Bo = [2 0: This is the case of an elec
trically charged, magnetically neutral particle. The func
tions u and/3 are, from (4.18), 
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.-2 [(1 - cCo)sinh t/J + sin t/J _ + (c + co)(1 - cosh t/J + cos t/J _ ) ] 
U = + [AoI2y(1 + c-)] ( h .1. _ .1.)2 ' 

COS 'f/+ cos'f/_ 

(4.32a) 

_ 2 [(C + co)t/J sinh t/J + sin t/J _ - (1 - cco)( 1 - cosh t/J + cos t/J _ )] 
/3 - [AoI2y(1 + C )] ( h .1. .1. )2 ' cos 'f/+ -cos'f/_ 

and 

U= Co [ 1 - cosh t/J cos t/J - C sinh t/J sin t/J] 
2y(1 + c2) (cosh t/J - cos t/J)2 ' 

(4.32b) 

/3 = Co [ c( 1 - cosh t/J cos t/J) + sinh t/J sin t/J]. 
2y( 1 + c2) (cosh t/J - cos t/J)2 

Here 

t/J ± o=.J2(~ 1 + ~ ± 1)1/2[sinh-l(~AoI4yF) 

- sinh-l(~AoI4F)], 

t/J = ~ col2F ( 1/..[y - 1), 

where now F= Q2. 

(4.33a) 

(4.33b) 

It is clear from (4.32a) and (4.32b) that U cannot be con
stant unless u = 0, since these equations would give y and P 
to be constants. The boundary conditions (4.20) along with 
u-uo as r--oo give the result (4.28) for c and Co in both of 
Eqs. (4.32). By series expanding y = 1 - 2M Ir + ... , the 
mass parameter M is given by 

M2 =!Ao + Q2, (4.34) 

for both solutions [Ao = 0 in (4.32b)]. Hence (4.32) becomes 

u = Ao [Sinh t/J + 
2y 

sin t/J _ + 12uo(1 - cosh t/J + cos t/J _ )], 

(cosh t/J + - cos t/J _ )2 

/3=Ao 
2y 

(4.35a) 

x[12Uosinht/J+ sint/J_ -(I-cosht/J+ cost/J_)], 
(cosh t/J + - cos t/J _ )2 

for Ao # 0, and 

u = 6uo [ 1 - cosh t/J cos t/J ], 
y (cosh t/J - cos t/J)2 

(4.35b) 

/3 = 6uo [ sinh t/J sin t/J ], 
y (cosh t/J - cos t/J)2 

where a and r are given by (4.19) with / = 0 and w = O. 
Suppose now that y-o as r-o. In this case both 

t/J ± -- 00 and t/J- 00, and if y __ ~S for s> 0, then in (4.33a) 

u __ AoK- 1(1 - 12uo)I(K+ -2)-0, 

/3--AoK -1(12uo + 1)I(K+ -2)-0, 

where 
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(4.36a) 

(4.37) 

I 
and in (4.33b) 

u __ 12uor- 2s exp[ - ~6uolFr-s ]-0, 
(4.36b) 

/3 __ 12uor-2s exp[ - ~6uolFr- s ]-0. 

For both solutions r = y-o and 

a--UoK -2(12uo - 1)2l[s(K+ -1)-1]-0, (4.38a) 

a __ [(12uo)2/2F]r- 2- 4S exp[ - 2~6uolFr-S]-o. 

(4.38b) 

Note that in (4.38a), s> ! for a-o. Hence the metric is non
singular as r-o. The function y may be chosen so that only 
coordinate singularities are present. By choosing y--Yo as 
r-o it is possible to have a, /3, r, and u all finite and nonvan
ishing in this limit. 

Of course it is possible to work in a coordinate system in 
which /3 = ~ and then (4.33) implicitly defines y and u in 
terms of p. For the Ao = 0 case it is relatively easy to express 
y as a function of r using power series; this is shown in Ap
pendix B. 

Finally, for (B) and (H) the electric field is given by Eq. 
(3.10) 

E=_Qwl/ 2 (4.39) 

and is nonsingular for the cases (O)-(F). 

v. SUMMARY AND CONCLUSIONS 

Several exact solutions to the d = 4 field equations of 
the AE Kaluza-Klein theory have been found in a variety of 
special cases. The results for the metricgJLV given in (3.1) are 
summarized in Table I, and in Table II the values of various 
parameters in Table I are listed. 

In Table I, solution (A) has noncoordinate singularities 
at the origin only for rand w. Solutions (B) and (C) have 
noncoordinate singularities in a, P, and w, while solutions 
(O)-(H) have only coordinate singularities. This is most easi
lyunderstood by examining Eqs. (4.18). Ifu = 0, thenymust 
be singular when P = 0; in coordinates where /3 = ~ this 
forcesy (and hence a,r,w) to be singular at the origin. But if 
u #0, as in solutions (0), (E), (G), and (H), this singularity can 
be avoided; hence these solutions have only coordinate sin
gularities. In solution (A) singularities in a can be avoided by 
choosing a o as in Table II. In solution (F) the absence of a 
mass parameter allows a singularity-free solution, even 
though u = O. It has been demonstrated that the E theory 
(N.G.T) has nonvanishing dynamical torsion8

•
20; hence the 

singularity theorems21 may be avoided. In order to under
stand this more fully in the context of the solutions in Table I 
it would be of interest to calculate whether or not the curva
tures associated with these solutions contain any singulari
ties. This would involve the computation of the Kretsch-
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TABLE II. Notation. 

Parameter Value 

Mo 1TQ 2/I6./2/4 

K(r,L) -fr4 r 4dr= _1_J(,[2L) 
+ 4L .,fiL 

J (x) _1_ {In( x 2 + ,[2x + 1 ) 
4.,fi r - ,[2x + 1 

+ 2 [tan-'(,[2x + 1) + tan-'(,[2x - I)]} 

L 4 /4(1 + u~)-' 
M2 !Ao+Q2+B~ (Mass) 

~± (WI + (I2uo)2 ± !)' /2 Iny 

~ (I/.,fi)(z - zo) 
I/I± (2~I + (I2uo)2 ± 2)"2(sinh-'(~A.oI4yF) - sinh-'~A.oI4F) 

1/1 (6uolF)(1/~ - 1) 
y,z Arbitrary functions of r that equal unity when ~oo 

uo,A.()o/4 Constants of integration 
Q 2 Electric charge 
B ~ Magnetic charge 

mann scalar Rp.vapR p.va{J for each of these solutions, to see 
what singularity structure this object has. Work on this area 
is in progress. 

Although the magnetic field (3.3b) is singular at r = 0, 
the electric field (3.10) or (4.39) is not. This is because of the 
coupling between the electromagnetic field and the metric in 
(2.17) as discussed in Sec. III. Asymptotically, all solutions 
except for (F) have Schwarzchild/Reissner-Nordstrom-like 
behavior.8

•'2 At the origin (r = 0) in solutions (A), (D), (E), 
(0), and (H) there is no mass or electric charge; only the 
parameters I in (A) or (uo) in (DHF) are present. 

Although the Kaluza-Klein E theory described in Sec. 
II contains the ordinary Kaluza-Klein theory7 (reducing to 
it when the skew part ofthe extended metric vanishes), the 
solutions obtained in this paper do not contain the static 
spherically symmetric solutions of the ordinary Kaluza
Klein theory. 22 In Ref. 22 the five-dimensional field equa
tions were solved in the static spherically symmetric case. 
The solutions of Table I are solutions to the dimensionally 
reduced four-dimensional field equations of the extended E 
theory; as such they contain only the solutions of the dimen
sionally reduced four-dimensional field equations of the or
dinary theory, i.e., Einstein-Maxwell theory. 

It is shown in Ref. 8 that solution (A) could describe the 
field of an electron when Uo = O. The parameter I has been 
interpreted as a constant related to the fermion number of a 
body20; this interpretation is in agreement with all present
day solar-system data.4-6 However, the parameter Uo has not 
yet been given a physical interpretation. It seems to playa 
role in gp.v somewhat analogous to that of Bo in Fp.v. It may 
be that Uo is connected with certain topological invariants of 
the AE theory; this can only be decided by further investiga
tion of the topological structure of AE theories. 
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APPENDIX A: DERIVATION OF THE FIELD EQUATIONS 

In this appendix a derivation ofEqs. (3.16)-(3.19) is giv-
en. 

The field equations (2.19) are most easily solved as fol
lows. Equations (2.19c) and (2.19d) are straightforwardly 
solved [using (3.1)-(3.6)] to yield Eqs. (3.7) and (3.S). The set 
of equations (2.19b) determines the 64 r~'V (Ref. 23). The 
nonvanishing components have been found by Pant, in the 
static case, to be,25 using (3.13), 

r : 1 = a' /2a, r ~2 = csc2 or ~3 = (1/2a)(uB ' - PA '), 

r~ = liJ: In [_U_] + L, r~2 = r~3 = -.!..A', 
a U-l 2a 2 

r~4 = - r~4 sin2 0 = (liJ/2a}B' sin 0, 

rt4 = (liJ2
/ 2ar)ln[ U /(U - 1)] + r' /2r, 

r:4 = -r!l =(liJ/2a)ln[U/(U-l)], 

r13 = - r~2 = (sin O/2a)(uA' + pB'), 

ri4 = - r~2 = - r!3 = - (liJ/2a)A " 

r~3 = -r~l = -r~2 sin20=r~1 sin20=!B'sinO, 
(AI) 

where X' =ax/ar. 
Equations (AI) are then used in (2.19a) to obtain (3.12). 

In the static case the non vanishing components of (2. 19a) 
yield 

R22 = S1TT22, 

R 23 + c sin 0 = S1TT23, 

Rl1 = S1TTw 

R44 = S1TT 44' 

(A2a) 

(A2b) 

(A2c) 

(A2d) 

The equations involving R33 are identical to those involving 
R 22, and in the static case the equations involving R 14 and 
Tl4 trivially yield 0 = O. Equations (A2) are identical to 
(3.12) when written out using (AI) and (3.11). In (A2b), cis an 
arbitrary constant. 

Equations (AI) [or (3.12)] may be rewritten in a more 
compact form using the technique of Vanstonel9 and Wy
man.26 MUltiplying (3.12a) by U and (3. 12b) by 13, and then 
(3.12a) by ( - 13) and (3.12b) by u, respectively, yields after 
addition 

u + cP + ~ In(arU)' + P-- - -?-!A 'B') 2B' (2B ')' 2 

4a 2a 2a 

= SpBo[(uBo + Q/2)/(p2 + 4/4)], (A3) 

uc-P+~ln(arU)'+ ~ -p--2A' ( 2A ')' 2(A ')2 

4a 2a 2a 

= SuB [UBo + Q/
2

] _ 4 2[ UB
O + Q/

2
12 

o p2 + 4/4 'P p2 + 4/4 

(A4) 

Using the definitions of q, x, yin (3.15) these two equations 

[ q" +! In(xy),q' + 2(c + ll(e q/xl] (x/2) 

= [se qBo _ 4p2(UB
O + QI2)1(UBo + Q/

2
) 

p2 + 414 p2 + 414 

- [B~ + (E/2/liJ)2] , (A5) 

where (A5) is obtained by adding (A4) to i times (A3). 
From (3.3) it follows that 

(In U)' = 2(1 - U)A " (A6) 

(In U)" = 2(1 - U)[A H - 2U(A ')2]. (A7) 

Using these two equations and (3.15), from Eq. (3.12c) one 
obtains 

2A " - (A ')2 + (B ')2 + A ' In(x/y)' + (lny)" 

+ !(In y)' In(xy)' 

_ 2a[ 2 (E/2)2] [UBo+Q/2]2 --Bo+ -- -Sa , 
p2 liJ p2 + 414 

while (3.12d) becomes 

(1- U)[2A" - (A ')2 + (B')2 +A 'In(x/y),] 

+ (lny)" + !(lny)'ln(xy)' 

_ 2a [2 (E/2 )2] [UBo + Q/
2

]2 --Bo+ -- -Sa . 
p2 liJ p2 + 414 

These two equations are equivalent to the system 

2A H _ (A ')2 + (B ')2 + A ' In(x/y)' = 0, 

(lny)" + !(lny)' In(xy)' 

_ 2 [2 (E/2)2 2(UBo + QI2)2] - - Bo + -- -p . 
X liJ p2 + 414 

(AS) 

(A9) 

(AlO) 

(All) 

By using the definitions of F and Gin (3.19) and (3.20), it is 
easy to show that (AI0), (All), and (A5) correspond to Eqs. 
(3.16)-(3.19), respectively. 

APPENDIX B: CHOICE OF COORDINATES 

Suppose that in (4.35b) coordinates are chosen so that 
13 = r. One then must solve for y in terms of r, and then for U 

in terms of r. From (4.35b), 

(r/6uo)(cosh t/J - cos t/J)2 = y-l sinh t/J sin t/J, (Bl) 

which is, upon expansion in powers of t/J, 

(r/6uo)t/J4 (1 + (4/6!)t/J4 + ... ) 
= ~(1 + 2xt/J + x2~)(1 + (2/51 - 1/(3W)t/J4) + ... , 

(B2) 

where 

x = ~F /6uo = ~Q2/6uo. (B3) 

Inversion of the series (B2) yields 

(
_1 _ 1) = _ -.!..[ 1 + Q 2 - r + _1_ (Q 2 _ r)2 
,JY 2 4Q2 SQ4 

+ ~ [- :0 (~~) + 5(Q~~ ry]] 
may be rewritten as or 

(B4) 
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(BS) 

Note that as r---*oo ,y~ instead of 1. This is because in 
obtaining (BS) it was necessary to cancel a power of.,p on 
both sides of (B2); this is not valid when ~, i.e., not for 
r---* 00. This is a general feature of solutions with Uo ¥= 0: one 
cannot obtain y as a series in r valid for O<r < 00. Instead, 
(4.3Sb) implicitly defines P and u in terms of r via the func
tion y which can be chosen arbitrarily through a choice of 
coordinates. 

One could require P = 0 only at r = 0; in this case 
(4.3Sb) implies 

O<'r/J < 11' (B6) 

or 

(1 + 11'~F /6UO)-2 <y< 1. (B7) 

By choosing coordinates so that 

y = ((r + a))I(r + aoW, (BS) 

where 

ao=a) + Q, (B9a) 

a) = 6uol(Q~ + 211'~(6uolQ)), (B9b) 

conditions (4.20) and (B7) are satisfied for all r. This choice of 
coordinates yields a metric and electric field that is free of 
singularities. 
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Quantum angular momentum fluctuations 
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An exact derivation of the angular momentum fluctuations for quantum mechanical systems with 
two-body interactions is given under suitable cluster conditions. The deviation from the classical 
result in the presence of a phase transition is discussed. 

I. INTRODUCTION 

In classical statistical mechanics it is a standard exercise 
to calculate the total angular momentum of a system of N 
indistinguishable particles of mass m. Let L z = :Ii'= I L~, 
where L ~ = XiPy.i - YiPx,it then one checks that 

N 

(L;) = 2: (x7) (P;,i) + (Y7) (P;,i)' (1) 
i=1 

This computation shows that there is a factorization of 
the momentum and position observables. Furthermore, us
ing the equipartition law (P;,i) = mkT one gets 

(L;) = mkT. 
N (2 2) , :Ii = 1 Xi +Yi 

(2) 

where ( . ) stands for the thermal expectation. Written in 
this form the result yields a direct and intrinsic method for 
the determination of the absolute temperature by means of a 
measurement ofthe angular momentum and of the quantity 
:Ii'= 1 (X7 + Y7), which is essentially related to the compress
ibility of the system. 

Here we are interested in the quantum mechanical ver
sion of this law. Another motivation for the study of the 
angular momentum in quantum mechanics is situated in the
ories on superfluidity.1 The deviation of the quantum me
chanical law from the classical one is suggested to be the 
origin of this phenomenon. These authors give an elaborate 
calculation and discussion of the angular momentum of the 
free Bose gas, which is therefore assumed to be a genuine 
theory of superfluidity. The rigorous derivation of this result 
is found in Ref. 2. 

The point of this paper is to give a rigorous derivation in 
quantum mechanics of the fact that the mean value of the 
angular momentum shows the classical behavior under fair
ly general conditions of the state. In particular we suppose 
that the state has integrable correlation functions and is 
translation and rotation invariant. As such our result is 
known for a long time. \ Their argument was an intuitive one 
based on the assumption of a finite correlation length hiding 
the problems related to the boundary conditions. Here we 
take rigorously into account a variety of boundary condi
tions. 

Basically we proceed as follows. We assume first that we 
have given a state of the infinite system (i.e., in the thermody
namic limit), which satisfies the cluster and invariance con-

a) Onderzoeker Interuniversitair Instituut voor Kemwetenschappen 
(I.I.K.W.), Belgium. 

ditions. As our main result we show that this is sufficient to 
give the factorization of the momentum and position obser
vables. Ifwe suppose furthermore that the state is an equilib
rium state, we get the quantum analog of formula (2). Our 
result is independent of the statistics. 

In the last section then, we try to clarify the importance 
of the conditions in our main theorem (111.1). Especially we 
discuss some features of the boson gas with condensate, in 
which case one finds a deviation from the classical behavior. 
The fluctuations ofthe angular momentum do not factorize, 
and even diverge in the thermodynamic limit. 

II. GENERAL SETTING 

The problem at hand requires the calculation of expec
tations of observables that are essentially functions of the 
momentum P and the position q. So, in a certain sense, the 
algebra of observables relevant to our problem contains 
merely the quantum analogs of the classical observables. 
This makes it possible to construct such an algebra for infi
nite quantum systems, which is useful both for fermion and 
boson systems. 

Take the one-particle configuration space to be 
:It' = L2(RV), where v denotes the space dimension (for sim
plicity we disregard internal degrees of freedom). Then we 
define d I' the local one-particle observables, as the * alge
bra generated by the operators of the form R (p)f(q) [on an 
appropriate domain in L2(RV)), where R is a polynomial with 
v variables and fis an infinitely differentiable function on RV 

with compact support. The P and q stand for the canonical 
momentum and position observables (i.e., Pk = (l/i)(J/ 
Jxk), ql is the multiplication operator by Xl; q = (qw .. ,qv), 

P = (PI""'Pv); [ql,Pk] = i8 Ik )· 

An n-particle observable is an element of 
d n =Sn(®d l )", the symmetrized tensor product of n 
copies of d I' A general observable for the infinite quantum 
system is a sequence A = {A n } :' = 0 with only a finite number 
of An different from zero and for each n, An is an n-particle 
observable (AoEd 0 is a scalar). Summation and mUltiplica
tion by scalars are defined on d = I A IA = {Ai} i~ 0 as 
above} in the usual way. The vector space d is then generat
ed by elements of the form 

B = (O,O,,,,,SnBn'O, ... ), 

where Bn is a tensor product b\® ··.®bn,biEd l for 
i = 1, ... ,n and Sn is the projection on the permutation sym
metric operators on ( ® YfIn . To make an algebra we have to 
define the appropriate product for the generators B only. 
Having in mind the meaning of this kind of operators, their 
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product rule has to be compatible with the following repre
sentation in the usual nobody operator language of Bose and 
Fermi creation and annihilation operators. The n-particle 
component of A" of A is then represented by 

.. ..!.. f tix l ••• dx" dYI ..• dy" (xl, .. ·,x" IA" I YI'"'' Y,,) 
n! 

Xa+(x l ) •.. a+(x" )a(y,,) ••• a(YI)' 

If we bring back a product of two such operators, sayan n
and an m-body operator, to this canonically ordered form 
(Wick ordering) by application of the commutation or anti
commutation relations for a+(x) and a(x), we obtain a list of 
k-body terms for k = max {m,n } , ... ,m + n. According to 
this compatibility we define a product on d as follows: 

A = (O, ... ,O,s,,(al ® ••• ®a,,),O, ... ), 

a;Ed I> for i = 1, ... ,n, 

B = (0, ... ,0,s" (b l ® ••• ® b" ),0, ... ), 

b jEd I' for j = 1, ... ,n, 

AB = {(AB)J} j=o, 

(AB ) J = 0, if j> m + n or j < max { m,n J, 

~B) = fl s 
J nlm!(j - n)l(j - m)!(m + n - JI! J 

XL L a17j1) ® ... ® a",} - m) 

®a17jJ-m+l)botl ) ® ••• ®a",,,)botm+"-J) 

®botm+"-J+ I) ® ••• ®botml' (3) 
if max { m,n J <J<m + n, where 11' and 0' run over the permu
tation groups of nand m elements. 

A * operation is defined on d by taking the adjoint of 
operators. 

A state for the infinite quantum system is defined as a 
normalized linear functional w of d, which is positive, that 
means that VA E d w(A * A ) ~ 0. We assume that w is given in 
terms of a set of correlation functions (p("pa)(XI>''',x,,), 
nEN, where pa denotes a monomial of nv variables, i.e .• 
Va EN"" pa = pfll ... p~'. p~" ••• p: ••. Then an expecta
tion value of an observable pf the form 

A = (0,0, .... 0,s" (RI(p)fM) ®R2(p)f2(q) 

as 

R(a~'I'"·'a~,v'''·':.I'·''' :.J (6) 

X (YI""'Y" Ip(II)lxl , ... , x,,) Iy, =x, .... .y.=x.· 

Thus, with the definitions (5) and (6), 

w(A) = L Tr(A"p("). 

" 
For infinite systems one has to define local densities of 

momentum, position fluctuations, and so on, because the 
observables themselves are not well defined. This is done by 
constructing a sequence fAA JA of local approximations for 
the observable A under consideration, where A is a volume in 
R", which is tending to infinity in a specified sense. In parti
cular we will use the following local approximations for posi
tion and momentum. 

Define a family (fR )RER+ of real functions on R" such 
that 

(7) 

and Va = 1, .... v. IIVafR II 00 < 00 uniformly in R. We do not 
specify these cutoff functions further, which would corre
spond to a particular choice of boundary conditions. 

Now we define the following observables in d, V f 
E c o (RV), i = 1 .... ,v, 

P;(f) = (O,~(PJ(q) + f(q)P;),O, ... ), 

Q;(f) = (O,q; f(q),O, ... ). 

It is clear that P;(fR) and Q;(fR) are observables corre
sponding to the bulk momentum and bulk position, located 
in the support of fR' roughly a ball in RV with radius R. 
When v is 2 or 3 we can define the third component of the 
local angular momentum as 

which has. according to the product rule (3), nonvanishing 
® ... ®R,,(p)f,,(q)).O, ... ) 

is calculated by the formula 

w(A) =J,fdXI" .dx"fl(xIl·· ·f,,(x,,) 
n. 

(4) one- and two-particle components. We denote them by 
[L 3(fR)]1 and [L 3(fR )]2' At any time it will be clear whether 
they have to be considered as an infinite sequence (an ele
ment of d) or as the only non vanishing component of such a 
sequence: 

X (p (")R (")(xl, ... ,x,,), 

where R (,,) is the monomial given by 

R (")(PI' .... P,,) = R I(PI)R2(P2)'" R,,(P,,). 

(5) 

and eachp; = (P;.I ..... P;.v). Here w is extended to d by lin
earity. 

Such a system of correlation functions occurs when a 
state on d is described in terms of a family of reduced den
sity matrices (p(lI) J: = 0' where the p(") are positive linear op
erators on ( ® JY)" , such that they have an infinitely differen
tiable kernel (YI""'Y" I p(II)lxl , ... ,x,,). Then define 
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A I=[L3(fR)]1 = ~(qdR (q)P2fR (q) + qdR (q)2P2 

- q2fR (q)PdR (q) - q2fR (q)2PI ). 

A2=[L3(fR)]2 = 2lS2!(qdR(q)®Pz/R(q) 

+ qdR (q) ® fR (q)P2 

- q2fR (q) ® pdR (q) 

- q2fR (q) ®fR (q)Pd· 

Now, one computes L i (fR)' expanded in its different terms: 
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L ~(fR) = (0, [A i h [A il2 + [AIA2h + [A~lb 
+ [A i b [AIA2b + [A~lb 
+ [A ~ h [A ~ ]4' 0, ... ). (8) 

In order to apply (5), one has to write L ~ ( fR ) as a sum of 
terms of the form (4). 

The LI-clustering conditions for a translation-invariant 
state can be expressed and used in an elegant way ifwe intro
duce the truncated correlation functions (p(n) pU ) T' which 
are recursively defined as follows: 

( (n)p P, Po) ( ) PI' .. P II XI,···,x1l 

- ?; II ( II) Pojll .JJojll) ( I - p PI'" PI T Xwjll'···,xwj/) , 
pe "11Ep 

fJieN", i = l, ... ,n, (9) 

where f}J n is the set of all partitions P of { 1, ... ,n}. Such a 
partition has elements 17" = (17"(1), •.• ,17"(1) I and the 17"(i) are la
beled such that 17"( 1) < 17"(2) < ... < 17"(/ I. It is easily seen that a 
translation-invariant state has translation-invariant truncat
ed functionals (p"pa) T such that 

(p(n) P:: ... p !")(xl, ... ,x,,) 

= ~ II (p(1) P ~ojll ••• P ~ojll )T 
pe~.11Ep 

X (Xwjl) - xwjl) ,···,xwj/- I) - Xwj/))' 

An LI-clustering condition is expressed as follows: 
( p(npa) Th"""O) (as a function of n - 1 v-dimensional var
iables) isL I (R(II- I)V) integrable, for certain values ofn anda. 
We now derive a lemma which is an immediate consequence 
of such a clustering condition. It shows how LI clustering is 
at the origin of the factorization of (L ~ ). 

Lemma ILl: Suppose that the truncated correlation 
functions (pIli) pa) T are translation invariant and are 
L1(Rln-I)"j. Let {A (R )heR+ be a sequence ofobservables 

A (R) = (0, ... ,0, SIl(pa,!t!qH~ ... ®pa"!,,(q)),O, ... ), 

with 

!1(X1)" '!II(XII ) =xi,j Xk,JR(X 1)" '!R(X,,), 

i,kep, ... ,n j j,lep, ... ,vj. 

The!R is defined as above; let Zv be the volume of the unit 
ball in v dimensions. Then for E> 0, 

XfR(X I )" '!R(Xnl< p(np~1 ..• P:")r(xl, ... ,xIl) 

=0. 

Proof By a simple substitution x j = x; - Xk (j=l-k), 
x' k = X k , and application of the translation invariance of 
(p(lI)pa) T' we have 
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I dVxI ••. dVx" Xi,jXk,J"R(Xt!. ·1R(X,,) 

X (p("pa)T(XI, ... ,xIl) 

= I dVxI '" dVXk_1 d V Xk+ I ••• dVxlI 

X (p(lIpU) T(X\>· .. ,xk _ 1,0, Xk + I , ... , x,,) 

xI dVXk(Xi +Xk)j Xk,JR(XI +Xk) 

.• '!R(Xk_1 + xkl!R (Xk)!R (Xk + I +Xk) 

'" !R(X" +xk)· 
The second integral is majorized by 2Zv(R + W+ 2 and 
hence the integral 

\ IdVXk(Xi +xdj O Xk.1 !R(XI +Xk)'" !R(xd RV+ +€ 

as a function of x I'"'' Xk _ I' Xk + I , ... , XII' is bounded uni
formly for R> 1 and for each (Xl,· .. ,xk _ l,xk + 1>"',x,,) 
ERIn - .)v it converges to zero. As a consequence of the domi
nated convergence theorem we obtain the result. • 

Remark IL2: Obviously the result of the lemma remains 
true whenever the functions!R are replaced by some func
tionsgR such that VXeRv,lgR(X)I,,;;C!(AR+B)(X),A,B,C>O, 
or also if we drop a factor Xi,j in the integrand. 

In the calculation of (L ~) we will use frequently the 
following properties: (p(\pP) is a constant V fJeNv by 
translation invariance; by rotation invariance ( p(l) p j} = 0, 
Vje{1, ... ,vj, and (p(Ip/Pj) =~ij(P(I)(Pi)2); and (p(l)} is 
the usual particle density p. 

It is clear that Lemma 11.1 (if applicable) implies that a 
two-particle term in L ~ (fR ) factorizes. So it vanishes when 
one ofits factors vanishes. For the same reason a three-parti
cle contribution in L ~ (!R) with all three one-particle factors 
vanishing, has zero expectation itself. 

III. THE ANGULAR MOMENTUM 

Now we are ready to formulate and prove our main re
sult, namely the proof that the quantum mechanical angular 
momentum density behaves like the classical one [see for
mula (1)]. 

We remark that in the following theorem we prove that 
there is a factorization of the momentum and of the position 
observables and that this result is solely a consequence of the 
clustering properties of the state. 

Theorem 111.1: Let (tJ be a translation-, rotation-, and 
time reversal-invariant state of.Q{ with correlation functions 
satisfying the LI-clustering conditions 

for n = 1,2,3,4, aeNnv, with :Ii a i = lal";;2, then 
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1
. W(L3(/R )2) 
1m -....:..;..~....;.. 

R _ 00 I;' R 2" + 2 

= V!2 ~+ f dX(p(2l)(X)_p2)) 

X ( P(1)(PI)2) + f dx( p2PI,1 P2,1 (X)) 

= lim {2 w(Qi) W(Pi)}. 
R-oo I"R"+2I,,R" 

(10) 

Proof; The proof of the theorem is divided into two 
parts, corresponding to the different terms in the expression 
(8) of L 3(fR f. That means that we take together the terms 
which form the k-particle part in one of the three different 
contributions in L 3(/R )2, namely ([L3(/R )]1)2, [L3(/R)]1 
X [L3(/R)]2 (and [L3(fR)h [L3(fR )]1)' and ([L3(fR )]2)2. So we 
handle successively [A i h [A i b [AIA2h and [A~lb 
[A i b [AIA2b and [A~d3' [A i h and [A n4' where 
foreachobservableAed, [A]; denotes the i-particle compo
nent of A, A 1=[L3(fR )] I' A z=[L3(fR )lz. 

Now we look at the different contributions. 

(1) EI(R )=(I;' R 2"+2)-IW([ [L3(/R)]i] d. 
Because of the factthat all (p(I) pP) areconstants,EI(R ) is a 
sum of contributions of the form 

or 

C fd "x x;gR (x), 
I;R 2,,+2 

where C is a constant and 'VxeR\/gR(X)i<fR + I (x). So we 

have clearly lim EI(R) = O. 
R-ao 

(2) E2(R )==:=(I;R2"+2) -I w( [[L 3(/R)]i lz). 
This contribution contains only terms of the form 

C f d"x d"x x ·x . I2 R2,,+2 I 2 1,1 2,J 
" 

X (p(2pf' pf') (x l ,x2)g1 (XI) rl (x2 ), 

where the tR are as in remark 11.2 with i=l=j, /31 and 
/32e { 0, 1 J. Application of Lemma 11.1 yields factorization: 

C fd"x X .gl (x )(p(llpP,)(X I ) I2 R 2v + 2 I 1,1 R I 

" 
X f d vX2 x 2,; rl (x2) ( p(Ip P,) (x2)· 

Now there are two possibilities: (i) / /31/ or / /32/ = 1, then by 
rotation invariance (remark 11.2) the expression above is van
ishing for each R, or (ii) /31 = /32 = O. This means that the 
observable is simply the tensor product of two functions of 
the position operator. Therefore in each factor a momentum 
operator must have disappeared. This happens only by com
mutation with a position observable as in the following ex
ample: 
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q J(q)P2f(q) ® q2f(q)2p2 

= P2qJ(q)2 ® Plq2f(qf + iqJ(q)a2f(q) ® Plq2f(q)2 

+ P2qJ(q)2 ® 2iq2f(q)aJ(q) 

- 2q J(q)a2f(q) ® q2f(q)aJ(q). 

The last term is of the type /31 = /32 = O. We see that in this 
case the functions g1 (x) and g;(x) are zero for /lx,,":R. Hence 

lim C p2 f d "XI d "x2 XI ;X2 j g1 (X2) rl (X2) = o. 
R _ 00 I; R 2" + 2 • • 

(3) E3R =(I;R 2,,+2)-1 

X W([[L3(fR )1z[L3(/R )]Il2)' 

Each term in this two-particle observable contains a one
particle factor q; fR (q) or P j fR (q) or a j fR (q), which have an 
expectation zero for each R. By remark 11.2 and rotation 
invariance, E3(R ) = O. Clearly the same argument holds for 
w([[L3(/R)]1 [L3(/R )h]2)' 

(4) E4(R)=(I;R 2,,+2)-1 

X w([[L3(/R)]2 [L3(fR )]1]3)' 

This observable contains terms of the type 

q; fR (q) ®(PjfR(q) + i ajfR(q)) ®pPqkgR (q), 

with / /3/..: 1, /3 never equals (0, ... 0,1,0 ... ,0), the k th unit vec
tor in NV. Because of remark II.2 we only have to consider 
the case where /3 = 0 andgR (q) = fR (q)aJR (q). Then we use 
Lemma ILl and, dropping the terms which are trivially 
zero, the only contributions left in E4(R ) are of the type 

I2 ~2"+2P f d"x i d"X2 XI,; (p(2p2,j)T(XI,x2) 

" 

X fR (Xt)fR (x2) f d "X3 X3,k fR (x3) adR (x3) 

and of the type 

C p fd"x i d"x2x l ; (p(2l)T(X I,x2)fR(XI) I; R 2v+2 • 

X a j fR (x2) f d "X3 X3,k fR (X3)a/ fR (X3)' 

Both expressions tend to zero when R is tending to infinity 
because 

and 

f dVx I d"X2XI,JR(XI)ajfR(X2)S(XI,x2)=O(R ,,+ I), 

where S(XI,x2) = S(XI - x2,O)e LI(H"). The last result is 
based on a dominated convergence argument. Of course, the 
observable [[L3(fR)]1 [L3(fR )]2]3 is treated in a completely 
analogous way. 

Up to here we have found that all nonzero contributions 
must come from the part [L3(/R)] i ' 

(5) Es(R )=(I; R 2v+ 2) - J w( [ [L3(/R)H lz). 
By Remark II.2 the remaining terms to consider are of the 
type 

Bruno Nachtergaele 2320 



                                                                                                                                    

q: fR (q)2 ® pI fR (q)2, 

it fR (q)2 ® fR (q)a Ij fR (q), 

qUR (q)2 ® (a j fR (q)) 2, 

qi fR (q)a j fR (q) ® qk fR (q)al fR (q), 

qi fR (q)a) fR (q) ® fR (q)2. 

(11) 

We will calculate explicitly the expectation value of the ob
servable (11), which gives a finite result, independent of i and 
j. It is easily seen that the other terms are of a lower order and 
hence vanish in the thermodynamic limit. The correct nu
merical coefficient is given by the product rule. One finds 

lim Es(R) = lim 22 f d vXl d VX2(X I j )2JR (Xl)2 
R-", R-",I~R v+2 ' 

X fR (X2)2( p(2)(P2,j)2)(XI,x2)' 

By Lemma III 

lim Es(R)=2p(p(l)(pj)2) lim -1-fdVX2fR(X2)2 
R_", R_", IvR v 

or 

lim Es(R) = [2/(v+2)]p(p(1)(pj)2). (12) 
R_", 

(6) E6(R )==(I~ R 2v+2) -IW( [[L3(fR)H p). 
If we write this observable in the form (4), we obtain a large 
number of terms. But one proves without any problem that 
only the following four contribute: 

qdR(q)®pifR(q)2®qdR(q),} (a) 

qz/R (q) ® pi fR (q)2 ® qz/R (q); 

PdR (q) ® qi fR (q)2 ® PdR (q),} (b) 

Pz/R (q) ® qi fR (qf ® P2fR (q). 

The two terms ofthe type (a) give the same contribution a: 

a=lim 1 fdvXldvX2dvX3 
R I~ R 2v+2 

XX l,iX3,i fR (xl)fR (x2)fR(X3) 

X (p(3)(P2.jf)(x l, X2, x 3). 

Again by the lemma and remark 11.2 we get 

a=lim 1 fdvXldvX3 
R IvRv+2 

XXl,iX3,i fR (XtlfR (X3) ( p(2» T(X I,x3) 

Xli~ I ~ v f d Vx2 fR(X2)2( p(l)(p ))2). 
v 

Using translation invariance, the substitution X2 = x + x 3, 
and finally the dominated convergence theorem, the first 
integral becomes, after taking the limit R - 00, 

-1-f dVx(p2)(X,0). 
v+2 

The second integral is trivial, and the two terms in (a) yield 
together 
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_2_ (p(l)(p .f) f dVx(p2h(x,0). (13) 
v+2 1 

A similar calculation of the contributions (b) leads to 

V!2 P f dVx (p(2)P!.iP2,i)T(X,0). (14) 

(7) E7(R )==(I~R 2V+2) -1Ct./( [[L3(fR)H ]4)' 

This observable is a sum of terms of the form 

4! 
Ai)kl= 2!2!2!2! qi fR (q) ® Pk fR (q) ® q i fR (q) ® P 1 fR (q), 

or such an expression where one or both of the factors 
Pk fR (q) are replaced by ak fR (q). It will be clear from the 
calculation below that the latter type gives a lower-order 
contribution, vanishing if R tends to infinity. Each one-par
ticle factor in Aiikl has zero expectation value, so, using the 
lemma and the rotation invariance of the state, we get 

Ct./(Aiikl) = _1_ f dVx l d
Vx3( p(2»T(Xl,X3) 

16 

XX l,iX3,i fR (X tl fR (x3) 

X f d vX2 d vX4 ( p(2)P!.kP2. l) T(X2,x4)fR (x2)fR (x4)· 

If we use once again translation and rotation invariance, the 
cluster condition, and dominated convergence, we get 

lim (I2R2v+2)-ICt./(A .. ) 
R_", v '1kl 

= _1_ {)ij{)kl _1_ f d Vx ( p(2» T(X,O) 
16 v+2 

X f d Vy(p(2)P!.kP2,k)· 

Due to the special form of the angular momentum L3 we did 
not have to consider terms with k = 1, but i =II If one works 
out the product formula (3) for [[ L 3(fR) H ] 4' one finds 32 
terms such that {)ij{)kl = 1. Hence the total four-particle 
contribution of L 3(fR )2 is 

lim E7(R) = _2 - f d Vx ( p(2» T(X,O) 
R_", v+2 

X f d V y(p(2P1,iP2.i)(Y'0). (15) 

Now we take together the nonvanishing contributions (12) to 
(15) and we find the expression 

lim [Ct./(L3(fR)2)II~R 2v+2] 
R_", 

= V!2 {f p+ f d VX(p(2»T(X,0)} {(p(l)(pl) 

+ f d V X(p(2)P!.1 P2,I)T (X,O)}. 

This is the first equality in expression (10). By application of 
the definition of the truncated correlation functions (9) and 
the rotation invariance of the state, we obtain 

(p(2»T = (p(2»(X,0) _p2, 

(p(2) Pl,1 P2,I >r (x,O) = (P\I P2,I )(x,O). 

Bruno Nachtergaele 2321 



                                                                                                                                    

The second equality in expression (to) is a direct conse
quence of the following identities (see Ref. 3, Lemma 3.1): 

1
. ro(P/(/R )2) - ro(Pj(/R W 
1m 

R-oo IyRY 

= P + f d Yx( (p(2)(X) - pl). • 

Theorem 111.2: If ro satisfies the conditions of Theorem 
111.1 and if ro is an equilibrium state for a two-particle inter
action V satisfying (i) xeRv ~ V(x)eR is differentiable a.e., 
(ii) V(x) = V( -x)androtationsymmetric, and (iii) there ex
ists an 1] > 0 such that 

f dx(1 + Iixli'7l11VV(x)1i < 00, 

then 

r ro(L3(fR f) kT 
R~ .. 2aI(QI(fR )2)IyR y = P . 

Proof By our previous result 

1
. ro(L3(fR )2) 
1m 

R - 00 2aI(QI(fR )2)IyR y 

= lim ro(PI(/Rf) 
R IyRY 

= (p(t)(Ptl2) + f dXp2 (P1.1P2,1)(X,O). 

(16) 

Under the conditions as stated in this theorem the value of 
the right-hand side (the bulk momentum density fluctu
ations) is pkT (see Ref. 3, Theorem 3.2). • 

IV. DISCUSSION 

To learn something more about the content of the L 1-

clustering conditions it is interesting to investigate systems 
where a phase transition or a spontaneous symmetry break
ing occurs. It is known that a Ix 1-1 behavior of the correla
tion function (p(2)(X,O) - p2 (which is not integrable) is 
closely related to the breaking of a continuous symmetry (see 
Refs. 4 and 5), e.g., this is the case of a free Bose gas with 
condensate. There the density fluctuations are given by 

(p(2)(X,O) - p2 = Po(1T Plixill- I + 0 (!Ixli- 2
), 

wherepo denotes the density of the condensed phase. A first 
consequence of this weak clustering in the condensed phase 
is a divergence in the position fluctuations. A physical expla
nation of this phenomenon is given further. Also, the mo
mentum fluctuations lose their classical behavior. One cal
culates that, for the free Bose gas, 

(p(tp~) + f dx( p2Pt, IP2. 1 )(x,O) 

= f dp p~ (l + (21T)3 / p( p))/ p( p) = PckT, 

(17) 
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where/pIp) = (21T)-3(exp(pp2/2) - 1)-1 andpc is the criti
cal density given by 

Pc = f dp/p(p). (18) 

For a free Bose gas in the condensation region, we have 
p = Pc + po· It means that if the condensate density is not 
zero, PckT is strictly smaller than the classical value pkT. 
The particles in the condensed phase (with momentum zero) 
do not contribute to the momentum fluctuations. 

Another consequence of the lixll- I behavior of the den
sity fluctuations is that (L ~) does not factorize because of 
the appearance of non vanishing surface contributions. 
These terms depend on the type of cutofffunctions/R in the 
local approximations of the observables, which is equivalent 
to a particular choice of boundary conditions. 

From a kinematical point of view, the appearance of 
quantized vortices is another way of violating the classical 
behavior. Equilibrium states for the ideal boson gas, which 
yield this specific quantum effect, are rigorously calculated 
in Ref. 2. As pointed out by Hein and Roepstorff,6 one can 
obtain these states as limit Gibbs states, also by choosing 
appropriate boundary conditions. In their paper they study 
the structure of the vortices in elaborate examples. The parti
cular type of boundary conditions needed causes a spontane
ous breaking of the translational invariance and therefore 
these states actually do not fit into our treatment. In fact, 
without translational invariance it is no longer possible to 
prove factorization by the methods used. 

Finally we discuss the relation between a divergence in 
the position or angular momentum fluctuations and an infi
nite compressibility. Thus we will obtain an explanation for 
the nonclassical behavior of the angular momentum of the 
boson gas with condensate, in terms of a thermodynamical 
quantity. Using the definition relation of the isothermal 
compressibility X, 

p+ f dX(p(2)(X)_p2)=p2p-1X, 

formula (16) can be rewritten as 

(19) 

Starting from the thermodynamical definition of X given by 

where V is the volume of the system, P the pressure, T the 
absolute temperature, and N the number of particles, one 
calculates 

1 2( az /) 
-X=p 8p2 T,N' 

where / denotes the free-energy density. The condensate of a 
free Bose gas has energy density and entropy density zero. 
Hence the free energy density is constant for the free Bose 
gas with condensate, because Pc is only a function of the 
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temperature [see (17) and (18)]. Hence X is infinite. 
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We derive macroscopic electrohydrodynamical equations of Euler and Maxwell from the many
particle SchrOdinger equation of the Jellium model, subject to viable initial conditions, together 
with certain simple assumptions of macroscopic regularity. The dynamics ofthe model becomes 
tractable, on a suitable macroscopic scale and in the limit where its size becomes infinite, because 
of simple scaling properties and the long range of the Coulomb forces. Our derivation of its 
phenomenological dynamics is obtained via that of the classical Vlasov equation. 

I. INTRODUCTION 

A prime objective of the quantum theory of macroscop
ic phenomena is the derivation of phenomenological laws of 
continuum mechanics, such as those of hydrodynamics of 
heat conduction, from the Schrodinger equation for large 
assemblies of particles. Since such phenomenological laws 
generally have radically different structures from the under
lying quantum mechanical ones, it is evident that the passage 
from a microscopic to a macroscopic dynamical description 
is fraught with serious conceptual and mathematical prob
lems. It is therefore not surprising that rigorous derivations 
of phenomenological continuum mechanical laws from the 
quantum theory of many-particle systems are very scanty. 
As positive examples, we cite the derivations, by Davies, I of 
Fourier's law of heat conduction of a somewhat rudimentary 
model and, by Narnhofer and Sewell,2 of the Vlasov kinetic 
equation for a certain class of models, including a caricature 
of a system of gravitational fermions. At the classical level, 
there are also some derivations of heat conduction and hy
drodynamical equations for certain special models. 3,4 

The object of the present article is to derive the hydro
dynamics of the Jellium plasma model from its many-parti
cle Schrodinger equation; a preliminary sketch of this work 
was given in a research note. 5 The model, which we denote 
by IN' consists of N electrons in a box .::1 L' of side L, with 
uniform passive background of positive charge, which neu
tralizes that of the electrons. This model is of genuine phys
ical interest, since the particles interact via Coulomb forces. 
We remark here that a quantum, rather than classical, treat
ment of Coulomb systems is highly desirable, since their very 
stability generally depends on both the Heisenberg and the 
Pauli principles.6

•
7 

We shall be concerned here with the phenomenological 
dynamics of IN in the limit where Nand L tend to infinity in 
such a way that the particle number, namely 

n=N/L 3
, (1) 

remains fixed and finite. The model has already been shown8 

to have good thermodynamical properties in this limit. Here 
we find that the large-scale dynamical properties of the mod
el are quite tractable, because of the long-range and simple 
scaling properties of the Coulomb forces. The principal re
sult we obtain is that, in the above limit and in a certain 
specified scaling, the local normalized electron density u, the 
drift velocity u, and the internal electric field E, all classical 

functions of positions and time, evolve according to the fol
lowing equations of Euler and Maxwell: 

and 

au + div(uu) = 0, (2a) at 
au 
-+(u·V)u=E, at 

divE=u-l. 

(2b) 

(2c) 

These equations will be derived from the Schrodinger equa
tion for a pure state, subject to certain initial conditions; we 
remark that it is quite unnecessary to introduce mixed states 
as the passage from the microscopic to the macroscopic de
scription provides all the averaging we need. 

In assessing the significance of the result given by Eqs. 
(2) it should be noted that neither viscosity nor pressure gra
dient appears there; the essential reason is that they are eli
minated by the scaling and limiting procedures we employ. 
Consequently, the present work should not be regarded as 
more than a skeletal version of a quantum theory of plasma 
hydrodynamics, which needs to be supplemented by a finer 
analysis to accommodate pressure gradients and viscosity. 
On the positive side, Eqs. (2) do cover the classical oscilla
tions of a plasma, since a linearized version of them yields the 
result that 

a2u 
at 2 + u =1. 

Let us now outline our method for passing from the 
Schrodinger equation for the JeIlium model INto the phen
omenologicallaws given by (2). For simplicity, we treat the 
particles as spinless, and assume periodic boundary condi
tions, as these are convenient for a treatment of flow proper
ties. Thus, at the microscopic level, the pure states of IN are 
given by the normalized, antisymmetric wave functions 1/1 (N I 

of the particle position vectors X I,x2"",x N' possessing the 
periodicity of the box .::1 L in each of these variables. The 
Hamiltonian for IN takes the following standard form9

: 

where m and e are the electron mass and charge, respective
ly, 
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4 (L) iQ·X 

V(L)(X) = L~ I e
Q2

, (4) 
Q"'O 

and the superscript (L ) over ~ indicates that summation is 
taken over vectors Q = (21T/L )(n 1,n2,n3), with the n's inte
gers. Thus, V(L )(X) is a periodicized version of the difference 
between IX 1-1 and its spatial average over .::1 L' The time
dependent Schrodinger equation for :I N' with T the time 
variable, is 

arpIN) 
'1; T - H rp(N) '-ar- N T' 

(5) 

We base our macroscopic description of:I N on scales of 
length and time given, respectively, by L, the side of the box 
.::1 L' and m - 1, the inverse of the classical plasma frequency 

m = (41Tiie2/m) 112. (6) 

Correspondingly, we take the macroscopic scale for the mo
mentum per particle to be mLm. We designate the hydrodyn
amical observablesA (N) to be the intensive variables given by 
N -1 times the additive functions of the positions and mo
menta of the particles, on the scales we have just specified. 
These observables thus take the form 

A (N) = N -1 .f A (~ ,...!L), with Pj = - ifiV 10' (7) 
J= I L mLm 

where the operator function A is defined as the Fourier trans
form of a c-number function A (S,7]) according to the formula 

A (X/ L,P/mLm) 

= I' f ds A (S,7])exp (is. Pj 
) 

'1 2mLm 

( 
i7] . X. ) ( is . p. ) X exp ___ J exp __ J_ , 

L 2mLm 
(8) 

the prime over ~ indicating that summation is taken over the 
values of 7] given by 21T(n l,n2,n3 ), with the n's integers. Thus, 
"l. is a discrete variable. It will generally Abe assumed that 
A (S,7]) is continuous ins, and that~~Sds IA (s,7])1 is finite, so 
that the right-hand side of (8) is well defined. 

We center our considerations on the time-dependent ex
pectation values of the hydrodynamical observables A (N) 

corresponding to the evolution of :I N from a certain class of 
initial states, which we shall presently specify. Here our prin
cipal objective is to show that these expectation values are 
governed by a classical distribution function of position and 
velocity, whose form is determined by a normalized particle 
density u, a local drift velocity u, and an internal electric 
field E, satisfying the phenomenological equations (2). Now, 
in general, the time-dependent expectation value of A (N) for 
evolution from an initial state rp(N) is given, at a time t on the 
m - 1 scale, by 

(A (N)/ = (rp~J,/,A (N)rp~J,/), 

with rpbN) = rp(N), (9) 

the t dependence of rp~J,/ being determined by the Schro
dinger equation (5). In view of the indistinguishability of the 
electrons, it follows from Eqs. (7)-(9) that the time-depen
dent expectation values of the hydrodynamical observables 
are determined by the one-particle characteristic function 
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Jt~N,I)(S,7]) = (rp~J'l'exp (;~:~) exp (i7] ~Xl) 

Xexp (is. PI) rp(NJ, ) 
2mw '" / , 

(10) 

according to the formula 

(A (N) / = I' f ds A (S,7]}JL~N,I)(S,7]). 
'1 

(11) 

The Jt~N,I) is, in fact, the Fourier transform of the one
particle Wigner distribution function, in the given scaling, 
and thus corresponds to the one-particle density matrix of 
the system. We note that it also follows from (7)-(9) that the 
time-dependent expectation values of the products of the hy
drodynamical observables A (N) are determined by the n-par
ticle characteristic functions Jt~N,,.) defined by the formula 

Jt~N, .. )(S 1'·"'S .. ;7]1, .. ·,7] .. ) 

= (rp~J'l'exp (.!.... ± Sj . Pj) exp (i ± 7]j'~) 
2 j =lmLm j=1 L 

Xexp (.!.... ± Sj . Pj) rp~J,/) . 
2 j= 1 mLm 

(12) 

Our aim is to obtain the dynamical properties of the key 
functionJt~N,I), in the limit N~oo, subject to the following 
conditions ( 1 )-( 3), on the initial state rp (N )--or more correct
ly, on the initial states I rp(N)} ofasequenceofsystems {:IN}' 
We shall show in the Appendix that these conditions are 
perfectly viable by constructing states which fulfill them. 

(1) The expectation value of the kinetic energy T(N) of 
:IN' for the state rp(N), is less than some finite constant B 
times N, for N sufficiently large, i.e., 

(rp(N),T(N)rp(N)) <BN. (13) 

(2) The expectation value of the potential energy V(N) of 
:IN' for the state rp(N), is less than some finite constant C 
times N S13, for N sufficiently large, i.e., 

(rp(N), V(N)rp(N)) < CN S/3. (14) 

This bound corresponds to the electrostatic energy of a con
tinuous charge distribution for which the density is some 
smooth function of X /L. Thus, the bounds given by (13) and 
( 14) correspond to an initial state in which the local densities 
of charge and kinetic energy are intensive variables, given by 
functions of X / L. 

(3) The hydrodynamical observables A (N) become un
correlated, for the state rp(N); in the limit N~oo, i.e., 

n 
(rp(N),A \N) ... A ~)rp(N)) _ II (rp(N),A IN)rp(N)) 

j= 1 

......0, asN~oo. 

This is a characteristic property of a pure thermodynamic 
phase since it signifies that the global intensive variables are 
sharply defined, i.e., dispersion free, in the limit N~oo (cf. 
Refs. 10). It is evident from Eqs. (7), (8), and (12) that this 
property is equivalent to the following one for the character
istic functions: 

,. 
Jt~N''')(SI,,,·,Sn;7]I,· .. ,7],.) - IIJt~N,I)(Sj,7]j) 

1 

......0, asN~oo. (15) 
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The problem, then, is to obtain the properties of.u~n.ll in 
the limit N_ 00, subject to the initial conditions (I H3). Since 
the macroscopic length scale is L, it is natural to reformulate 
this problem by dint of a scale transformation X-x = X / L, 
which maps IN into a system I;" of N particles in a unit 
cube.d I' This transformation is particularly suited to hydro
dynamical purposes, since a system of N particles in a fixed 
and finite volume simulates a continuous distribution of 
matter when N tends to infinity. Under this scale transfor
mation W(NI and W':.)., are mapped into states tf}Nl and tf}{"l, 
respectively, of I;", according to the formula 

tf},Nl(X I"",x N) 

= L 3N 12W':J,,(Lxl, ... ,LXN), (16) 

Furthermore, the macroscopically scaled momentum opera
tor PJ/mLw (= - ifiV x/mLw) is mapped into 

Pj = - iliN Vj (= - iliN V Xj) , 

where 

(17) 

(18) 

is a dimensionless, effective Planck constant. By Eqs. (16) 
and (18), the Schrooinger equation (5) for IN transforms to 
the following one for I ;..: 

a·tJ.Nl 
'..1: _'f'_i' __ H' .tJ.Nl 
InN - N'f't' at 

where 
1 N N 

H;" = --~ L.dj +-N- I ~ V(Xj -Xk) 
2 j= I J.t: I 

and 

V(x) = L' eiq·x/q2, 

q=O 

(19) 

(20) 

(21) 

the prime over 1: having the same significance as in Eq. (8). 
Hence, by (19) and (2), I;" is a model of N particles of unit 
mass, for which the potential energy of two particles separat
ed by x is N -I V(x) and the effective Planck constant is liN' 
Moreover, by Eqs. (12) and (16H 18), the characteristicfunc
tion .u~N."1 of IN may be expressed in terms of the I ;.. varia
bles by the formula 

.u~N·")I5I'·"'S" ;711>,,·,71,,) 

= (¢1Nl,w(nll5l,,,,,Sn;7J1, ... ,7Jn)¢1Nl), (22) 

where 

w(n)I5I""'S" ;7JI, ... ,7Jn) 

= exp (~ ~ Sj . pj) exp (i ~ 7Jj • Xj ) 

X exp (~ ~ SJ . PJ) . (23) 

Equivalently, .u~N."1 is given by the equation 

.u~N.nl(SI,·",Sn;7J1,· .. ,7Jn) = f dXI' .. dxN ¢1Nl. (XI - ! liN SI,· .. ,xn - ! liN Sn,xn+ I , ... ,xN) exp i (~7Jj • Xj ) 

X¢1Nl (XI + !IiNSI, ... ,xn + !IiN Sn,xn + I ,,,,,XN)' (22') 

One sees from (22) that the .u~N.nl's are characteristic func
tions for I;", with "normal" scaling, and from (16), (17), and 
(23) that the initial conditions (1 H3) for IN imply the follow
ing ones for I ;... 

(i) The expectation value of the total kinetic energy of 
I;", for the state tf}Nl, is less than a constant times N 1/3, and 
hence the total kinetic energy per particle of I;" tends to 
zero asN-oo, i.e., 

(24) 

(ii) The expectation value of the total potential energy 
V,(NI of I ;.., for the state tf}Nl, is less than some constant C' 
times N, for N sufficiently large, i.e., 

(rf}-N), V'(Nlrf}-N I) < C 'N. (25) 

(iii) The characteristic functions .u~N.nl, at t = 0, satisfy 
the factorization condition, still given by Eq. (15). 

We have thus recast the problem into that of obtaining 
the dynamical properties of.u~N,ll, considered now as a char
acteristic function of I ;.., subject to the initial conditions (il
(iii). This problem is crucially simplified by the fact that (a) 
the effective Planck constant liN tends to zero as N- 00, by 
(19), and (b) the potential energy of I;" is of the form 
N-IIV(xj - xk), by (2). In fact, for the modified version of 
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I;" in which V is a suitably regular potential, it follows im
mediately from the theory of Ref. 2 that, under initial condi
tions covered by (iHiii), the properties (a) and (b) lead to 
classical and mean field theoretic limits, respectively, as 
N- 00, such that.u~N, II converges to the Fourier transform of 
a probability distributionj,(x,v) (more properly a measure) 
satisfying the Vlasov equation 

aj,(X,v) v • aj,(x,v) f dx' d ' ---+ - v at dx 

x/'(x',v')VV(x - x') • aj,(x,v) = o. 
av 

(26) 

In the present case, however, V(x) is the Coulomb potential, 
which is singular at x = O. This singularity is an essential 
part of the model I;" and cannot justifiably be removed by 
the introduction of a cutoff at some "small" fixed distance a, 
since the corresponding cutoff distances for the original 
model IN would then be La and so would tend to infinity 
with L. In order to extend our derivation of the Vlasov equa
tion to the Coulomb system I ;.., we invoke a supplementary 
assumption to the effect that the repulsive character of the 
interelectronic forces acts so as to keep the particles apart 
and so render the Coulomb singularity harmless. Specifical-
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ly, we assume the uniform boundedness, over finite time in
tervals, of the two-particle probability density 

p~N,2)(XI,x2) = f dx3···dxNI¢,,(x l ,···,xNW, (27) 

That is, we assume that for any finite T, there is a constant 
K T( < 00 ) such that 

p\N,2)(XI,x2)<Kro forO<t<T. (28) 

This is really a restrictive condition on the initial state tf}N), 
which excludes situations where, at t = 0, a "few" particles 
approach one another at sufficiently high velocities to over
come the Coulomb repulsion and so cause a divergence in 
the two-particle density at some later time. 

Thus, we shall derive the Vlasov equation (26) from the 
Schrodinger equation (19), subject to the initial conditions 
(i)-(iii) and the supplementary assumption (28). In order to 
pass from the Vlasov dynamics to the Euler-Maxwell equa
tions (2), we shall then exploit the condition (i), which tells us 
that the initial mean kinetic energy per particle of I ;" tends 
to zero as N---+ 00. This is a special feature of the rescaled 
description of the plasma model, which ensues from the 
boundedness of the kinetic energy per particle of IN [cf. (i)); 
it has no counterpart, for example, in the model of Ref. 2. Its 
significance here is that it implies (cf. Sec. II) that, in the limit 
N---+oo, the initial one-particle distribution function takes 
the form 

!o(x,v) = uo(x)~(v). (29) 

From this one can infer (cf. Sec. IV) that, in view of the 
conservative character of the Vlasov dynamics, the velocity 
distribution at each point x remains dispersion-free at all 
times, i.e.,/, takes the form 

!(x,v) = u,(x)~(x - u,(x)). (30) 

The functions u, and u, may therefore be identified with the 
normalized electron density and drift velocity, respectively, 
at time t. It is now a simple matter to derive the phenomeno
logical equations from the Vlasov equation (26) and the for
mula (30) for/,. For, on inserting (30) into (26) and taking the 
zeroth and first moments, respectively, with respect to v, we 
obtain Eqs. (2a) and (2b), with 

E = E,(x) = - f dx' VV(x - x')u, (x'). (31) 

Equation (2c) then follows from this formula for E and the 
definition (21) of V. 

Note: Since the phenomenological equations (2) are in
variant under the scale transformation x---+kx, U---+u, u---+ku, 
E---+kE, they are applicable to the original system I N' as well 
as the rescaled one I;", in the limit N---+oo. Further, the 
essential reason why neither a pressure gradient Vp nor a 
viscosity term proportional to V2u appears in (2b) is that 
these terms scale as L -I, when x---+Lx, whereas aulat, 
(u • V)u, and E all scale as L. In other words, pressure gradi
ent and viscosity terms are "scaled away" by the present 
treatment. 

We shall present our treatment of the model as follows. 
In Sec. II, we shall prove that, under the conditions (i)-(iii) 
and (28), the characteristic functions f.l\N,n) converge 
pointwise to classical ones, corresponding to Fourier trans-
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forms of probability measures mIn), as N---+oo. In Sec. III we 
shall derive the so-called Vlasov hierarchy of equations for 
( m~n) J from the Schrodinger equation and the boundedness 
assumption (28). In Sec. IV, we shall derive the one-particle 
Vlasov equation from this hierarchy, subject to an additional 
assumption that the Coulomb singularity does not lead to 
turbulent motion. In Sec. V, we shall pass from the Vlasov 
equation to the phenomenological ones (2) along the lines 
indicated above, subject to a further assumption of macro
scopic regularity. We shall conclude, in Sec. VI, with some 
brief comments on the method and result obtained here. 

II. THE CLASSICAL LIMIT 

We shall prove the convergence of f.lIN,n) to a classical 
characteristic function in three stages. First, we shall show 
that the kinetic energy per particle of I;" is uniformly 
bounded, with respect to both N and the time t. Second, we 
shall use this result to establish the uniform continuity of 
pIN,n)lS,'q) with respect to S and hence, by the Arzela-Ascoli 
theorem, the pointwise convergence of this function over 
some subsequence of values of N. Third, we shall employ 
Bochner's theorem, allied to the convergence of liN to zero as 
N---+ 00, to show that the limiting form of f.l~N,n) is classical. 

A. Bound on the kinetic energy per particle 

By (i), (ii), and the conservation of energy of I;", the 
time-dependent expectation value of the sum of the kinetic 
and potential energies T'(N) and V'(N) is majorized by N 
times some finite constant C " , i.e., 

(32) 

Further, it follows from the stability of neutral Coulomb 
systems that the ground energy level of the original model 
IN exceeds DIN, with DI a finite constant (cf. Refs. 6 and 7). 
Therefore, since by Eqs. (3) and (20), H;" = HNlmL 2m, up 
to a unitary transformation, the ground energy level of I ;" 
exceedsN 1/3 times a finite constantD2 • Since the same stabil
ity argument would still be applicable if the particle mass 
were doubled, it follows that 

Mtf},N),T'(N)tf},N)) + (¢,\N), V'(N)¢'\N)) >D~ 1/3, 

for some finite constant D3• From this inequality and (32) it 
follows that 

(¢,\N),T'(N)¢,\N)) < 2C" N _ 2D~ 1/3, 

and on dividing this formula by N, we see that 

(tf},N),pttf}{")) <D, a finite constant, 

for all t and sufficiently large N. 

B. Convergence of Jl~N.n) 

(33) 

Since the variables 1] are discrete, it follows from the 
Arzela-Ascoli theorem that the pointwise convergence of 
f.l\N,n), as N---+oo over some sequence of integers, will be guar
anteed if we can prove that af.lIN,n)/at and af.lIN.n)/asj are 
uniformly bounded over finite ranges of values of t, S 1""'S n' 

1]1' .. ·.1]n. For simplicity we shall confine our proofs to the 
derivatives of f.lIN•

I
); the corresponding results for the higher

order characteristic functions may be obtained similarly. 
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Now by (22) and (23) 

aftlN,I) ;S (t,7]) = - (iI2)(PI¢~N), W(l)(S,7])¢~N)) + (iI2)(¢~N), WI1>(S,7])PI¢<,N)). 

Hence, by the unitarity of WI1> and the inequality (33) 

I a~;'I) (S,7]) I <II PI¢~N)II = (¢~N),pi¢<,N))1/2 <D 112, 
(34) 

which proves the uniform boundednes~ of aft~N,I)/as. Further, by the Schrodinger equation (19) and the formula (22'), as 
applied to ft~N,l), 

By the Schwartz inequality IfAB 12<UIA 12)(f1B 12), the right
hand side of this equation is majorized by 
(IP~N)(S)IP~N)( - sW12, where 

IP~N)(t) = I dXI···dxNI~N)(XI, ... ,xN)12 

X I [V(XI -, X2 + liN s) - V(XI - x2)]IIiNI 

= I dXI dX2P(N,2)(XI,x2) 

X I [V(XI -X2 + liN S) - V(x l ,x2)]IIiNI, 

by(27).SinceIiN-oo asN-oo and V(x)-lxl-lforsmallx, 
it follows easily from this formula for IP ~N) and the assump
tion (28) of Sec. I that IP ~N)(t) is uniformly bounded over 
finite ranges of values of t and S and all sufficiently large N. 
Hence, so too is the rhs of(35). Consequently, it follows from 
that equation and (34) that aft~N,l)l as and aft ~N.I) I at are both 
uniformly bounded over finite ranges of t, S, and 7] and suffi
ciently large N. It follows then, from the Arzela-Ascoli 
theorem, thatft~N.I) converges pointwise to a limitft~I), which 
is continuous in sand t, as N tends to infinity over some 
sequence of integers. Similarly, 

ft~N.n)_ft~n), pointwise, for all n-N, (36) 

as N-oo over some sequence of integers, ft~n) being contin
uous in the S's and t. 

C. Classical property of ft~n) 

In view of the continuity property of ft~n) that we have 
just observed, together with the fact that ft~n)(o, ... ,O;O, ... ,O) 
= 1, by (22) and (23), it follows from Bochner's theorem that 

in order to establish that ft~n) is a classical characteristic func
tion, it suffices to prove that 

I 
" -c C IJln)(1:' Ir) _ I:' Is) I:' Ir) _ I:' Is). £.J r s r-t ~ 1 ~ 1 , ••• ,~ n ~ n , 

r,s= 1 

7]r) - 7]~), ... ,7]~) - 7]~))>0, (37) 

for arbitrary complex numbers C r and values 
(S r),···,s ~);7]r),···,7]~)) of (t1, .. ·,Sn ;7]I,. .. ,7]n), for r = 1, ... ,1. To 
prove this, we note that since, by (17) 

[Xj,Pk] =iIiN8jk , 

it follows that 
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(35) 

W ln)(1:' I:' )Wln)(I:" 1:".' ') ~ I'''''~n ;7]I, .. ,7]n ~ 1 , ... ,~ n ,7]1 , .. ·,7]n 
-Wln)(I:" I:' 1:" 1:'.' ,..,) 
- ~ 1 - ~I'''''~ n - ~n,7]1 - 7]1,· .. ,7]n - 'In 

Xexp (i ~ * (S j . 7]j - Sj . 7]j)) . (38) 

Hence, by (22) and (23), the inequality 

II ~ C Wln){ I:' Ir) I:' Ir) ..,Ir) ..,lr))./JN) 112 ..... 0 
~ I ~ 1 ""'~ n ",1 ""P'n ¥'i :?' 
r= 1 

reduces to the form 
I 

" -C C IJIN,n)(1:' Ir) _ I:' Is) I:' Ir) _ I:' Is). 
L.J r s r-t ~ 1 ~ I "."~ n ~ n' 

r,s= 1 

7]r) - 7]~), ... ,7]~) - 7]~)) 

Xexp (i Ii; jtl (tt)· 7]1') - s1')· 7]n»o. 

Since by (18) and (23), IiN-o andft~N,n)_ftln) as N-oo, this 
last inequality reduces to the required form (37). We con
clude therefore that ft~n) is the characteristic function for a 
classical probability measure m~n), i.e., 

ft~n)(SI,,,,,Sn;7]I, .. ·,7]n) = I exp (i * (Sj' Vj + 7]j .Xj )) 

X dm~n)(XI, ... ,xn ;Vn , ... ,vn). (39) 

Furthermore, since Eqs. (22)-(24) imply that 

ft~m + n)(SI'''',Sn ,0, ... ,0;7]\> ... ,7]n ,0, ... ,0) 

== ft~n)(S I""'S n ;7]I,. .. ,7]n)' 

it follows from (39) that m~n) is the restriction to.J ~ X R3
n of a 

probability measure m, on (.J 1 XR3
)"", .J 1 being the unit 

cube, as in Sec. I. 

D. Bound on the two-particle density 

We shall now show that the bound, given by (28), on the 
two-particle density of ~;. implies a corresponding bound 
for the infinite system. 

For this purpose, we denote by P ~2) the two-particle 
probability density induced by m" i.e., 

I ¢ (XI,X2)dP~2)(XI,x2) = I ¢ (XI,x2)dm~2)(XI,x2;Vl>V2)' 
(40) 
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for bounded continuous functions r/J. In particular. if the 
Fourier transform of r/J. namely 

~ (711,7/2) = I dX I dX2 exp - i(711 • XI + 712 • X2)r/J (X I,x2)' 

(41) 
is /1 class. then it follows from (22). (27). (28). (36). and (39)
(41) that 

I r/J (XI,x2)dP~2)(XI,x2) 
, A (2) 

= L r/J (711 • 712}Ji" (0.0;711.712) 

and hence 

II r/J(XI,x2)dP~2)(XI,x2)1 <KT I 1r/J(XI,X2)ldxI dx2• 

for O<.;t<.;T. (42) 

Now this result has been obtained here for bounded contin
uous functions r/J. whose Fourier transforms r/J are /1 class. 
Since these include the C 00 class functions r/J. it follows that 
(42) may be extended by continuity to all bounded contin
uous ones on ..11 XL1 I. Consequently. p~2) is absolutely con
tinuous with respect to the Lebesgue measure. and its den
sity p~2) is majorized by K T' i.e .• 

dP~2)(XI,X2) = p~2)(XI,x2)dxI dX2 (43) 

and 

(44) 

Further, as the volume of ..11 is unity, it follows from this 
result that the one-particle probability density is also bound
ed by K T. i.e .• 

p~I)(X) == ( dx' p~2)(X.X') <KT • for O<.;t<.;T. (45) J,1, 

E. The Initial form of m 

It follows immediately from Eqs. (15), (36), and (39) that 
the initial probability measure mo has the factorization prop
erty 

(46) 

Hence, mo is completely determined by m~). In order to 
show that this one-particle measure has the form given by 
(29) we observe that it follows from (34) that 

I aj;'I) I <.;(rfJN).p~ rfJN»)1/2, 

Hence, by condition (i), af.l~N,I)/a5 -0, uniformly with re
spect to 5 and 1], as N-oo. Consequently, by (36), af.l~)/a5 
= 0, i.e .• f.l~) is 5 independent. This implies that m~) takes the 

form 

dm~)(x,v) = dp O)(x)t5(v)dv. 

where pO) is the one-particle spatial probability. Since. by 
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(45) this corresponds to a density 0'0' say. it follows that 

dm~)(x,v) = O'o(x)t5(v)dx dv, (47) 

which confirms the formula (29). We shall generally assume 
that the initial density 0'0 is strictly positive everywhere. 

III. THE VLASOV HIERARCHY 

We now aim to obtain the equation of motion for m,. 
First we note that. for a modified version of ~~. for which 
the potential V of Eq. (20) is suitably regular, it has already 
been established2

,II that the limit measure m, evolves ac
cording to the Vlasov hierarchy, namely 

!!.. I r/J (n)(x\.· .. ,xn ;v\ .... 'vn )dm~n)(XI'· .. 'Xn ;vl,· .. ,Vn) 
dt 

n I ar/J(n) 
= L Vj ._-(x\ .... 'Xn;VI' .. ·'Vn) 

j= \ aXj 

xdm~n)(XI' .. ·,xn ;vl,· ... vn) - jtl I VV(Xj - Xn + I) 

ar/J(n) 
x-- (xI ... ·,xn;vl' .. ·.vn) 

aVj 

xdm~n + \)(xl, ... ,xn + 1 ;vI' .. ·.vn + I), (48) 

where the test functions r/J (n) are continuously differentiable, 
possess the periodicity of ..11 in the x's, and have compact 
support in the v's; we shall refer to these as the C ~ -class 
functions. Our objective now is to derive the hierarchy (48) 
for the Coulomb system.I~, subject to the uniform boun
dedness assumption on its two-particle density. We note 
here that, in view of the corresponding boundedness condi
tion for the infinite system, it suffices. for the proof of (48), to 
establish the validity of that hierarchy for functions r/J (n). 

whose Fourier transforms, namely 

~ (n)(5I,· ... 5n ;71I .... ,71n) 

= (21T)-3 I dx!' •• dxn dvl· .. dvn r/J (n)(x\ .... ,xn ;vl, .. ·,vn) 

n 

xexp i L (5j . Xj + 71j • Vj), (49) 
j=1 

have compact support and are continuously differentiable 
with respect to the 5 's, since the extension to C ~ -class func
tions can then be achieved by continuity. 

Thus, we consider the time dependence of S r/J (n) dm~n) for 
functions r/J (n) whose Fourier transforms are continuously 
differentiable with respect to the 5 's and have compact sup
port. Now, by (39) and (49), 

f r/J (n) dm~n) - f r/J (n) dm~n) = L' f d5 ~ (n)( f.l~n) - f.l~»)' 
'7 

where l:~ and Sd5signify summation over 711' .... 71n and inte
gration over 51> ... ,5n, respectively. Hence. by (36) 

f r/J (n) dm~n) - f r/J (n) dm~) 

= lim L' I d5 ~ (n)( f.l~N,n) - f.lg".n») 
N-+oo T1 

= lim f' ds L' f dt ~ (n) af.l~N,n) . 
N_oo Jo '7 as 
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On substituting into this equation the formula for ap~N.n)/as obtained from the Schrodinger equation (19) and the definition 
(22') of p(N.n), we find that 

f f It f n a'). (n) 
f/J (n) dm t - ¢ (n) dmo = - lim ds 2:' ds 2: 'T/j . _'f'_p~N.n) 

N-oo 0., j=1 aSj 

(50a) 

+ lim N -I t ds L' fds ~ (n)(SI"",Sn;'T/I, ... ,'T/n)fdXI • dXN rfJt)·(x l -l-IiN SI, ... ,xn 
N_ao Jo ., 2 

- ~ liN Sn,xn + I , ... ,xN) ~N'( XI + ~ liN SI,· .. ,xn + ~ liN Sn,xn + I , ... ,xN) 

X~I.t(V(~-~-l-~~-~))-V(~-~+l-~~-~))) 
J.k- I 2 2 

(SOb) 

+ 1~ {(I- ;)fdS~'f dS~(n)(SI'''''Sn;'T/I,.''''T/n)f dXI ... dxN 1fJ:)·(xl - ~ IiNSI"",Xn 

- ~ liN Sn,xn+ 1, ... ,xN )~N'(XI + ~ liN SI, ... ,xn - ~ liN SN,xn+ 1, ... ,xN) liii I 

X jtl (V(Xj -Xn+ I - ~ liN S}) - V(Xj - Xn+ I + + liN Sj ))}. (SOc) 

Since IiN-D as N---+ 00, it follows easily from (36), (39), and 
(49) that 

it n f a¢(n) 
Term (50a) = - ds L Vj . -- dm~). 

o j= I aXj 
(5Ia) 

Further, by the argument used to prove the uniform boun
dedness of (35), it follows that the spatial integral in (SOb) is 
also uniformly bounded, and therefore, in view of the factor 
N -I in (49b), 

Term (SOb) = O. (SIb) 
The same argument may easily be employed to show 

that, if Vg(x) is a continuously differentiable function that 
coincides with V(x) for Ixl>g and whose gradient is less, in 
modulus, than clg'l for some constant c, then the whole term 
in curly brackets in (SOc) is the limit, as g-D, of the corre
sponding term with Vg replacing V, the convergence to this 
limit being uniform in N. Hence, 

Term (SOC) 

= lim lim (I _~) rt 

ds 
g-.O N_ co N Jo 
X~' f dS~(n)(SI,,,·,Sn;'T/I, ... ,'T/n) 

X f dXI'··dxN ~N). 

X (XI - !IiN SI,· .. ,xn - !IiN Sn,xn+ »· .. ,xN) 

X~N)(XI + !IiN SI,· .. ,xn + !IiN Sn,xn+ I,xN) 

Xliii I [Vg(Xj - Xn + I - !IiN Sj) 
- Vg(Xj -xn+1 + !IiN Sj)]' 

Since Vg is bounded and continuously differentiable, it fol
lows easily from (22'), (36), (39), and (49) that this last equa
tion signifies that 

Term (SOC) 

it n f a¢(n) 
= lim ds L - V Vg (Xj - Xn + d . --

g-D 0 j= I aVj 

Xdm~n + 1)(xl, ... ,xn + I ;VI""'Vn + I)' 
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I 
Hence, in view of our above specifications of Vg it follows 
from the uniform boundedness property (44) of the two-par
ticle density that 

Term (SOC) 

it n f a¢(n) 
= ds L -VV(Xj -Xn+d·--dm~+I). 

o j=1 aVj 

(SIc) 

On using the formulas (5Ia)-(5Ic) for the terms (50a)-(5Oc), 
we see that 

f ¢ (n) dm~n) - J ¢ (n) dmhn) 

= rt 

ds ± (fVj a¢ (n) dm~n) 
Jo j= I aXj 

-fVV{X. -x I)' a¢ dm(n+I)) 
J n+ avo S , 

J 

which is equivalent to the Vlasov hierarchy (48). 

IV. THE VLASOV DYNAMICS 

The Vlasov hierarchy (48) is closely related to the sin
gle-particle Vlasov equation, namely 

:t f ¢ (x,vldmp)(x,v) 

= f V· a¢ (x,v)dm~l)(x,v) - f V V (x,x') . a¢ (x,v) 
ax av 

xdm~I)(x,v)dm~I)(x',v'). (52) 

For if m~l) is a solution of this latter equation, with initial 
value mhl), then it follows easily from (48) that the Vlasov 
hierarchy has a solution 

(53) 

which satisfies the initial condition (46). Moreover, it follows 
from a slight adaptation of the treatment of the Vlasov equa
tion (52) by Illner and Neunzert l2 that the latter equation 
does indeed have a solution, though there is no proof of its 
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uniqueness. What we can say, then, is that the hierarchy (48) 
has a solution possessing the factorization property (53), 
with m(l) satisfying the one-particle Vlasov equation. Here 
we rem'ark that a stronger statement could be made if, in
stead of the singular Coulomb potential V, one had a suitably 
regular one in the Vlasov hierarchy; for in that case it would 
follow from known results2,l1,13,14 that the solutions of both 
the Vlasov equation (52) and the hierarchy (52) were unique 
and related by the formula (53). 

Thus, as we do not have general uniqueness theorems 
for the Coulomb systems, we need further assumptions of a 
physical nature in order to obtain solutions of the Vlasov 
dynamics. Our key assumption is that, as in the case of a 
regular potential, the factorization property (53) is preserved 
at all times. Physically, this is equivalent to assuming that 
the Coulomb singUlarity does not lead to turbulence, since 
the property (53) is the condition for the macroscopic obser
vablesA (N) of the model ~ N to be dispersion-free at all times, 
in the limit N-oo, Le., 

n 

(A ~N) ... A ~N), - IT (A IN)) ,-0, as N-oo. 
j=1 

Assuming, then, the factorization property (53), it fol
lows from Eq. (48), for n = 1, that, in view ofthe bounded
ness of the two-particle density, m~l) satisfies the Vlasov 
equation (52). This, in tum, is the same as the Liouville equa
tion 

:t f t/J (x,v)dm~I)(x,v) 

= f (v. at/J (x,v) + E,(x), arP (x,v) ) dm~I)(x,v), (54) 
ax av 

where the electric field E,(x) is defined by the self-consisten
cy condition 

E,(x) = - f VV(x - x')dm~I)(x',v'). (55) 

In a standard way,14 the solution of the Liouville equation 
(54) can be expressed in terms of that of the one-particle 
equations 

dx, dv, 
- = v" - = E,(x,), 
dt dt 

with Xo = x and Vo = v, (56) 

provided that the latter equations have a unique solution. In 
fact, they will have it if the electric field E, (x) is sufficiently 
regular, e.g., ifits spatial derivatives are uniformly bounded 
over finite time intervals. We shall assume that E, (x) satisfies 
this latter condition of macroscopic regularity-one which 
evidently excludes the occurrence of shock waves. Under 
this condition, then, (56) has a unique solution 

x, =X,(x,v), v, = V,(x,v), (57) 

the transformation x,V--+X, ,v, being canonical. Correspond
ingly, the solution of (54) takes the form l4 

f rP (x,v)dm~I)(x,v) = f rP [X, (x,v), V,(x,v)]dm~)(x,v). (58) 

In view of the initial condition (47), this solution may be 
reexpressed as 
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f rP (x,v)dm~I)(x,v) = f rP (X,(x),V,(x)]O'o(xldx, (59) 

where 

X,(x) == X,(x,O) and V,(x) =V,(x,O). (60) 

Equations (53) and (59) constitute the solution of the Vlasov 
hierarchy. 

V. PHENOMENOLOGICAL EQUATIONS 

As a first step towards deriving the phenomenological 
equations (2) from the Vlasov dynamics, we observe that, by 
(56) and (60), X,Ix) and V,(x) correspond to the position and 
velocity of a "fluid particle" initially at rest at x, in the La
grangian description of hydrodynamics (cf. LambIS

). To pass 
from this to a Eulerian description, we have first to establish 
that Xt (x) is an invertible function of x, Le., th~ the Jacobian 
aXt(x)/ax of the transformation from x to X,Ix) does not 
vanish. We shall now show that the nonvanishing of this 
Jacobian follows from the boundedness of the time-depen
dent density [cf. (45)] and the assumption, made in Sec. II, 
that the initial density O'o(x) is strictly positive. Thus we note 
that if r is the volume of an infinitesimal fluid particle at x, at 
time t = 0, then its volume at time t, when the particle has 
migrated toX,(x), is rlaxt(x)/ax I. Consequently, as 2ne can 
infer from (59), the density of the fluid at X,Ix) is 
O'o(x)laX,(x)/axl- l . Hence in view of the boundedness of the 
time-dependent density and the nonvanishing of O'o(x), it fol
lows that the Jacobian aXt(x)/ax cannot vanish, and conse
quently that the transformation x-X,Ix) is invertible. 

It therefore follows that the formula (59) for m~l) may be 
expressed in the form 

f rP (x,v)dm~l)(x,v) = f rP (x,U, (x))O't(x)dx, (61) 

where 

O',(x) = 0'0(1' t- 1 (x)) lax t- l(x)/axl (62) 

and 

ut(x) = Vt(X t- I(X)). (63) 

Equation (61) may also be written in the form 

dm~l)(x) = O't(x~(v - ut(x))dx dv, (61') 

which signifies that O't(x) is the normalized density and ut(x) 
the hydrodynamical drift velocity at the point x, at time t. It 
now remains for us to show that the evolution of 0'" U" and 
the electric field E t is governed by Eqs. (2). 

To obtain (2a), we note, by (62), 

f O't(x)rP (x)dx = f O'o(x)rP (Xt(x))dx, (64) 

for any bounded continuous function rP. Choosing rP to be 
continuously differentiable, it follows that 

d f faXt(X) -- O't(x)rP (x)dx = O'o(x) -_. VrP (Xt(x)) 
dt at 

= f O'O(X)Vt(X)' VrP (Xt(x)), 

by (56) and (60). 

Hence, using (64) again, 
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:t f ut(x)<p (x)dx - f ut(x)ut(x), V<p (x)dx = 0, (65) 

which is the "weak" form of Eq. (2a), i.e., it is the formula 
obtained by integrating (2a) against C I-class functions <p. It 
reduces precisely to (2a) under the further assumptions that 
ut(x) is C I class with respect to x and t and that ut(x) is C 2 

with respect to x. 
To prove (2b), we observe that, by (63), 

ut(Xt(x)) = Vt(x), 

and therefore, assuming differentiability of U t (x) with respect 
tox and t, 

aUt - axt(x) - avt(x) at (Xt(x)) + -at' Vut{Xt(x)) = -at. 
By (56) and (60), this reduces to the form 

aUt - - - -at (Xt(x)) + V,(x) • Vut{Xt(x)) = Et(Xt(x)). 

Hence, as Xt is invertible and Ut (x) = Vt (X t- I(X)), by (62), 

aut(x) --+ (ut(x) • V)ut(x) = Et(x), at 
which is the required equation (2b). 

To prove (2c), we employ Eqs. (55) and (61) to express E t 

in the form 

Et(x) = - f VV(x - x')ut(x')dx'. 

Hence, by (21) and the normalization of U t , 

div Et(x) = ut(x) - 1, 

which is Eq. (2c). 
This completes the derivation of the phenomenological 

equations (2). 

VI. CONCLUDING REMARKS 

By exploiting the long range and the scaling properties 
of the Coulomb interactions, we have derived the pheno
menological equations (2) of the Jellium model from its 
Schr6dinger equation and the initial conditions (1)-(3). The 
additional assumptions on which our derivation depends are 
that (a) the interelectronic repulsion keeps the two-particle 
density bounded [cf. (28)] and thereby tames the Coulomb 
singularity, and (b) the macroscopic dynamics is free from 
turbulence and sufficiently regular for the internal electric 
field to be continuously differentiable (cf. Secs. IV and V). In 
our view, such assumptions are indispensable, since the 
problem of obtaining mathematical control on the effect of 
the Coulomb singularity on multiple electron scattering pro
cesses is fantastically complicated. 

As regards the main result obtained here, we emphasize 
again that this represents the macroscopic continuum me
chanics of the model on the largest possible length scale. As 
explained near the end of Sec. I, this description is too coarse 
to accommodate either viscous stresses or pressure gradi
ents. Evidently, a finer treatment is needed in order to repre
sent these effects. Hence, the present theory should be re
garded as providing just a skeletal version of a derivation of 
plasma electrohydrodynamics from quantum theory. 
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APPENDIX: CONSTRUCTIONS 

In order to construct a class of states If/ (N) of IN' which 
sastisfy conditions (1)-(3), we start by dividing the box ..::lL 
into N' equal cubic cells {CJ }, whose sides are oflength I, 
independent of N, and whose centers are at the respective 
points {XJ}' Thus 

N' = (L 11)3 = N liiP. (AI) 

We distribute the particles of IN among the cells, so that the 
number nJ in CJ is of the form 

(A2) 

where v is some smooth function. For each cell, CJ , we con
struct a state If/J' given by a normalized, antisymmetric func
tion of the positions of the nJ particles there, which satisfies 
the following conditions. 

(A) First, If/J and its derivatives vanish on the boundary 
of C J' The total kinetic and potential energies of the particles 
in the cell, interacting via the two-body potential e2 V(L), are 
therefore given unambiguously by the formulas 

TJ = ~ nJ f dXt",dXn IV x If/AXI, .. ·,xn )1 2 (A3) 2m J I J 

and 

VJ =~nAnJ -1)e2fdXt ... dXn V(L)(XI -X2) 2 J 

X I If/AXI, ... ,xIl) 12, (A4) 

all integrations being taken over CJ • 

(B) Both TJ and VJ are less than some finite constant B I 
for every one ofthe cells CJ • 

(C) The one-particle probability density for the state If/J' 
namely 

PJ(X) = f dX2,,·dXnJ IIf/AX,x2, ... ,xn)1 2
, (A5) 

is bounded, uniformly with respect to J, i.e., 

PJ(X) <B2' 

where B2 is a finite constant, independent of J. 
Having constructed the cellular states If/J according to 

these specifications, we define If/(N) to be the state given by 
their antisymmetrized product, i.e., 

If/(N) =A L II If/J' with A = [(IIJ nJ!) (N!)-1]1I2 
antisymm J 

(A6) 

We shall now show that it follows from this definition 
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and the properties (A)-(C) ()fthe !P/s that !pIN) satisfies the 
conditions (1)-(3). 

Proof of (1): It follows from (A6) and the property (A) 
that the expectation value of the kinetic energy of I N' for the 
state !pIN), is 'I,JTJ; and, by (B) and Eq. (AI), this is less than 
N'BI ==.NB triP. Thus (1) is satisfied, with B = Bl/ii/3. 

Proof of (2): Since, by Eq. (3), the interactions in IN are 
due to the pair potential e2 V(L), it follows from Eqs. (A2) and 
(A4)-(A6) that the expectation value of the potential energy 
ofthis system, for the state !pIN), is 

L VJ + L e2v(XJIL )v(XpIL) f dX f dX' 
J J 7'J' JCJ JcJ , 

X V(L)(X -X')PJ!X)Pp(X'). (A7) 

By property (B) and Eq. (AI), the first of these sums is less 
than B2N' ==.B2N lii/ 3. It therefore remains for us to prove 
that the second sum is less than some constant times N 2/3, for 
large N. Since V(L )(X - X') is the difference between 
IX - X' 1- I and its average over Ll L' we can majorize this 
second sum by 

e2 L v(XJIL )v(XpIL) 
J7'P 

X LJ dX LJ, dX' PJ(X)PJ(X,)!IX -Xl (AS) 

By property (C), bothPJ(X) and Pp(X') are less than a con
stant B2; consequently, it is a simple matter to show that, to 
adequate accuracy, we may replace the double integral in 
(AS) by IXJ - Xp I-I, thereby reducing that expression to 

e2 L v(XJIL )v(XpIL )/IXJ - Xp I· 
J7'J' 

Likewise, by standard arguments, we may replace this last 
expression by 

e: i dxi dX'v(XIL)v(X'IL)/IX -X'I· 
/ <lL <lL 

On putting X = Lx and X' = Lx', this reduces to 

e2~ 5 i dx i dx' v(x)v(x')/lx - x'l, 
/ <I, <I, 

Ll I being the unit box, as previously. The double integral in 
this expression is a finite constant, since v has been specified 
to be a smooth function. From this we conclude that the 
second sum in (A 7) is majorized by a constant times L 5, and 
therefore, as L = (N lii)1/3, by a constant times N S/3, as re
quired. 

Proofof(3): We shall start by showing that, in order to 
prove (3), it suffices to establish the formula (15) for the case 
when the S 's are all zero. Thus, we note that it follows from 
(12) that 

aJ.L(N, I) • 

_0_ (.E- v) = _1_ (!P(N) (P U+ UP )!P(N)) 
as~' 2mLw ' 1 I , 

where 

U = exp -~-- exp _,_,_1 exp _~ __ I , 
(

i.E- • PI ) (i'n . X ) ( i.E- • P ) 
2mLw L 2mLw 

and, therefore, as this operator is unitary, 
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1 

aJ.LbN, I) 12 <; (!P(N),Pi !p(N)) , 

as (mLwf 
which is just the kinetic energy per particle of IN' divided by 
!mL 2W2. Hence, it follows from (1) that aJ.Lbn,I)/as -<> as L, 
and thus N, tends to infinity, the convergence being uniform 
with respect to sand 'T/. Consequently, 

J.LbN.I)(S,'T/) - J.LbN,I)(O,'T/)-<>, as N-oo, 

and likewise 

J.LbN,n)(SI"",Sn ;'T/I,· .. ,'T/n) 

- J.Lli".n)(O, ... ,O;'T/I, ... ,'T/n )-<>, as N-oo. 

Therefore, as (12) implies that the J.L(N.n),s are uniformly 
bounded, the proof of (3) reduces to that of Eq. (15) for the 
case where the s 's are all zero. This means that we need only 
to prove that 

n 

J.L\N,n)(O, ... ,O;'T/I, ... ,'T/n) - IIJ.LbN.I)(O,'T/j)-<>' as N-oo. 
I 

(A9) 

We shall restrict our explicit proof to the case n = 2; the 
general proof follows a similar pattern. By Eq. (12), 

J.Lli".2)(O,O;'T/,'T/') - J.LbN,I)(O,'T/)J.LbN.I)(O,'T/') 

= i dxi dX'(P(N)(X,x') - P(N,II(X)p(N,I)(X')) 
<lL <lL 

Xexpi('T/,X+'T/'.X')/L, (AlO) 

where P (N.I) and P (N.2) are the one- and two-particle probabil
ity densities for the state !pIN), i.e., 

P(N.I)(X) = f dX2,,·dXNI !P(N)(X,x2,· .. ,xNW (All) 

and 

P(N,2)(X,x') = f dX3,,·dXNI!P(N)(X,x',x3,· .. ,xNW, 

(AI2) 

Defining the one- and two-particle probability densities P Y) 
and P~) for the cellular state !pJ in an analogous way, it 
follows from (A6) that 

P(N.I)(X) =A 2 (N -I)! pY)(X) 
(nJ - 1 )!llJ,#np! 

= nJ pY)(X) if X lies in CJ, 
N 

P(N.2)(X,x') =A 2 (N - 2)! P~)(X,X') 
(nJ - 2)!llp7'Jnp!' 

= nJ(nJ -1) P(2)(X,x') ifX,x' lie in CJ, 
N(N-I) J 

and 

P(N,2)(X,x') 

,A
2
(N-,2)! pY)(X)pYI(X') 

(nJ - I).(np - I).nJ" #P nJ" ! 

_n..:..Jn-,J_' _ P(I)(X)P(II(X') 
N(N -1) J J 
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if X,x' lie in different cells CJ,Cr , respectively. 
It now follows from Eqs. (AlO) and these formulas for 

p(N.I) andp(N.2) that 

l,ubN.2)(O,O;1J,1J') - ,ubN.I)(O,1JlubN.I)(O,1J')I 

<L r dX r dX'IP(N.2)(X,x') _P(N.I)(X) 
J,J' JCJ JcJ • 

XP(N.I)(X')I 

<L r dX r dX' [nJ(nJ - 1) P~)(X,x') 
J JCJ JCJ N(N - 1) 

+ ;:2 PY)(X)PY)(X')] 

L r dX r dX' nJnr 
+ JC

J 
JcJ' N 2(N - 1) 

xPY)(X)pY/(X'), 

and therefore, as PY) and P~) are the one- and two-particle 
probability densities for CJ , 

l,ubN
•
2)(O,O;1J,1J') - ,ubN

•
I )(O,1Jl.ubN•

I)(O,1J')1 

'" [nJ(nJ - 1) n; ] '" nJnr 
<~ +-2 + ~ 2 . 

J N (N - 1) N r = #J N (N - 1) 
(A13) 

Since ~JnJ = N, the second sum in this expression is 
O(N-I). Further, as nJ<N, the first sum <2~Jn;IN2, and 
since nJ = v(XJIL), with va smooth function, this bound 
may be approximated, to adequate accuracy, by 
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2N-2/-3S..:ILdx(v(XILjf, which in tum is equal to 
2N-2(LI/)3S..:I,dx(v(X))2 and therefore is O(N- I). Conse
quently, the rhs of (A14) is O(N-I) and therefore that in
equality implies that (A9) is valid for N = 2, as required. 
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The asymptotic behaviors of tempered distributions with support in a convex, closed cone are 
classified by means of group theory. The notion of regularly varying distribution is introduced. 
An Abelian-Tauberian theorem for regularly varying tempered distributions, which generalizes 
the one-dimensional Abelian-Tauberian theorem of Hardy-Littlewood-Karamata and the 
many-dimensional extension due to Vladimirov, is proved. Applications to n-point'functions are 
also presented. 

I. INTRODUCTION 

In the actual stage of quantum physics development, the 
study of the asymptotic behavior of distributions plays a spe
cial part. On the one hand, many of the rigorous results in 
quantum field theory concern the asymptotics of distribu
tions (Green functions, propagators, n-point functions, ... , 
see, e.g., Ref. 1) and on the other hand, different collision 
models for elementary particles predict similar high-energy 
behaviors (see, e.g., Ref. 2). In this context, a program for 
testing the compatibility of the scaling behavior in inclusive 
collision processes with the principles of quantum field the
ory was initiated.3 A powerful tool in this approach are the 
Tauberian theorems. Such theorems are useful in the investi
gation of high-energy multiparticle phenomenology.4 More
over, it has been proved that there is a one-to-one Abelian
Tauberian-type correspondence between the scaling behav
ior in the Bjorken variables of form factors in deep inelastic 
lepton-hadron collision,5 light cone dominance,6 and the 
power-type asymptotic behavior of the spectral function in 
the Jost-Lehmann-Dyson representation. 3. 7-12 

In this paper, the asymptotic behaviors of tempered dis
tributions with support in a given cone are classified by 
means of the group theory. It is shown that every type of 
asymptotic behavior is effectively determined by a multiplier 
of the group of automorphisms of the support cone. The 
automodel asymptotics7.10-

12 corresponds to the particular 
dilatation group of automorphisms. The distributions con
sidered are called regularly varying distributions and their 
properties are studied in Sec. II. An Abelian-Tauberian 
theorem for regularly varying distributions is proved in Sec. 
III. This theorem is a generalization of the classical one
dimensional Abelian-Tauberian theorem of Hardy
Littlewood-KaramataI3

•
14 and of Vladimirov's many-di

mensional Tauberian theorem. 15 The theorem establishes 
the conditions of equivalence between the asymptotic behav
ior of regularly varying distributions, their Laplace trans
forms, and the regularly varying distributions obtained by 
the action of the Riemann-Liouville operator. Finally, in 
Sec. IV, we digress a little on the applications of previous 
results to Lorentz invariant tempered distributions with sup
port in the N-point future cone. 

II. REGULARLY VARYING TEMPERED DISTRIBUTIONS 

In this section, we introduce spaces of regularly varying 
distributions and classify them using group theory notions. 

A. General notations and definitions 

We start with some notations and definitions. For de
tails see Refs. 16 and 17. 

Let re Rn be a convex, closed cone, with vertex at O. 
The r cone is supposed to be a sharp one, i.e., 
C = int r * =1= (/>, where 

r * = {ylyeRn
, (y,S »0, seF 1 (2.1) 

is the dual of the r cone, and ( , ) denotes the scalar product 
of the Euclidean real n-dimensional space Rn 

• 

Let Y'(r) denote the linear complex distribution space 
from Y'(Rn ) with support in the cone r. It is important to 
point out that Y'(r) is a complex topological algebra oftem
pered distributions with respect to the convolution product * 
(see Ref. 16, p. 96). The Laplace transform establishes an 
algebraical and topological isomorphism of the algebra 
Y'(r) onto the complex algebraH (C) of hoI om orphic func
tions in the tube T C = Rn + ice en (see Ref. 16, p. 161). 
The Laplace transform of geY'(r) is defined by the relation 

L (g}(z) = F (g(. )e-(Y"i}(x), z = x + iyeT C
, (2.2) 

where F designates the Fourier transform, and is defined by 
the convention 

(F{f},<p) = (J,F{<p D, fEY'(Rn
), <peY(Rn), 

(2.3) 

F (<p 1 (5) = J <p (x)e'ls,xi dx, <peY(Rn). 

If /-lEY'(r) is a measure, then its Laplace transform is 

L (/-ll(z) = Lei(z,s1t(ds), zETc. (2.4) 

The distribution eeY'(r) is called a unity ifthere exists 
e'EY'(F) such that e*e' = e'*e = ~r' where ~r is the Dirac 
distribution of the r cone. 

B. The Riemann-Liouville operator 

Definition 1: For every unity eEY'(F), we call a Rie
mann-Liouville operator the linear continuous operator [J e: 
Y'(F) - Y'(r) defined by 

[JJ = e*!. fEY'(r). (2.5) 

We now present some examples which we will take 
again further in the paper. 

Let 0rEY'(r) be the usual characteristic function of 
theconer, 
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{
I, SeF, (26) 

°r(S) = 0, SERn \r. . 
The Laplace transform of the Or function is the 

Cauchy-Szego nucleus of the cone r (see Ref. 16, p. 140) 

(2.7) 

Imposing on the cone r the regularity condition, Or is 
a unity. Therefore, the distribution 

(2.8) 

is also a unity. 
Consequently, ile'f is a fractional integration (resp. 

derivation) operator for a> 0 (resp. a < 0). 
Example 1: In the case of the semiright line cone 

r= [0,00) = R+, 

ilea = Yao, aER, (2.9) 
R. 

where the unity YaEY"(R+) is defined l4
•
15 as 

{
[sa-llr(a)]o(S), SER, a>O, (2.10) 

Ya(S) = . (/;') 0 Y a + 1 ~, a< . 
The ilea is the classical Riemann-Liouville operator. IS 

R. 

Example 2: Let V + be the Minkowski cone 

V+ = {xix = (x°,xI, ... ,Xn-I)ERn, xo>O, 

x 2 = (XO)2 _ (XI)2 _ ... - (xn-lf>Oj. (2.11) 

Lemma 1: The distribution Orp+ has the expression 

(2.12) 

where 

kn = (411")(n-1)I2r(nI2)lr(1I2). (2.13) 

Proo!' In formula (2.12), Z denotes the Riesz-Schwartz 
distribution (see Ref. 18 and Ref. 17, pp. 50 and 178). The 
explicit values of the Z distributions can be extracted from 
the paperl9 of Methee as 

Pf(x2)(l- n)/2 I Hn (I) 

IEI:{n - 2,n - 4, ... ju{0, - 2, - 4, ... J, 
Z/ = H(n-/-2)l2/(2/-I~n-2)/2r(112)), 

IE{n - 2,n - 4, ... }\{0, - 2, - 4, ... j, 
D( -/12)8, 1= 0, - 2, - 4, ... , 

Hn(l) = 2/- I~n -2)12r(1 12)r((1 + 2 - n)/2), 

(2. 14a) 

(2. 14b) 

(2.14c) 

(2.14d) 

where the meanings of Hadamard's symbol "Pf' and of the 
distribution H k [which corresponds in the present situation 
to 0 (XO)8(k )(x2) in usual notation (see, e.g., Ref. 20, p. 347] are 
stated precisely in Ref. 19. 

To prove Eq. (2.12), we observe that Z/ (Orp+, respec
tively) is a homogeneous distribution of degree n - I 
[n(a - 1), respectively] and therefore Orp+ = ca.nZna . The 
convolution properties [cf. Ref. 16, Chap. II, Eq. (5.2)] 

Orp+ *Of+ = Orpt P (2.15) 

and [cf. Ref. 17, Eq. (VI. 5.19)] 

(2.16) 

impose to the constant ca." the form ca.n = k ~. The value 
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(2.13) of the normalization constant kn is deduced from Eq. 
(2. 14a), which for I = n reads 

&v+ = knZn· (2.17) 

We remember that a general prescription of construc
tion for Riemann-Liouville operators for different cones is 
available (see, e.g., Ref. 21). 

C. The group Aut r 
In order to classify the asymptotic behaviors of the dis

tributions from Y'(r), we now consider the group Aut r of 
diffeomorphisms of the space Rn which invariates the r 
cone:grCr foreverygEAut r. ThegroupAut TCofanalyt
ic automorphisms of the tube T C is formed by the affine 
transformations a:Tc 

---+ T C 

a(z) = Az + a, zETc, (2.18) 

where AEAut r, and a is a real vector (Theorem I, Chap. I, 
Ref. 22). It follows thatAut ris a Lie subgroup of the general 
group GL(n,R) of real nonsingular n X n matrices, identified 
with the group of linear inversible transformations of the 
space Rn. 

Let us consider a connected Lie subgroup G of the 
group Aut r. Evidently, GCGL(n,R). A multiplier X of the 
group G is a homomorphism of G into the multiplicative 
group of different from zero complex numbers C* = C\ {O j 
(see, e.g., Ref. 23), i.e., 

X(AB) = X(A )X(B), A,BEG. (2.19) 

If the function X is bounded, the denomination of char
acter is also used. 

In order to give a group characterization of the asymp
totics of distributions, a decomposition of the group G is 
needed. 

Lemma 2: Let G be a connected Lie subgroup of 
GL (n,R). Then there exists an isomorphism 

G;:::;:G'" ® (G' ® G "), (2.20) 

wherethegroupGmisgivenbyG'" = X -1(l)andG'(resp.G") 
is an Abelian noncompact (resp. compact) subgroup of G. 
Moreover, the isomorphism (2.20) is realized by continuous 
functions. 

Proo!' Because G"' is an invariant subgroup of the group 
G, G decomposes in the semidirect product 

G;:::;:G'" ® GIG"'. (2.21) 

But G"':::>[G,G], where [G,G] denotes the commuta
tor of the group G, which is an invariant subgroup of the 
groups G and G'", and the inclusion G IGmCG I[G,G] fol
lows. Moreover, the group G I[G,G] is an Abelian one, and 
also the factor group GIG IN. 

The group G IG'" being connected and Abelian, admits a 
decomposition of the announced form, where the groups G' 
and G" are of the type RO~ (direct product of p groups of 
dilatation RO+ = R+ \ {OJ) and, respectively, a torus Tq, 
where p and q are positive integers [e.g., Theorem (9.4) from 
Ref. 23]. 

The canonical projection 11" o:G ---+ G HI is real and analyt
ic (cf. Ref. 24, pp. 123 and 115) and so also is the canonical 
projection 11":G ---+ G '. 
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Lemma 2 allows us to introduce a notion oflimit, which 
is very important for our approach to the problem of asymp
totics of distributions. 

Definition 2: Let 11": G ~ G ' be the canonical projection 
and let the mapping m = m'011", m:G ~ R·~, where 
m':G' ~R·~ ,m(A) = (AI, ... ,Ap)ER·~ ,AEG,andA i =Ai(A), 
i = 1, ... ,p, as in Lemma 2. For a functionfG ~ C, we intro
duce the notation 

lim/(A) = lim /(A (AI, ... ,Ap))' AEG. (2.22) 
A AI_ 00 

I <;i<;p 

D. Regularly varying distributions 

To every distribution/EY'(r), matrix AEG, and multi
plier X ofG, let us associate a distribution Tx(A )/EY'(F) by 
the formulas 

Tx(A)f= IdetA Ix(A )fA' 

(j..ptp) = if,tpA)' tpEY(Rn
), 

tpA!S) = IdetA 1-ltp(A -IS), SEF. 

(2.23a) 

(2.23b) 

(2.23c) 

Note that if the distribution/EY'(r) is a local integra
ble function, then the relations (2.23) can be explicated in the 
form 

(Tx(A}(,tp) = X(A )ldetA IIJ(As)tp(s)ds . (2.24) 

Therefore, the relations (2.23) can be/ormally written as 

(Tx(A)f)( . ) = IdetA Ix(A )f(A . ), (2.25) 

and if I det A I = 1, X(A ) = 1, we also use the notation 

(Tx(A )f)(.) =/A(') =/(A.). (2.26) 

Remark 1: Equations (2.23) imply that the mapping 
A ~ Tx(A -I), AEG is a representation of the group G on 
Y'(r), 

(2.27) 

If the multiplier X is continuous, this representation is 
continuous. In this paper, all the multipliers are supposed to 
be continuous. 

After this preparation, we are ready to introduce the 
definition of regularly varying tempered distributions. 

Definition 3: Let X be a continuous multiplier of the 
connected Lie subgroup GCAut r. The distribution 
/EY'(r) is called a regularly varying distribution a/type X, if 
there exists geY'(r) and there exists the limit 

lim Tx(A )f=g;60, in Y'(r). 
A 

(2.28) 

Remark 2: The tempered distributions with support in 
a cone are asymptotically classified by the continuous multi
pliers of the Lie groups of transformations which invariate 
the support cone. These groups are effectively classified in 
Ref. 22. 

Example 3: The case when G is the dilatation group Dr 
of the cone r, 
Dr = {-i I-iEGL(n,R); AER·+ , -is = AS, sEF J, (2.29) 

with the multiplier X (-i ) = A - a - n, corresponds to distribu
tions/with "quasi-asymptotics of order a" in the sense of 
Ref. 25: 
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lim (k-a/(k.), tp(.)=(g(.), tp(.), f,geY'(F). 
k~ 00 

(2.30) 

For the one-dimensional cone r = R+ it is easily seen 
that the limiting distributiong has the expressiong = Ya + I 
(see Ref. 26). Sufficient conditions for a function with quasi
asymptotics to have usual asymptotics are known (Lemma 4, 
Corolar Landau from Ref. 26). A necessary and sufficient 
condition for the existence of quasi-asymptotics is presented 
in Ref. 25. In particular, it follows from the structure 
theorem of tempered distributions that if the tempered dis
tribution/ has quasi-asymptotics of order a, then his growth 
index at 00 (cf. Ref. 17, p. 241) is equal to a + nN, where N is 
the order of the primitive of/ for which a continuous func
tion in the cone r is obtained by integration. 

Also note that if a regularly varying function is substi
tuted to k a in Eq. (2.30), then the limiting distribution g is 
not affected, nor is the order of growth at infinity. 8,11 

Other examples will be presented in the next sections. 
Remark 3: Remark 1 and the properties of the multipli

ers imply that if/EY'(r), then 

lim Tx (AB )f = lim Tx (A )(, 
A A 

(2.31) 

where BEG is fixed. In other words, the limiting distribution 
gEy'(r) from Eq. (2.28) has the property of covariance 

Tx(A )g = g, AEG. (2.32) 

We will present necessary and sufficient conditions for 
the existence of regularly varying tempered distributions in 
the next section. 

III. CHARACTERIZATION OF REGULARLY VARYING 
DISTRIBUTIONS 

Let us consider a tempered distribution/EY'(F) and a 
continuous multiplier X of the connected Lie subgroup 
GCAut r. We now advance the following three hypotheses: 
(i) there exists gEY'(r) and there exists the limit 

lim Tx(A )f=g;60, in Y'(r); 
A 

(3.1) 

(ii) there exist two continuous multipliers X' and X " of the 
group G, the unity eEY'(r) invariant to Tx ' and the function 
Hsuch that 

lim Tx.(A )J1J=H;60, in ~(r); 
A 

(3.2) 

and (iii) there exist the distribution h and the limit 

lim L {Tx(A )f](iy) = h (Y);60, YEC. 
A 

(3.3) 

Here ~ (r) denotes the complex topological linear 
space of continuous functions with support in the r cone 
(relatively to the topology of uniform convergenceI7). 

Now we are ready to state the main results of this paper. 
Theorem 1: (a) The hypotheses (i) and (ii) are equivalent, 

and the hypothesis (i) implies hypothesis (iii). 
(b) If/is a positive measure, then the hypotheses (i), (ii), 

and (iii) are equivalent. 
(c) If the hypotheses (i)-(iii) are fulfilled, then 
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x" =XX', (3.4a) 

H=fleg, (3.4b) 

Tx(A )g=g, (3.4c) 

Tx·(A }H=H, (3.4d) 

h (A tz ) = X(A )h (z), (3.4e) 

h (z) = L {g }(iz), (3.4f) 

whereAeG, zeT c and A t denotes the transpose of the matrix 
A. 

Proof: (a) From the structure theorem of distributions 
from Y'(r) (see Ref. 17, p. 239, and Refs. 27 and 28) it fol
lows that there exist a continuous function foe1fj (r) and a 
natural number a such that 

f= (J ra*fo· 
Let now X" be a continuous multipler. Since 

(f*g)A = IdetA lfA *gA' f,geY'(r), AeG, 

(3.5) 

(3.6) 

it follows from the definition (2.23) that 

Tx·(A )((Jr*f) = IdetA 12x"(A )((Jr)A*fA' (3.7) 

Suppose now the decomposition (3.4a) for the multi
plier X " and choose X ' as in Theorem 1 

(3.8) 

In fact, from the property of the Laplace transform 

L {fA }(z) = IdetA I-IL {f}(A -ltZ), zeTc, (3.9) 

applied to the Cauchy-Szego nucleus (2.8), it results that 

% dA tz ) = Idet A 1- 1% dz), zeT c, AeG. (3.10) 

With definition (2.8), we get 

((Jr)A = IdetA la-l(Jr' (3.11) 

Therefore, for getting Eq. (3.8) satisfied, we fix the mul
tiplier X ' to the value 

X'(A) = IdetA I-a, (3.12) 

and relation (3.7) reads 

Tx·(A )((Jr*f) = (Jr*Tx(A if. (3.13) 

Now, taking, in both sides ofEq. (3.13), the limit in the 
sense of Definition 2 and taking into account the continuity 
of the convolution in the topological algebra Y'(r) and the 
continuity of the multipliers, the implication (i) =:} (ii) is 
proved, and by similar arguments, the converse implication 
is also proved. The multiplier X' is given by Eq. (3.12) and the 
function H is expressed as in Eq. (3.4b), where, in agreement 
with Eq. (3.5), 

(3.14) 

The implication (i) =:} (iii) follows immediately from the 
continuity of the Laplace transform for regular cones. In 
fact, from hypothesis (i) we get more than hypothesis (iii), 
namely we find that (iii') there exists the limit 

lim L {Tx(A If}(z) = L {g}(z), 
A 

(3.15) 

L {g}(z) = h ( - iz), zeT c, AeG. 
The statement (a) of Theorem 1 has been proved. The 

assertion (b) follows from (a) and the (extended) continuity 
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for positive measures and their Laplace transforms (cf. Refs. 
13 and 29). 

To end the proof ofthe theorem, we combine the rela
tions (2~23), (3.9), (3.15), and (2.31), and we get 

h (B tz) = lim L { Tx (A )} (iB tz) 
A 

= lim X(A )Idet A IL {fA} (iB tz) 
A 

= lim X(A )L {fHi(A t)-IB tz) 
A 

= 11~, X(B)L {Tx (AB -Ilf} (iz) = X(B )h (z). 

Remark 4: We consider again the case of the one-di
mensional cone r = R+ from example 1 and the multiplier 
X (A) = A -a, AeR·+ . The distribution Y, defined by Eq. 
(2.10), verifies the relations 

(Jr = YI , Ya*Yp = Ya+ p , a,/3eR, 
(3.16) 

L { Ya }(z) = ( - iz)a, z = x + iyeC, y > O. 

Iff = f-L' and the distributionf-Ley'(r) is a positive mea
sure, then Theorem 1 establishes the equivalence of the rela
tions 

(i)" lim AI-af).. = Ya; 
).._ 00 

(3.17) 

This equivalence is in fact the classical Abelian-Tau
berian theorem of Hardy-Littlewood-Karamata. The im
plication (i)" =:} (ii)" is due to Karamata30 (see also Ref. 13, p. 
272 and Ref. 14, Theorem 2.2). The implication (ii)" =:} (iii)" 
is an Abelian-type theorem and the implication (iii)" =:} (ii)" 
is the Tauberian theorem, the latter two implications being 
consequences of the extended continuity (Ref. 13, p. 410 and 
Ref. 14). In the framework of the usual asymptotics, the im
plication (ii)" =:} (i)" results from the monotony off [Ref. 13, 
p. 421 and Ref. 14, Theorem (2.4)]. 

Remark 5: If G = Dr as in example 3, then Theorem 1 
implies, in particular, Vladimirov's theorem for tempered 
positive measures.II,IS 

Remark 6: The implication (iii) =:} (i) is true only under 
additional conditions. Such a condition is the existence of a 
yoeC for which the functions L {Tx (A If} (z) are bounded in 
Rn + zR·+ Yo. In this case, the Laplace transform passes in 
the limit pYo - 0, P > 0 (in the sense of tempered distribu
tions) into the Fourier transform F and the assertion follows 
from the isomorphism F: y'(r)_Y'(r) (cf. Ref. 17, p. 
251). Other sufficient conditions for the validity of the impli
cation (iii) =:} (i) in the quasi-asymptotics case are presented 
in Refs. 25 and 26. 

We also emphasize that if the condition (iii) is replaced 
by the condition (iii)', then (iii)' =:} (i) as a consequence of the 
algebraical and the topological isomorphism of Y'(r) and 
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H (C). In fact, the conditions (i), (ii), and (iii)' are equivalent. 
The relationship between the functions hand H appear

ing in Theorem 1 is given by the following Proposition. 
Proposition 1: Let us suppose that the group G acts ef

fectively on the r cone. Under the conditions of Theorem 1, 
the following integral equation is satisfied: 

h ( - iz)L {e} (z) = L A (z,u) Ii (u)du, 
(3.18) 

A (z,u) = L e,1Z.AO"X"(A -1)ldetA I-I dA, 

where zeTc, dA is the Haar measure on G, du is the measure 
on the orbit space, S = r /G, and Ii = His. 

Proof Applying the Laplace transform to both sides of 
Eq. (3.4b) and using Eq. (3.4t), we get 

i e'1Z.SW (5 Ids 

=L (H lIz) =L (e*g}(z) =L {e}(z).L (g}(z) 

=L (e}(z)h( -iz),zeTc. (3.19) 

Now Eq. (3.18) is a consequence ofthe effectiveness of 
the action of G on r, of the decomposition ds = dA ® du, 
AeG, ueS, and ofEq. (3.4d) explicated in the form 

H(uA) = X"(A -1)ldetA I-IH(A), AeG. (3.20) 

Remark 7: From the definition (2.8) of the function 0 '; 
and Eq. (3.19), it is easily seen that the integral equation 
(3.18) has for 

g = cO}, e = 0 '} 

the unique solution 

(3.21) 

H = cOV q
• (3.22) 

Example 4: To illustrate the content of Proposition 1, 
we consider as group G the product of dilatation groups Dr. 
and as coner the topological product ofconesrk , k = 1, ... , 
N: 

N 

r= ® r l , rICKn
" 1= 1, ... ,N, 

1=1 

N 

G = {A IA = ® Alln , AleR"+, 1= 1, ... ,N}, 
1=1 I 

N 

x(A) = II AI -Ill, 
1=1 

(3.23a) 

(3.23b) 

(3.23c) 

where the numbers PI are fixed and In represents the unit 
nXn matrix. 

Now, combining Eqs. (3.4a), (3.4b), (3.12), (3.14), and 
(3.23), the integral equation (3.18) gets the form 

i - N r(f31 + ani) 
h ( - iz)%a(z) = du H (u) II JJ' (3.24) 

s 1= I ( _ izhUIl ,+an, 
N 

wherez= (zl, ... ,zN),ZkeTc" Ck =intr~,s= ® Sk,Sk 
k=1 

is the unit sphere in R n. and %(z) = llf= 1 %(Zl). 
References 10, 15, and 25 deal with the case N = 1. 

IV. APPLICATIONS TO N·POINT DISTRIBUTIONS 

(1) The N-particle distributions are tempered distribu
tions with support in the product of N Minkowski cones V + 

(2.12) (see, e.g., Ref. 31) 
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N 

V:= ® V+. (4.1) 
k=1 

The Minkowski scalar product is denoted by 

(4.2) 

where x,yeRn and the same notation is maintained if 
x,yeCn. 

The N-point cone V: is a convex, closed cone, with the 
vertex at 0, self-dual (i.e., r = r *), regular, with the 
Cauchy-Szego nucleus 

(4.3) 

(4.4) 

wherez = (zl, ... ,zN)eT
v

; and the value of the constant k n is 
given by Eq. (2.13). The latter relation follows from Eqs. (2.7) 
and (2.17) and the relation [see, e.g., Eq. (VIII, 7.37) from 
Ref. 17] 

L (ZI }(z) = (_r)-1/2, zeTv+. (4.5) 

The group of analytic automorphisms Aut V: is 
formed by all matrices A = ® f= IAA, where A belongs to 
the restricted Lorentz group L '+ (see Ref. 31). AN-point 
distributionjeY'(V:) is Lorentz invariant if/A = / for ev
ery AeL '+ [see Eqs. (2.24) and (2.27)], and A acts as follows: 
A (xl, ... ,xN) = (Axl, ... ,AXN), xl, ... ,xNeRn. The structure of 
the Lorentz invariant distributions is presented in Ref. 19. 

We remember now that the Lorentz covariant distribu
tions are linear combinations of Lorentz invariant distribu
tions with standard Lorentz covariant polynomial coeffi
cients.28 Then it follows that the asymptotic behavior of 
basica1 distributions in quantum field theory (e.g., Wight
man distributions, Steinmann distributions, Green func
tions, propagators l,31) is determined by the asymptotic be
havior of Lorentz invariant distributions from Y'(V:). 
Moreover, if these distributions are regularly varying, then 
Theorem 1 allows the testing of the compatibility of N-point 
functions behavior at high energy with the principles of 
quantum field theory. 

We emphasize that if the distribution/eY'(V:) is Lor
entz invariant, then the functions h,g, and H appearing in 
Theorem 1 are also Lorentz invariant. 

(2) We take again example 4 of Sec. III, whererk = V+ 
and Aut r is the direct product of dilatation groups, an im
portant case for conformal quantum field theory (see, e.g., 
Ref. 32). Let us consider that/is given by the tensorial pro
duct 

N _ 

/= ® heY'W:) 
1=1 

(4.6) 

of two-point Wightman distributions, 3 
I heY'(V+), 

1= 1, ... ,N. Taking into account that the two-point Wight
man distributions are positive measures, 31 Theorem 1 asserts 
the equivalence of hypotheses (iHiii). 

Let us now SUPposeh, 1= 1, ... ,N, to be regularly vary
ing distributions of type X, with the multiplier X given by Eq. 
(3.23c). From Eq. (3.4c), we get that the limiting distribution 
g has the form 
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N 

g = ® gl' (4.7) 
1=1 

and every gl is a homogeneous distribution of degree/31 - n. 
So we take in Eq. (4.7) 

(4.8) 

where a is a constant. 
Because the primitive of first order of positive measure 

is a function from 'G' (V:), the unity e (3.14) in Theorem 1 
may be taken to be 

e = &v+. (4.9) 

Then, Eqs. (3.21) and (3.22) imply that the unique solu
tion ofEq. (3.24) is 

N 

H(z) = II HI (Z/)' z/eT v +, 1 = 1, ... ,N, (4.10) 
/=1 

HI = akn -pyn Ov+ 1 +pyn = akn ZPI+n. (4.11) 

Now we use Eqs. (4.7), (4.8), and (3.4f) and we find 
N 

h (z) = II hl(z/)' (4.12) 
1= 1 

hl(z/) = a( - z;) -P
y2, z/eT v+, 1 = 1, ... ,N. (4.13) 

Remembering the explicit formulas (2.14) of the Riesz
Schwartz Z distribution, it is seen that not every asymptotic 
behavior, determined by /31' is acceptable for the distribution 
(4.6), product of two-point distributions. 

For n = 4, the restrictions /31 = 0 or /31 >2 follow. With 
Eq. (2.14), the relations (4.8) and (4.10) may be written expli
citlyas 

H ( ) - 8 -1/2 r(1f31 + 5)/2) pf(1]2fY2 (4.14) 

[

a Ov+ (1]), /31 = 0, 

11] - a 11" rlf3l+4)F(I+/31/2) , 

/31>2; 

[

a 15(1]), /31 = 0, 

(211")-la H (1]), /31 = 2, 
gl(1]) = a Pf(1]2)!PI- 4)/2 , 

11"'f1I- Irlf3l/2)F1f31/2 - 1) 
/31 >2, 1]eV+. 

(4.15) 
If N = 1, Eqs. (4.13)-(4.15) express the case of quasi

asymptotics of order /3 - 4 (see Refs. 11 and 33). 
(3) The asymptotic behavior of regularly varying multi

particle distributions is effectively determined by the func
tion h from Theorem 1. 

The function h may be chosen such that 

h = Pho, P, hoeH (e), (4.16) 
PIA 'z) = X(A )P(z), ho(A 'z) = ho(z), zeTc, AeG, 

where P is a polynomial without zeros in T C
• 

We now present another example. Let G = SOt 1,1)' 
®SO(n - 2)®Dp+ andforAeGwechoosetheparametriza
tion 

If 

2340 

(
cosh e 
sinhe 

sinh e) Al . 
cosh e ® n-2 
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(4.17) 

then 

X(A) =Ap+v-I e8 (P-v). (4.19) 

It can be verified by direct calculation that this charac
ter gives indeed the asymptotic behavior of the distribution 
L -I {h } (s). In fact, starting with formula (4.5) and using the 
fractional derivative from Sec. II (see, e.g., Ref. 34, Eqs. (8) 
and (77), Chap. XIII), it is found that the distribution whose 
Laplace transform is the function (4.18) has the expression 

-I u - Pv - v ( - S '2)(/- n)/2 

L {h }(s) = r(1 -1l)r(l- v) Hn(1) 

X3F2(1, 1,(n -1)/2;1 -1l,1- v;UV/S,2), 
(4.20) 

where U=SO_SI, V=SO+SI, (S')2=(S2)2+ ... 
+ (Sn -1)2, seV+, and the calculation was performed for 

type function distributions for Re Il, Re v < o. 
Ifn = 4, G = SO(1,I)' ®SO(2), we may take 

h (z) = (ZO -zl)a(zD +zlfho((r)2 + (rf), zeV+, 
(4.21) 

where the constants a, /3eR specify the multiplier X. 
Note that the asymptotic behavior determined by Eq. 

(4.21) is compatible with the uniparticle cross sections of 
inclusive reactions at high energy predicted by the local 
quantum field theory3s.36 and also by the phenomenology of 
elementary particles (see, e.g., Ref. 37). 

In fact, Eqs. (4.16) determine classes of asymptotic be
haviors which are compatible with the bahaviors of the mul
tiparticle amplitudes at high energies. 

v. CONCLUSIONS 

In this paper we have introduced the regularly varying 
distributions as tempered distributions with asymptotic be
havior determined by the multipliers of the group of auto
morphisms of the support cone. A Tauberian-Abelian 
theorem for regularly varying distributions which general
izes the classical Hardy-Littlewood-Karamata theorem 
and also Vladimirov's theorem has been proved. This 
theorem establishes the equivalence of asymptotic behavior 
of the regularly varying distributions, of their Laplace trans· 
forms, and of the regularly varying distributions which re
sult after the action of the Riemann-Liouville operator. The 
covariance properties of the limiting distributions and their 
Laplace transforms, which are connected by an integral 
equation, have also been established. The results have been 
applied to multiparticle distributions which are the product 
of regularly varying two-point distributions with support in 
a product of Minkowski cones. 

The results of this paper can be extended to spaces of 
hyperfunctions,38 and the asymptotic behaviors may be re
fined by introducing slowly varying functions. 14.29 

'c. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw-Hill, New 
York, 1980). 
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Convergent expansions for excited glueball masses in 2 + 1 strongly coupled 
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It is known that the mass spectrum of a strongly coupled (j3 = 2IFi small) 2 + 1 Wilson action 
lattice gauge theory contains a mass mo - - 4 in /3 and two excited masses m I' m 2 - - 6 In /3 and 
that mo + 4ln /3 has a convergent expansion in powers of /3. We show that m l , m2 admit 
convergent expansions of the form - 61n/3 + r(j3), wherer(j3) is analytic at/3 = O. Furthermore, 
a finite lattice algorithm is given for determining C n , the nth/3 = 0 Taylor coefficient of r(j3). Here, 
C n only depends on a finite number of /3 = 0 Taylor series coefficients of the plaquette-plaquette, 
plaquette-double plaquette, and double plaquette-double plaquette truncated correlation 
functions at a finite number of points. For the gauge group Z2' by duality, m I' m2 map to bound 
states of the low-temperature Ising model; a possible relation between an increasing number of 
bound states and roughening is discussed. 

I. INTRODUCTION AND RESULTS 

In the early work of Ref. I and more recently in Refs. 2 
and 3 there has been much effort devoted to finding the mass 
spectrum of lattice gauge theories. In Ref. 4, for a Wilson 
action strongly coupled (j3 = 2IFi small) lattice gauge theory 
it is shown that particles exist and in Ref. 5 convergent ex
pansions are obtained for the masses. In the 2 + 1 lattice 
gauge theory with a gauge group representation with real 
character it is shown4 that there is a lowest mass mo' asso
ciated with the truncated plaquette-plaquette (p-p) correla
tion function (cf), which admits the representation 

mo = - 41n/3 + r(j3), 

where r(j3 ) is analytic at /3 = O. Furthermore, in Ref. 6 a Z4 
symmetry for zero momentum states is deduced and exploit
ed to show that there are masses m l and m2 associated with 
the trivial and nontrivial real representations of Z4' respec
tively. The asymptotic forms of m I and m2 are - 6 In /3 and 
1 m I - m21 = 0 (j3 ). Here, mo is also associated with the iden
tity representation; m l and m2 are associated with the trun
cated double plaquette-double plaquette (dp-dp) cf. 

Using the /3 analyticity and decay rate of various trun
cated cf 's given in Ref. 6 we show that the methods of Ref. 5 
apply to give a convergent expansion for m2' The masses mo 
and m I > mo occur as simple poles on the imaginary axis of 
the complex energy plane ofthe momentum space truncated 
p-p cf. There is necessarily a simple zero p between these 
poles. A convergent expansion for m l is obtained from an 
implicit equation which is a perturbation of an implicit equa
tion for p. We show that the masses m2' m l (as well as p) 
admit expansions of the form 

- 6lnp + r(j3), 

where r(j3 ) is analytic at /3 = O. Furthermore, a finite lattice 
algorithm is given for Cn , the nth p = 0 Taylor series coeffi
cient of r(j3). Here, Cn depends on only a finite number of 
/3 = 0 Taylor series coefficients of the p-p, dp-dp, and p-dp 
cf's at a finite number of points. 

-'On leave from Departamento de Fisica (ICEx), Universidade Federal de 
Minas Gerais, 30.000, Belo Horizonte, MG, Brazil. 

In Sec. II we introduce notation and deduce the expan
sion for m2' In Sec. III we obtain the expansion for m l (and 
pl. Some concluding remarks are made in Sec. IV. In an 
appendix we give bounds on decay rates of various cf 's used 
in Sees. II and III. 

II. NOTATION AND EXPANSION FOR m2 

We consider a Wilson action 2 + I lattice gauge theory 
with Boltzmann factor given formally by exp [/3 ~pX(gp ) J ; X 
is a real character of an irreducible unitary representation of 
the gauge group,p denotes theplaquettes ofZ 3

, andgp is the 
ordered product of group elements around the border of P. 
Weletx = (XO,x\Jx2) = (xo,x)denotepointsofZ 3

; 1/31 willbe 
taken small throughout. For a gauge invariant function t/J 
that depends on a finite number of bond variables we denote 
the thermodynamic limit expectations by (t/J). The exis
tence, p analyticity, and translational invariance of (.) fol
low from the polymer expansion of Ref. 7. For t/J, f/J, which 
are gauge invariant functions of a finite number of variables 
in the time zero Xo = 0 plane, we let t/J (x), t/l(x) denote the 
translation by x. The relation of the expectations to quantum 
field theory is given by the Feynman-Kac formula 

(~t/I(xo,x) = (~t/I( - xo,x) 

= (t/Jv, e - H IXo1eiP'1I.f/JV )K' 

where the left side is used to construct the Hilbert space Y, 
energy-momentum operators H, P, and the Hilbert space 
vectors t/Jv , "'" on the right using the construction of Refs. 7 
and 8. 

With t/J, f/J as above let G<fotI!(x) denote the truncated cf 

G~",(x)= (~(O)t/I(x) - (~(O)(t/I(x), 

which decays exponentially in the distance between the sup
ports of t/J and f/J. Also, let 

G~",(xo) = LG~",(xo,x) 
" 

and 

G~",(Po) = LG~",(xo)ejpoXo, 
Xo 
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which is the Fourier transform at zero space momentum. 
Here, (;4>'" (Xo) will also be considered as a matrix operator on 
12(Z) with matrix elements G4>"'(xo;Yo) = G4>"'(xo - Yo) and 
similarly for G#(x) in 12(Z3). 

Let R. denote a rotation of 1T12 about an axis a parallel 
to the Xo (time) direction. Then, I, R., R ;, R ! make up the 
elements of the group Z4' Defining 

P~I)=1(I+R. +R; +R!), 

P~) = 1(1 - R. + R; - R !), 
P~)=1(I+iR. -R; -iR!), 

P~) = 1(1 - iRa - R; + iR !), 
we have pl')pVl = {j .. pl') and I..pl') = 1 It is shown6 that a 8 1J a I. . 

(;p~~4>"'(xo) = (;4>.P~~"'(xo)' 
SO that (;4>"'(xo) = 0 if t/J = P~)t/J, t/! = PC)t/!, with i#j, which 
provides us with a selection rule on zero momentum states. 

Let Xh (g) = X(gw), wheregw is the six-sided rectangular 
loop (double plaquette) in the time-zero plane located at the 
origin with long axis along XI' Let XI = P~'xh and 
X2 = P~)Xh' Denote the single plaquette function by X· 

The expansion for m2 is obtained in a manner complete
ly analogous to mo in Ref. 5, but using Le~a A.l for 
q x:tX, (xo) falloff ~d an expansion of r X:tX, (Po,/3 ), 
r x:tX, (Po,{3) = - G x:tX, (Po, 13) -I, with the terms up to and 
including order 13 6 explicited. We have, letting 

~ ~ 6 pm iJ'"r 
r 22S (XO' 13) = r 22(X0 ,/3) - L - .::-:=::-tXO' 13 = 0), 

m=O ml apm 
6 

1'22(PO' 13) = 2 + m~ I r mP m - ~e - ipo + eiPo)/:J 6 

+ r 22S(XO = 0,13) + i. r 22S (XO = n,/3) 
,,=1 

X (e - ipo" + eiPo"). 

Introduce the auxiliary complex variable w and function 
H(w,p) such that 

H(w = 2 - (c7/61)/:J6e- ipo,/3) = r 22(PO' 13). 
By the analytic implicit function theorem9 

H (w(tJ), 13) = 0, w(tJ) analytic, w(O) = 0, and w(tJ) = 2 

- (c7/61)/:J 6em,!P), or 

m2(tJ) = - 61np + In(6!/c7) + 10(2 - w(tJ)) 

== - 61np + r(.8). 

The argument for determining C" = (l/nl)(d" rld{J")(tJ = 0) 
goes as in Ref. 5 and reduces to the determination of 
(dm r 221dpm )(xo, 13 = 0) which, by the Neumann series ex
pansion for 1'22 in Lemma A.l, reduces to the determination 
of (d1 G221 dpl )(x, 13 = 0) for a finite number of X and I. 

III. EXPANSION FOR m, 
In Ref. 6 it is shown that G xx (Po) has two simple poles, at 

Po = imo and Po = im l • Thus 1'xx(Po) = - GXX(PO)-I has 
simple zeroes at Po = imo, Po = iml . By the spectral repre
sentation of G xx (Po), G xx (Po) also has a simple zero at Po = ip, 
mo <p < mi' To determine m l we first introduce 
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Fx1x1 (Po) = GX1X1 (Po) + GXIX (po)rxx (Po)GXX' (Po), 

which subtracts out the vacuum and mo, m I particle poles 
from GXIX •. However, there is still a simple ~le of 1'xx (Po) at 
Po = ip coming from the zero at Po = ip of G xx (Po)· 

We remark that using the estimates in Lemma A.2 on 
FX1X1 (xo) and 4>XIXI (xo), the convolution inverse of 

- FXIXI (xo), we can obtain directly a convergent expansion 
for p as the zero ~XIXI (Po = ip) using the same ~ethod as in 
Sec. II. Furthermore, this is the only zero of tP XIXI (Po). An 
indirect method for finding p was employed in Ref. 6. 

We now derive an implicit equation for m I' Let 

Lxx. (Po) = l' xx (Po)G xx. (Po)4> XIXI (Po)=:£ (Po) = Lx•x (Po)· 

By the bounds of Lemma A.3 this is analytic up to 
~m Po = - 7( 1 - E)ln 13; i.e., the singularities in rxx (Po) and 
G xx. (po) at Po = imo, Po = ip, and Po = im I are canceled. De
fineM(Po) by 

l' xx (Po) = Lxx. (PO)FXIXI (Po) LxIX (Po) + if (Po)· 

From the estimates of Lemma A.4 if (Po) is analytic on 
O<:Impo<: -7(1 - E)lnp. Furthermore, it is shown6 that 
LXIX (Po = ip)#O so that the only singu.!arity of 1'xx(Po) is 
Po = ip. We are interested in the zero of r xx (Po) at Po = im I> 

m1- - 6lnp. Write 

1'xx(Po) = FxIXI(Po) [ L 2(Po) - M(Po)4>xlxl(Po)]-

Thus the zero of l' xx (Po) at Po = im 1- - i6 In 13 is given by 
- - 2 -tPX1X1 - L 1M = 0, 

which is the implicit equation we now solve. From the 
bounds on M, L, and 4>XIXI we can write 

6 6 

M= -1 + Lvdji· + Lad1(e-IPo +e1Po
) +M7' 

i=1 i=4 

7 

L= Lrd1 +Ls, 
i=1 

6 

4>XIXI = - 4 + Lt/Jd1 +pp6(e- iPo + i Po
) + 4>X.X.7' 

; == 1 

where the coefficients of {1 can be determined explicitly. 
In t~e a_bove iil7' ;p x.x.7 (Ls) are the 13 = 0 Taylor expan

sions of M, tP x.x. (L ) with the terms up to and including order 
13 6( 13 7) subtracted. To be more explicit 

M7 = M7(XO = 0,/3) + i. M7(XO = n,/3)(e- ipo" + tlpo") , 
,,=1 

4>7 = 4>7(XO = 0,/3) + i. 4>7(XO = n,/3 )(e - PoIJ + eipo"), 
,,=1 

L8 = Ls(xo = 0,/3 ) + i. Ls(xo = n,/3) (e - ipo" + eipo") , 
,,=1 

where the subscript 1 means the Taylor series with the terms 
up to but not including 1 subtracted. 

We obtain the correct singular and constant term for the 
mass m l by transforming to the variables w,p, where 

w = - 1 + (C7p6/2.61)e-iPo, C7 = 2·6Vd 6. 

We let M',4>',L' denote M,4>,L, respectively, written in 
terms of the w, 13 variables. Now observe that we can write 
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-, ag 
tP = 2w + g(w, 13), g(O,O) = 0, - (0,0) = 0, 

aw 
13 2M' = (c";41)(2·6!/c7) + h (w,f3), h (0,0) = 0. 

Furthermore,1. " g,h arejointly analytic and ( 13 2M r I has a 
Taylor expansion beginning with a constant. Let 

F(w,{3)=~' - 13 21. '2(f3 2M')-1 
= 2w + g(w,{3) - 13 21. '2(f32M')-I. 

As F(w,{3) is jointly analytic, F(O,O) = 0, (aF law)(O,O) = 2, 
the analytic implicit function theorem applies and gives 
w(f3), wherew(f3)isanalytic,F(w(f3),f3) = 0, and w(O) = 0. 
Thus 

m l = - 6 In 13 + 61n d + In(1 + w(f3)). 

Arguing as in Ref. 5, c", the nth 13 = ° Taylor coefficient of 
wlfJ), only depends on (d mq,ldf3 m )(x;y,{3 = 0), 
(d mMldf3 m )(x;)',{3=O), and (d mLldf3 m )(x;)',{3=O) for a 
finite number of x,y, and m, which by the Neumann expan
sions for tP, M, and L only depends on (d'ldf31 
X G xx (x, 13 = 0), (d S IdI3 S)G XIX, (x, 13 = 0), and (d t I df3 t) 
X G XXI (x, 13 = 0) for a finite number of r ,s,t, and x. The deter
mination of the above cf 13 = ° derivatives can be reduced to 
a finite lattice problem by expressing G xx' G XIX, ' and G XXI as 
appropriately differentiated logs of partition functions and 
using the polymer expansion (see Ref. 7). 

IV. CONCLUDING REMARKS 

We have obtained convergent expansions for the bound 
states below the order of magnitude of - 7 In 13. The ques
tion of how many bound states there are below the two-parti
cle continuum at the order of magnitude of - 8 In 13 is left 
unanswered. For example, do the three or more plaquette 
functions give rise to new bound states? Also, we have not 
determined whether the bound states become more or less 
tightly bound as 13 increases; for example, do m limo, m21mO 
increase or decrease with f3? This could be determined by 
calculating the coefficients of the series. Do the bound states 
disappear into the continuum for some 13 ? It would be inter
esting to have a spectral interpretation of the crossover re
gion. By duality, 10 for the special case of the gauge group Z2, 
the masses mo, m l, m2 are the one particle and the two bound 
states of the quantum field theory associated with the 2 + 1 
low-temperature Ising model (see Ref. 8). The appearance or 
disappearance of bound states as the critical temperature is 
approached from below could shed light on possible rough
ening effects in the low-temperature Ising model with plus 
boundary conditions. A detailed knowledge of the low-tem
perature bound state spectrum would also allow improved 
scaling function approximates (sfa) (see Ref. 11). In Ref. 11, 
sfa were given assuming no bound states. The location of the 
bound state spectrum will affect the deviation from (and cor
rections to) Orstein-Zernike behavior. 
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APPENDIX: DECAY PROPERTIES 

We give bounds, obtained in Secs. III and IV of Ref. 6, 
on G22, r 22, FI!> tP II' L, and M used in the arguments ofSecs. 
II and III. We have abbreviated X~2' XIXI by 22 and 11, 
respectively. Here, c, c', c l , c2, ... will denote strictly positive 
constants. The cPs that appear below are analytic inf3 and all 
Neumann series converge in /2 operator norm. Here, d is the 
dimension of the representation of the gauge group. 

LemmaA.l: 
(a) (;dxo = 0) = ! + 0 1fJ). 

(b) (;22(XO = 1) = c7/4.6!f3 6 + o IfJ 7), 

c7 = 2.6! Id 6
• 

(c) 1(;22(Xo)l<.:clc'f3I6Ixol. 

(d) (;22 = P2[ 1 + P 2-
1((;22 - P2)], 

P2(XO;)'o) = (;dxo;)'o)c5XooYo ' 

(e)F22 = -(;i;l= [1+p;-I((;22-P2)]-IP;-1 

A {c Ic'f3I 71x.1 
(t) Irdxoll <.: c:lc'f3I 61X.1: 

LemmaA.2: 
(a) Fl1(xO = 0) = ! + 0 1fJ). 

IXol =1= 1, 

Ixol = 1. 

(b) Fl1 (xO = 1) = (c7/614:L8 6 + 0 1fJ7). 

(C)Fl1 = (;11 + (;lxFxx(;xI 

= (;11 [1 - F lI (;xlxF xx(;xxl]' 
where 

" "'_I ""'-1"'" _11'1. 
rXX = - G xx = [1 + P (Gxx - PI] P, 

P(xo,yo) = Gxx (xo,yo)c5x.oYo· 

A A -1 
(d) tPl1 = - F 11 

LemmaA.3: 
(a) i (xo = 0) = (4Id:L8 + 0 1fJ2). 

(b)i (xo = 1) = cf38 + OIfJ9), 

A {C 1C'f3I8, IXol = 1, 
(c) IL (xoll <.: clc'f3I71X.1, IXol =1= 1. 

LemmaA.4: 
(a)M(xo = 0) = - 1 + OIfJ). 

(b) M(xo = 1) = (c";4!:L8 4 + 0 IfJS), 

C4 = 4.4!/d 4
• 

A {c1C'f3I 41X.1 
(cllM(xo)l<.: clc'f3I 71X.1: 
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A new form of the vector wave equation for a neutrino is derived that makes the relation to the 
massive case more transparent than that given by Reifler. Some new aspects of the photon 
neutrino duality are discussed. 

I. INTRODUCTION 

In a recent article l Reifler gave a vectorial form of the 
two-component neutrino equation (Weyl equation) in an 
Abelian external potential. His idea was to use the 2-1 Car
tan map from the spinor space to the space of complex three
vectorsF= (F1,F2,F3)withF2 =Fi +Fi +F~ = o. The 
wave equation can be written completely in terms of F and 
the external vector potential. The advantage of the vectorial 
form as compared to the standard way of writing the neu
trino wave equation lies in the fact that the first one is holono
mic: in a curved space-time it is not necessary to make a 
choice of an orthonormal tetrad field in order to be able to 
write down the wave equation (spinors are defined only with 
respect to a space-time tetrad); furthermore, not in every 
space-time does there exist a global tetrad field. 

The vectorial form of the massive Dirac equation was 
studied extensively by Kofink2 but the equivalence with the 
spinor formulation was first established by TakabayasP in 
great detail, motivated by the desire to give a magnetohydro
dynamical interpretation of the Dirac field. Since then the 
vectorial form (in the massive case) has been studied by sev
eral authors from various aspects.4 

In Ref. 5, I showed that the Takabayasi equations can 
be understood and derived in a simple way using the (natu
ral) action of the group GL (2, q on Dirac spinors. In this 
paper I want to show that the massless case (two-component 
Weyl equation) can be handled in a similar way. The result
ing equations will differ in form from those in Ref. 1, but of 
course they are equivalent. The profit of writing the wave 
equation in my way, Eq. (15), is that both the massive and 
massless equations are formally the same: the main differ
ence (except for the value of the mass parameter) lies in the 
characteristics of the "polarization tensor" PI'V' which is the 
main bilinear quantity constructed of the Dirac (or Weyl) 
field. In the massive case at least one of the Lorentz invar
iants PI''' pI'V, PI''' *Pl'v has to be nonzero, whereas in the 
massless case both vanish and F = E + iH, E k = POk ' H k 
= -! Eijk pij is the complex null vector used in Ref. 1. 

The considerations of the present paper throw some 
light on the problem of the photon neutrino duality. It is an 
old idea to construct photons from neutrino pairs.6 This yvas 
revived again in a recent article by Luther and Schotte. 7 In 
Ref. 7 it was shown how to construct photon creation and 
annihilation operators from pairs of fermion operators. The 

., Pennanent address: Department of Mathematics, University of lyviisky
Iii, Seminaarinkatu 15, SF-40IOO lyviiskylii 10, Finland. 

inverse construction is also possible. In fact the first con
struction of this type was given by Jordan, but it was criti
cized by Pryce because of the lack of rotational invariance. 
(Problems in combining the correct commutation relations 
with rotational invariance were not completely solved in the 
later papers.6

) This difficulty has been avoided in Ref. 7. 
Since the vectorial equations for PI'V are very similar to the 
Maxwell equations (the difference is in a source term which 
is a nonlinear function of P) one could somehow think of the 
neutrino as a "twisted" photon. This possibility will be dis
cussed in Sec. III in the framework offunctional integration, 
in the spirit of Witten's fermionization of the soliton field in 
the Wess-Zumino model. 8 

II. THE VECTORIAL FORM OF THE NEUTRINO 
EQUATION 

Consider the Dirac equation 

yV(av + ieA,,)rP + imorP = 0 (I) 

in the Minkowski space; metric g = diag ( + 1, - 1, - 1, 
- 1). I shall use the representation 

[
0 0"0] [0 - O"k] 

Yo = 0"0 0 ' Yk = O"k 0 (k = 1,2, 3) 

where 0"0 = 1 and 

0"1 = [~ ~], 0"2 = [~ -~], 0"3 = [~ _~]. 
As in Ref. 5, I shall replace (1) by an equivalent 2 X 2-matrix 
equation; the new matrix-valued Dirac field is related to the 
vector components rPI' ... ,rP4 through 

rP = [rPl - ~4] . 
rP2 rP3 

In this notation the Dirac equation is 

O"V a"rP + ie a "0"y4" + imoip0"3 = 0, (2) 

where 

a = [ _; -~], for a = [; !] . (3) 

In particular, a = 0° - 1 if det a = 1. 
In the case the mass mo = 0, Eq. (2) decouples into two 

independent two-component spinor equations (Weyl spinor 
equations). Let us project out the equation determined by the 
first column of the matrix equation (2); the projection opera
tor for this is the right multiplication by the matrix UJ 
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= !(UI + iU2)' The resulting two-component equation for 
(tfl' tf2) is 

UV avtf (() - ieuvtf(()Av = 0 . (4) 

Since (tf3' tf4) do not contribute to (4), we can choose, for 
example, 

(5) 

However, in order to be better able to compare with the 
massive case let us keep the general form of tf. Let us assume 
now that 

det tf = tfl '¢I3 + tf2 '¢I4=1=O. (6) 

We can multiply (4) from the right by det tf·tf-I. Define 

P: = det tf.tf(()tf-I = PftV ql-'V , (7) 

where aDk = - ~o =! ~ , ~I = -1 Eklj u
j 

(Em = + 1, 
E antisymmetric). Taking the Hermitian and anti-Hermitian 
parts of 

det tf·uV(av tf)w tf-I - ieuV AvP = 0 , (8) 

one gets a pair of vectorial equations 

a v PVft - 2eA v* PVft = - Re tr P aft tf tf-I , (9a) 

a v* PVft + 2e A v PVft = 1m tr paft tf tf- I . (9b) 

The dual * P is defined as 

*pftV =! Eftva{3 paf3, (to) 

with EOl23 = + 1, E antisymmetric. The field tf defines an 
orthonormal tetrad system {u, I, m, n 1 by 

U
V 

U v = Idet tfl-I·tfuotf*,·· ., 

nV U v = Idet tfl-l·tfU3tf* . 

From (7) and (11), it follows that 

PftV = (alft + bmft) (- U y + ny) 
- (alv + bmy) (- uft + nft) 

or 

P= (al + bm)l\k, 

(11) 

(12) 

where k y = - U y + ny is a null vector and a + ib = det tf. 
Denoting by A the matrix with columns {u, I, m, n 1 , 

afttftf-I = aft Aak Apk ~p +! aft In det tf, 

and Eqs. (9) can also be written as 

av Pyft - 2e A y *Pyft = (al + bm).aftk, (13a) 

av *Pyft + 2e A y Pyft = (am - bl).aftk. (13b) 

Note that 

*P= (am - bl)l\( - U + n) (14) 

so that the duality transformation generates the group of 
rotations in the (a,b) plane. By (13), the potential A y can be 
interpreted as the gauge potential associated to this U(I) 
group. Thus we can write 

DY Pvft = (al + bm).aftk, 

DY *Pyft = (am - b/).aftk, 

(ISa) 

(ISb) 

where D v = av - 2eA v *. The field PftV and the vectors 
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al + bm and am - bl are invariant with respect to (1) simul
taneous rotations in the (a, b ) and (I, m) planes; (2) the hyper
bolic rotations, 

u' = U coshS + n sinhS, 

n'::::: u sinhS + n coshS, 

combined with the scaling (a', b ') = e - S (a, b); and (3) a two
parameter family of Lorentz transformations generated by 
U31 + UOI =! (() and U23 + U20 = (i/2) ((). The maximal com
pact subgroup of this four-parameter group is just the U( 1) 
gauge group. These symmetries arise because we are inter
ested only in the first column of the (2 X 2)-matrix field tf; the 
second column can be chosen arbitrarily subject only to the 
condition det tf=l=O. A simple choice is that given by Eq. 5. In 
this case a = Itfl12 + Itf212, b = 0, and u = (1,0,0,0). By the 
definition, Eq. (7), 

(16) 

The map (tfl' tf2l-P is called the Cartan map and it is a 2-1 
map from the space of two-component spinors to the space 
of antisymmetric tensor fields Pfty satisfying 

PftV pftV = Pfty *PftV = 0 . (17) 

If one writes 

P= (Ek + iHk)~' (18) 

then P satisfies (17) if and only if 

EIH and IIEII = IIHII. (19) 

Any P subject to the condition (17) can be written as 

P=hl\k, ~~ 

where h is spacelike and k is a light vector orthogonal to h; 
the representation (20) is not unique, since clearly h ' = ph, 
k ' = p - I k is an acceptable choice for any real p =1=0. Also 
h ' = h + tk, k ' = k defines the same P. These symmetries 
correspond to the transformations (2) and (3) above. 

ReiHer wrote his neutrino equation entirely in terms of 
PftV and the vectorjft' 

jo: = IIEII, j: = IIEII-IEXH, (21) 

defined by P. Using the symmetries described above, the ap
parent dependence of my equations (ISa) and (ISb) on k and 
h = al + bm is completely artificial; of course, Eqs. (ISa) 
and (ISb) must be equivalent to (2.2) in Ref. 1: 

DOF = zDXF - (DF)'jjo-l, 

where F = E + IH. 
The extra degrees of freedom can be avoided either by 

the choice of the second column in tf [as in (5)] or directly by 
a specific choice of a, b, I, m, and k. A simple choice is 

k = j, h = (O,E/IIEIIl = al + bm , 

h 1 = am - bl = (0, H/IIHIIl. 
(22) 

Using this choice it is easy to see the equivalence of (15) with 
(2.2). 

It is interesting to compare the system (15) with the 
corresponding equations 

av Pvft = 2mo vft + 2ea Aft + al.aft m + bu.aft n, (23a) 
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O"*P"p = 2ebAp + bl.apm - au.apn , 

in the massive case mo#O; here 

(23b) 

vI" = ,Ja2 + b 2 UP' P = det t/J.t/J(i/2)u3t/J- I . (24) 

Except for the mass term 2moVp there are two important 
differences: (1) the vector potential AI" is (massive case) the 
gauge potential for rotations in the (I, m) plane, and (2) the 
tensor P is nondegenerate, det P =1= O. However, the first dif
ference is only superficial (and is related to the second one). 
Namely, in the massless case the effect of a duality rotation 
on Pby an angle ¢ in the (a, b ) plane is the same as a rotation 
by the angle - ¢ in the (I, m) plane; this is due to the special 
degenerate form of P, as defined in (7) or in (12). Using this 
observation, both the massless equations (13) and the mas
sive equations (23) can be written in a uniform manner: 

D" P"P = 2mo vI" + (P, DpAA -I), (25a) 

D"*P"p = (*P,DpAA -I), (25b) 

where (.,.) is the Killing form, of so(3, 1), (A, B) = AI"" 
XBP"; there is a 1-1 correspondence between antisymme
tric tensors and elements of so(3, l)asl(2, q by Apv 
_A = Apv d'''EsI{2, q. In the massive case D "P = O"P 
whereas in the massless case the vector potential AI" drops 
out from the right-hand side. In the degenerate case, Eq. (12), 
one has to put mo = 0; otherwise Eqs. (25) do not have non
trivial solutions (a two-component neutrino equation cannot 
have a mass term). 

III. A GENERALIZATION AND THE PHOTON NEUTRINO 
DUALITY 

The considerations above can be extended also to the 
case of electroweak interactions. The starting point is now 
the equation 

(26) 

where B" = B ~ I Uk is a vector potential taking values in the 
Liealgebrasu(2) EIlu(l)au(2) and/=/luI + /P2 + ,hu3 isa 
Higgs field which transforms under the representation 
l-kJk - I of the gauge group U(2), 1/J--+-t/Jk - I and B" 
_kB"k -I + i a"kk -I. Let us now define the SU(2) invar
iant field 

P = (i/2)det t/J.t/Jlt/J- I . (27) 

We can also define the SO(3) covariant derivative for vector 
fields by setting 

D I = a / + 2B (31m - 2B (21n I" I" I" 1'" 

D m=a m+2B(lln -2B(3)/ 
Il Il Il I" , (28) 

D n = a n + 2B(21/_ 2B(llm I" I" I" 1'" 

and D u = 0, the gauge group being the group of rotations in I" . 
the three-space spanned by { I, m, n I. By (27) the U( 1) part In 

the whole gauge group U(2) acts as duality rotations of PI"" 
and so we set 

Dp PaP = Dp P afJ - 4B~' *PaP . (29) 

(All coupling constants have been absorbed in the definition 
ofB".) 

By multiplying (26) by Ii/!* one gets, after some algebra, 
the vector form 
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D" P",. =2moVp Re/2 + (P,DpAA -I), (30a) 

D" *P"p = 2moVp Im/2 + (*P,DpAA -I) , (30b) 

whereF =/i + Ii + I~· In particular, Eq. (30) is the sys
tem of equations for the Dirac electron if I = U 3 and the 
neutrino equation is obtained fori = U I + iu2• In the general 
case, PI"" must be treated as independent fields with respect 
to the tetrad A = {u, I, m, n I. This kind of transformation 
from the spinorial to the vectorial form was used in Ref. 9 for 
a unification of electroweak interactions with gravity. 

One could make objections against using only vectorial 
fields to describe a spin-! particle since the fermionic proper
ties of the system are not apparent. However, as Witten has 
shown8 there is a way around this problem. The idea in Ref. 8 
was to add an anomaly term I to the SU(3) nonlinear u-model 
Lagrangian L = constXf avu a"U*d 4x such that 
exp iI (U) produces a factor - 1 in the quantum mechanical 
action when U (x, t) represents a soliton which is rotated by 
an angle 217' when the time t goes from - 00 to + 00. Thus 
the boson field U behaves like a fermion. Explicitly, 
U(x, t) = V(t)Uo(X)V(t)-I, where 

V(t)= [~tl2 e-~t/2]' time 0,t,217' , 

Uo(x) = exp if{r) (xlr)oO' , 

and/(r) is a smooth function of r = IIxll rising monotonically 
from 0 to 217' as r goes from 0 to 00; the 2 X 2 matrix U (x, t ) is 
embedded in SU(3) in the obvious way. As was noted in Ref. 
8 one can quantize the u field U as a fermion also in the case 
of SU(2) using the fact that 17'4 (SU(2)) = Z2 = { ± 11; one 
puts (1/17')1 = 17'4(U) and gets again the factor - 1 in the ac
tion since 17'4(U) = - 1 for the 217'-rotated soliton. The idea 
that 17'4 could be responsible for the fermionization of a Bose 
field was investigated already by Finkelstein and Rubinstein 
in Ref. 10. 

Now our P (in the massless case) is parametrized by the 
action of the group R+ X SO(3): any complex null vector can 
be written uniquely in theformAR (7, i, 0), whereAE R+ and 
RE SO(3). The fourth homotopy group ofR+ XSO(3) is the 
same as that of SU(2). Starting from a bosonic Lagrangian 
for the (radiative) photon field PI"" (e.g., the Maxwell La
grangian) one can quantize a soli tonic configuration [i.e., a 
Ppv configuration which is parametrized by a SO(3) soliton] 
as a fermion by adding again I (P) to the Langrangian. In this 
way one can think of the "twisted" radiative Maxwell field to 
represent a neutrino. 

After completing this work I have learned about a new 
paper by Reifterl I in which he constructs a vectorial equa
tion for the four-component Dirac field, which is different 
from the earlier forms.2-5 Instead of the tensor field 
P = det t/J.t/J{iI2)/t/J-I he uses the Yang-Mills triplet 

Fj = i det t/J.t/JUjt/J-I, j = 1,2,3. (31) 

The components ofF = (FI' Fz, F3 ) are not independent: 

(32) 

The SOt 3) gauge transformations in this picture are rotations 
of the components ofF and the SO(2) duality rotations are a 
multiplication by a phase. In my notation, 
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~ Fl = am /\ n + bu /\ I , 

! F2 = an /\ I + bu /\ m , 

! F3 = al/\ m + bu /\ n , 

(33) 

and one can see that the rotations in the three-dimensional 
space spanned by [I, m, n l correspond precisely to the F 
rotations, and the (a, b)-duality rotations correspond to 
phase rotations via 

(34) 

Reifter also discusses the electroweak interactions; his ap
proach is very close to my ideas in Ref. 9 but the choice of 
basic vector fields in Ref. 11 is different from Ref. 9. 
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It is shown that the probability density function far outside the semicircle is closely related to the 
form factor of N one-dimensional nucleons. The exact Fourier transform of the probability 
density function for the Gaussian unitary ensemble is given. Using this transform it is shown that 
the probability density function P (x) far outside the semicircle is a Gaussian function multiplied 
by powers of X. 

I. INTRODUCTION 

The random-matrix ensembles were introduced by 
Wignerl to study the statistical properties of the compound
nucleus level widths and their positions. It was soon estab
lished that the dominant form of the single eigenvalue prob
ability density function is a semicircle. Since then various 
other matrix ensembles2 have been introduced to study 
many other properties of the many-body systems. In these 
studies one is not only interested in the behavior of the distri
bution of the single eigenvalue in the central region but also 
in its behavior outside the semicircle. 

In the present work we would like to show that the prob
ability density function far outside the semicircle is closely 
related to the form factor of N one-dimensional nucleons. 
This approach is like the one used by Mehta and Gaudin3 to 
find the semicircular distribution using the known density of 
the states of the one-dimensional nuclear system. However, 
in the present case the one-dimensional form factor is not 
known. We, therefore, use the exact Fourier transform of the 
single-eigenvalue probability density function to find its be
havior far outside the semicircle. To keep the formulation 
simple we shall consider here only the Gaussian unitary en
semble (GUE). 

We describe the formulation in Sec. II and the conclud
ing remarks in Sec. III. 

II. FORMULATION 

The single eigenvalue probability density function P (x) 
using the {j function technique is given by4 

Pix) = ~ f tr[{j(x -H)] P(H)dH, (1) 

where P (H) denotes the distribution of Hamiltonian matrix 
elements and tr denotes the trace of the operator. 

We now consider the Gaussian unitary ensemble (GUE) 
for which expression (1) can be written asl 

1 f N-l 
P(x)=- {j(x-t) L ~~(t)dt, 

N m=O 

(2) 

where the ~m are normalized harmonic oscillator wave func
tions and N is the dimension of the Hamiltonian matrix. 

0) Present and permanent address: Tata Institute of Fundamental Research, 
Bombay 400 005, India. 

Using the Fourier transform of the {j function we can 
write 

1 1 J"" Pix) = - - dk exp(ikx) 
N fiii - "" 

N-l 

X L (~m lexp( - ikt lI~m) , (3) 
m=O 

where the < ) sign denotes the matrix element in the basis of 
the harmonic oscillator wave functions. 

As mentioned in the Introduction, we are interested in 
the large-x behavior of P (x). From expression (2) it is obvious 
that if x is large, then most of the contribution will come 
from small values of k. For small values of k we must expand 
exp( - ikt ) in terms of spherical Bessel functions. This is the 
same expansion that one uses in the calculation of form fac
tors of nuclei and is known as the long-wavelength approxi
mation. 

Thus the problem of finding P (x) for large values of x is 
reduced to finding the Fourier transform of the form factor 
of N one-dimensional nucleons. In three dimensions one 
knows that this form factor is Gaussian and has small oscil
lations as the value of the momentum transfer increases. 
However, no simple expression is known for the form factor 
in the one-dimensional case. We would now like to show that 
one can write the exact Fourier transform of P (x) and use it 
to find the behavior of P (x) for large values of x far outside 
the semicircle. 

From expression (3), the Fourier transform g(a) of P (x) 
is given by!! 

g(a) = _1_ ~ exp (_ a
2) Nt 1 Lm (a

2) . 
fiii N 4 m=O 2 

(4) 

The sum over Laguerre polynomials Lm can be written in 
terms of the associated Laguerre polynomialS and g(a) can 
therefore be written as 

1 1 (a2
) (a2

) g(a)=---exp - - LW_l - . 
fiiiN 4 2 

(5) 

Expression (6) gives the exact Fourier transform of the single 
probability density function. 

We now shall use the exact Fourier transform to find the 
behavior of Pix). Using the explicit expressionS for L W-l (x) 
it can be shown that exp( - a 2/4)(l/N)L W-l (a2/2) can be 
written as 
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exp( - a 2/4)L w-. (a2/2) 

= 2J.(/iNa) + _1_exp (_ Na
2
)[a4 + ... J, (6) 

~2Na 96 2 
where J.(x) is the Bessel function. 

On taking the Fourier transform of expression (6) we 
find that the Bessel function part gives the semicircular dis
tribution, while the second term gives the behavior of P (x) 
for large values of x. Using expressions (5) and (6) and the 
Fourier transform, P (x) is given by 

P (x) = _1_ v"lN _ x2 + 9..j61i 
1rN N 2 

( 
3X2) [ 1 9 2 3x4] xexp -- ---x +-
N 4 2N N 2

' 
(7) 

where the square root function is taken to be zero for 
x2 > 2N, which is outside the semicircle. 

III. CONCLUDING REMARKS 

We have shown that the behavior of the single eigenval
ue probability density function P (x) far outside the semicir
cle is closely related to the form factor of None-dimensional 
nucleons. The exact Fourier transform turns out to be a 
Gaussian mUltiplied by an associated Laguerre polynomial 
L W _ • (x). Using the expansion of L W _ • (x) it turns out that 
P (x) far outside the semicircle falls as a Gaussian mUltiplied 
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by some function of powers ofx. This form of P(x) is some
what different than the one given by Bronk,6 where it is 
shown to be exponentially falling. There is only one numeri
cal study of P(x) given in Wigner's unpublished article.7 

However, since the values far outside semicircle are quite 
small, it will be hard to say whether the fall of P (x) far out
side the semicircle is exponential or Gaussian mUltiplied by a 
power of x. Both the forms seem to be consistent with the one 
given in Wigner's article. 
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A systematic theory is given for a general class of scalar waves by introducing a surface Green's 
function, which is a 2 X 2 matrix function governed by boundary equations, transferred onto two 
reference boundary planes enclosing the real boundary inside. It is subjected to several 
symmetries, including a relation eventually leading to optical relations. Governing equations of 
statistical surface Green's functions of first and second orders are obtained unperturbatively in 
exactly the same way as for a random medium, on replacing the medium to a surface impedance. 
Two operator methods are introduced to obtain the surface impedance and integral equations of 
reflection-transmission coefficients exactly for a given boundary change. The space Green's 
functions outside the boundary are obtained by a simple continuation of the surface Green's 
functions, and scattering cross sections are obtained from their asymptotic expressions at large 
distances. Various quantities and equations associated with the incoherent waves are written 
exactly by the introduction of a scattering matrix, as contrasted with the conventional one for a 
coherent scatterer. A slightly rough boundary is investigated, with the cross sections for both 
reflected and transmitted waves, where obtained equations are significant also for higher-order 
effects, including multiple scattering. An application to boundary-value problems in layer 
transport is suggested. 

I. INTRODUCTION 

Theory of scattering by a rough surface has been investi
gated by many authors 1-14 in the last two decades, mostly for 
the two cases of either when the surface is slightly rough or 
changes over a large scale, and also for the case of randomly 
distributed bosses, as investigated in Refs. 7 and 8, and, more 
generally, in Ref. 14. When the surface is slightly random, 
the incoherent scattering cross sections have been obtained 
even for a boundary of finite dielectric constant of electro
magnetic waves,3-5,14 while, for a large-scale rough surface, 
the so-called tangent plane approximation has been conven
tionally employed as the basic means,2,6 with results that are 
obviously contradictory with the power conservation, al
though much attention has not been paid to that point. To 
improve this aspect, a shadowing function has been intro
duced,15-18 but the problem should not be solved with this 
function (even though partially done) since the basic defect 
remains unchanged. The transmitted waves were also inves
tigated,19 on taking into account the multiple reflection by 
use of a series-summation technique and the result of Ref. 2 
(which does not satisfy the power conservation). On the oth
er hand, a quite different method of approach has been tried, 
based on the extinction theorem (or the extended boundary 
condition) in Refs. 10-13 and others.20 

In a previous paper,14 the scattering by a one-side 
boundary (making only reflection without transmission) was 
investigated systematically by introducing a surface Green's 
function that is determined only by the boundary equation 
and, nevertheless, given in exactly the same form as the ordi
nary Green's function in a random medium. For example, 
the scattering cross sections were obtained for both slightly 
rough and large-scale surfaces, with a particular emphasis 
on the power conservation; an operator technique was intro-

duced and extensively utilized to evaluate a surface imped
ance to be used in the boundary equation, exactly and in a 
compact form for given surface change; and an integral 
equation for the reflection matrix was also derived there
from, which is bounded over the entire range of real values of 
the variable of Fourier transformation, as should be, but in 
contrast with those obtained according to the extinction 
theorem. Also, an equation for the second-order surface 
Green's function was obtained unperturbatively in a form of 
the Bethe-Salpeter (BS) equation, and was then continued to 
the space outside the boundary; the solution was written in 
terms of an incoherent scattering matrix, which enables var
ious quantities and equations associated with the incoherent 
wave to be written exactly, including the scattering cross 
section and related optical relations. 

In this paper, essentially the same method is applied to a 
two-side rough boundary which lets the waves also transmit 
through; a general class of scalar waves is considered, except 
in Appendix B where a modified version of several basic 
equations is shown for electromagnetic waves. A slightly 
random boundary is treated rather separately and in some 
detail because of a particular difficulty associated with the 
approximation, and cross sections are obtained to first order 
for both reflected and transmitted waves. 

II. PRELIMINARIES AND SURFACE GREEN'S 
FUNCTION 

In this paper, the rough surface is assumed to be plane 
on average, and the coordinate vector in three-dimensional 
space is denoted by x = (x t,x2'X3) = (p,z) in terms of the two
dimensional coordinate vector p = (x t ,x2) andz = x 3, where 
the z axis is taken in the direction normal to the average 
boundary (Fig. 1). The scalar product of two space vectors 
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FIG. 1. Geometry and notations for Eqs. (2.10) and (2.17). 

a = (a,az ) and b = (b,bz ) will be denoted by a· b 
= a· b + azbz ' where a· b = alb l + a2b2' 

A scalar wave function tP(x)ei
"", {U > 0, t = time, is con

sidered, giving the wave equation by 

[ -(~r -( :p r -k 2] tP(x) = j(x), (2.1a) 

where k may have an infinitesimal negative imaginary part 
whenever necessary, to mean a slight dissipation; j(x) pro
vides a source term. More often in the following, the p co
ordinates will be suppressed, expressing the wave equation 
(2.1a) by 

(2.1b) 

in terms of an operator h, defined by 

h= k + - , [ 2 (a )2] 112 
ap 

(2.2) 

where Im(h) < 0 in terms of the eigenvalues given by the 
Fourier transform, to be given by Eq. (2.7). 

Hence, the solution ofEq. (2.1b) in free space, say tP(O)(z), 
is given by 

tP(O)(z) = f dZ'(2ih )-1 exp [ - ih Iz - z'l] j(z'), (2.3) 

in the· same way as when obtaining the solution in one-di
mensional space. Here, the full coordinate expression 
t/f0)(p,z) of t/f°)(z) can be obtained from Eq. (2.3) by substitu
tion of a corresponding expressionj(p,z') ofj(z'), given by 

j(p,z') = f dp' c5(p - p')j(p' ,z'), (2.4a) 

with the integral representation 

c5 (p - p') = (21T)-2 f: 00 d A exp[ - iA· (p - p')], 

(2.4b) 
hence, 

t/f0)(p,z) = f dp' f dz' g(O)(p - p',z - z')j(p' ,z'). (2.5) 

Here, 
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g<0)(p _ p',z - z') 

= (2ih ) -Iexp[ - ih Iz - z'Ilc5(p - p') 

= (21T)-2 f dA[2iii (All-I 

Xexp[ - iA· (p - p') - iii (A)lz - z'l] 

= l41T(x - x')I-lexp[ - ik Ix - x'I], 

where 

_ {(k2_A2)1/2, IAI<k, 
h (A) = _ i(A2 _ k 2)1/2, IAI > k. 

(2.6) 

(2.7) 

As illustrated in Fig. 1, the entire rough boundary S is 
assumed to be described by z = - t (p) < 0 and also to be 
perfectly nondissipative for the time being; the unit vector 
normal to S will be denoted by n(S) = (n(S),niS»), niS) > o. 
Hence, the space is divided into two parts ~ I of z > - t and 
~2 of z < - t, with the propagation constants kl and k2' 
respectively. Also, two reference boundary planes Slat z = 0 
and S2 at z = - d are introduced in such a way that S is 
completely involved in the space enclosed by SI and S2' 
Here, the unit vectors directed outward normal to SI and S2 
are both denoted by n, and the notation an = n· a/ax will 
often be used. 

The boundary condition on S is assumed to be the con
tinuityof 

tPls and TJ-In(S).! tPls, (2.8) 

with some real constant TJ characterizing the medium, where 
TJ may be the density (sound waves), the dielectric constant E, 
or the magnetic susceptibility f.L = 1 (electromagnetic waves 
of vertical or horizontal polarization, respectively, in two
dimensional space). Co~sistently with the boundary condi
tion, the power vector W is defined by 

W = (2iTJ)-l tP• (! -!) tP, (2.9) 

whose component normal to S is ensured to be continuous. 
Here, the boundary condition can be transferred onto the 
two reference planes S I and S2' as will be shown in Sec. III, in 
the form 

(2.10) 

Here, tPj and TJj denote tP on ~ and TJ in space ~j' respective
ly; Bij' i,j = 1,2, are p operators (i.e., functions of p and/or 
a lap). Generally, any p operator, say Q, can be represented 
by a p-coordinate matrix having matrix elements Q (p I p'), 
defined by 

Q(plp') = Qc5(p - p') 

= (21T)-2 f: 00 dA Q exp[ - iA· (p - p')] 

(2.11a) 

(where Q affects only p and not p'). Hence, for any!(p), it 
holds the rule 
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Qf(p) = f dp' Q(plp'}f(p')· (2.11b) 

Hereinafter, each B ij will be understood to represent also a p 
matrix having the elements Bij(plp'); hence, Eq. (2.10) can be 
written explicitly as 

- 'T/j-I a"r/Jj(p) = i~'Z f dp' Bj/(plp')r/Ji(P')· (2.12) 

In addition, the B ij 's will be referred to as the surface imped
ance, and will be obtained for given t (p) in Sec. III. 

The boundary equation (2.10) can be written in a com
pact form, by introducing 2 X 2 matrices B, ,. and a two
column vector """ written by boldface letters and defined by 
the elements 

B = (BlI BIZ), ,. = (111 
\aZI BZ2 0 

0) 1/1 = (~ZI), 
'T/z ' 'I" 

(2.13a) 
as 

(2.13b) 

Here, the last is the complex-conjugate equation, and Bt de
notes the Hermitian-conjugate matrix of B with respect to 
both the coordinates and the indices, i.e" B L (p I p') 
=B;(p'lp), 

Here, the total power emitted away from the boundar
ies SI + Sz is given by the integrals 

W= . L r dp(2i'T/j)-I#(a" - a,,)r/Jj (2.14a) 
J=I,ZJSj 

= L (21r l fdP dp' #(p)[Bjj(plp') 
jJ= I,Z 

- Bft(plp'))r/Ji(P'), (2.14b) 

which should be zero in the present case, showing that B is a 
Hermitian matrix, subjected to the condition 

Bt = B. (2.15) 

To obtain the general solution of homogeneous wave 
equation (2.1 b) for j(z) = 0, we introduce an operator solu
tion fU(z) [which should not be confused with the c-number 
wave function r/J(z) in Eq. (2.lb)], given, in terms of the nota
tions 

hi = [ki + (:prr/2

, hz = [k~ + (:prrz
, 

(2.16) 
by the components rP',,)(z), z>O, and rP'ZI)(Z), z< - d, of the 
form 

t/NI(z) = [exp(ihlz) - exp( - ihlz)](Uhl)-I'T/1 

+ exp( - ihlz)gll' z>O, 

rP'l)(z) = exp[ihz(z + d )]gzl' z< - d. 

(2.17a) 

(2.17b) 

Here, g 11 and g21 are P operators independent of z, and give 
the boundary values of fU(z) at z = 0 and - d, respectively; 
the operator r/J(1)(z) also can be regarded as a p matrix, whose 
matrix elements, say r/J(1)(p,zlp'), are defined according to 
rule (2.1Ia). Now, substitution of r/J(1)(z) into Eq. (2.10) yields 

(ihl'T/I-I - BII)g1l - BIZgZI = I, (2.18a) 
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(2.18b) 

which providegll andgzi in terms of Bij' 

In the same way, by introducing another operator solu
tion r/J<Z)(z) of the form 

r/J(2)(Z) = exp( - ih IZ)g IZ, z>O, (2.19a) 

= {exp[ - ihz(z + d)] - exp[ihz(z + d )] I 
X (2ih2)-1'T/2 + exp[ih2(z + d )]g22' 

z<-d (2.19b) 

(which represents waves incident from the downward direc
tion), we find equations of gl2 and g22 similar to Eq. (2.18). 

The four equations thus obtained can be written by one 
2 X 2 matrix equation, as 

ih2'T/~ ~~ B2J ~~: ;~:) = G ~), 
(2.20) 

hence, 

(lb,.-I - B)g = 1. (2.2Ia) 

Here, the matrices g, h, and I are defined by the matrix ele
mentsgij' h/jij' and 8ij' respectively, and the solution ofEq. 
(2.2Ia) is given by 

g = (lb,.-I - B)-I, (2.2Ib) 

whereh,.-I = ,.-Ih. Notethatgisa2x2 matrix poperator 
entirely independent of z; and it will hereinafter be referred 
to as the surface Green's function, in view of the form similar 
to the ordinary Green's function in a medium B. 

A reflection coefficient matrix operator R will be de-
fined, according to 

g = (I + R)(2Ib)-I,. _ ((I + R lI )(2ih1)-I'T/1 Rd2ih2)-1'T/2) 
- I . (2,22) 

R21(2ih l )- 'T/I (I + R22)(2ih2)-1'T/2 
Hence, r/J(l)(z) in Eq. (2.17) can be written as 

r/J~I)(Z) = [exp(ihlz) + exp( - ih lz)R lI ](2ih.)-1'T/I' 

z>O, 

rP'21)(Z) = exp[ih2(z + d )]R21(2ih.)-I'T/I' z< - d, 

(2.23) 
and similar expressions are also written for r/J<Z)(z). Here, from 
Eqs. (2.22) and (2.2Ib), R is given in terms ofB by 

R = g2lb,.-1 - I = (lb,.-I - B)-I(lb,.-I + B), (2.24) 

which has the same form as when the boundary is smooth. 
However, the order of the factors is important since they are 
generally not commutable. Conversely, 

B = lb,.-I - g-I = ih,.-I(R - I)(R + I)-I. (2.25) 

The matrix elements of g are not quite independent of 
one another, subjected to a few relations. Here, we first apply 
the Green's theorem to the boundary space enclosed by 
SI + S2 (wherej = 0) to find that, for arbitrary solutions r/J' 
and r/J" of wave equation (2.1) subjected to Eq. (2.8), 

r dp 'T/-Ir/J'(a" - a" )r/J" = 0, (2.26) 
Js, +s, 

and then utilize boundary equation (2.12). Hence, 
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~ fdP dp' ¢t;(p) [ - Bji(p'lp) + Bij(plp')]tf!j'(p') = 0, 
'01 

(2.27) 
which shows that 

Bji(p'lp) = Bij(plp'), or BT = B = B*, (2.28) 

where the superscript T denotes the transposed matrix with 
respect to both tpe coordinates and the indices, and the last 
equality holds only in the case of a nondissipative medium. 

Hence, since hT = h, it follows from Eq. (2.21) that 

~=~ ~~ 
and therefore, from the first equality of Eq. (2.24), also 

h1)- IR = (h1)-IR)T = R Th1)-I, (2.30) 

showing that hl(A)7JI- 1RdAIA') = R21(A'IA)h2(A')7J2-1, 
where R is the Fourier transform of R to be defined by Eq. 
(2.35), while, from the last equality ofEq. (2.24), 

R- I = (lb1)-1 + B)-I(lb1)-1 - B), 

(2.31) 
R* = (lb*1)-1 + B)-I(lb*1J-I - B), 

where B* = B by Eq. (2.28), showing that R- I = R* if all 
the processes are taking place in the optical range where 
h*=h. 

The Hermitian condition of B imposes another con
straint on g, which eventually leads to a relation ensuring the 
power conservation in the scattering, i.e., the optical rela
tion. This can be simply derived from the first equality ofEq. 
(2.25), which should be invariant against the Hermitian con
jugation, hence, 

Ib1)-I_ g-l= -lbt1J-I_gt-l, (2.32) 

which becomes, upon multiplication of the both sides to the 
right with (2i)-lg and to the left with gt, as 

W = 2-lgt(ht + h)1J-Ig + (2i)-I(g - gt) = o. (2.33) 

Here, the diagonal elements, say WI and W2, are exactly the 
integrated powers over SI + S2 of tf!(1)(z) and tf!(2)(Z), respec
tively, as may be directly shown by Eq. (2.14a) with Eqs. 
(2.17) and (2.19). 

In the same way, from the last equality of (2.25), the 
corresponding constraint for R is found to be 

2- IRt(ht + h)1)- IR - 2- I(ht + h)1J- I 

+ 2- 1 [Rt(ht - h)1)-1 - (ht - h)1)- IR] = o. (2.34) 

Here, it may be remarked that matrix elements of the last 
term become zero in the optical range where h t = h, as is 
explicitly shown by the Fourier transform given, in terms of 
the notation 

R(AIA') = f dp dp' exp[i(A· p - A' • p')]R(plp'), 

(2.35) 
by 

2- I[Rt(AIA')[b*(A') - b(A')]1J- I 

- [b*(A) - b(A)]1)- IR(AIA')). (2.36) 
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III. EVALUATION OF THE SURFACE GREEN'S 
FUNCTION 
A. First Method 

The surface impedance and the Green's function de
rived therefrom have been exactly obtained for given t (p) in 
Ref. 14 for a one-side boundary having a constant surface 
impedance, and, to the perturbative approximation of t, it 
was further generalized to surfaces of given refractive index 
to apply to electromagnetic wave scattering. Also, for the 
present case of a two-side boundary, the method essentially 
remains unchanged although the actual procedure is not 
quite the same, including an alternative method to be newly 
added based on the Green's theorem. 

The unit vector normal to S is given by niSI = (nIS),n~S)), 

n~S»O, with 

niSI = [1 + (at )2] -1/2 niSI = niSI at . (3.1) 
z ap , Z ap 

We first observe that ¢11)(Z) in Eq. (2.23) is a solution of the 
homogeneous wave equation of (2.1) (j = 0) over the entire 
space of kj' and that, on S, the boundary value is ¢11)( - t) 
when t is a constant independent of p; even when t = t (p), 
the boundary value can be given, on attaching an ordering 
symbol ff to be defined by Eq. (3.4), in the same form, as 

tf!(1)ls = 1/1/)( - t) = 1/121)( - t)· (3.2) 

Here, from Eq. (2.23), 

1/1/)( - t) = [exp(N)( - ihlt) + exp(N)(ih lt)R l1 ](2ihd- I7JI' 

(3.3a) 
tf!~ll( - t) = expINl[ih~ ]R21(2ihl)-I7JI' (3.3b) 

with -; = d - t, and 

expIN)(iht) = ff[ exp(iht )] 

00 

= L (n!)-Itn(ih t, (3.4) 
n=O 

which is ordered in such a way that the coefficients [t (pw 
are always placed to the left ofthe operators [ih ]n. That is, 
the symbol ff means that all the t variables (including its 
derivatives) involved in the referenced function are under
stood to be placed to the left of all theh and/or a /apifany, as 
may be well defined by the power series expansion with re
spect to h and/or a lap (Ref. 21). For example, 

Hence, for any functions f and g, 

ff[ f) f,N" ff[ f + g) = fiN) + g-Nl, 

(3.5) 
ff[fg] =ff[ gf] =ff[g-Nj"INl] #g-Nj"INl. 

In Eq. (3.12), the symbol ff will be redefined with a minor 
additional condition. 

Thus, from Eqs. (3.2) and (3.3), we find a simple relation 
between R21 and R 11> as 

R21 = expINl(ih~)-I[expINl( - ihlt) 

+ expINl(ihlt)Rl11. 
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and, by Eq. (2.22), it can be rewritten in terms ofg21 and gil' 
by 

g21 = expINI(ih:i)-1 [ - sinINI(hlt)h 1-1111 

+ expIN)(ihlt)gIl]' (3.7) 

The situation is the same also of the second boundary 
condition, i.e., the continuity of 

11- I;,ISI. ~ 1{I(J) 1 = 11-1 [niSI. ~ + n~S)!....] 1{I(J)(z) 1 ' ax S ap az S 

which, for tP'll(z) in Eq. (2.23), for example, becomes 

11- I;,ISI. ~ 1/1..111 
2 ax 2 S 

= 112- IJV [(niSI. :p + n~Slih2) 

X expINI(ih:i )] R21 (2ih I) -1111, 

(3.8) 

(3.9) 

Here, the following equations can be made simple by 
the introduction of a surface impedance B ~I on the real 
boundary S, defined by 

(3.10) 

Here, B ~I should be the same for both solutions tP'111(z) and 
tP'21)(Z), in consequence of the boundary condition ofEq. (2.8), 
and, for tP'211(z), substitution of Eqs. (3.3b) and (3.9) into Eq. 
(3.10) yields 

- 112 IJV [ (niSI. ~ + nt;lih2) explNI( - ih~)] 
=B~)expIN)(-ih~), (3.11) 

where a common factor has been deleted from both sides. In 
the same way, also for tP'll(z), we obtain a similar equation, 
and the result can be rewritten, as 

JV [(niSI. ~ - n~slihl + 11IB~') exp(Nl(ihlt)]R JI 

= - JV [ (niSI. ~ + n~S)ihl + 11IB ~I) 

XexplNI( - ihlt)] . (3.12) 

Here, the operator B~) should be to the left of all the factors, 
and, hereinafter, the symbol JV will be redefined with this 
additional condition. 

Hence, with theB~)determined by Eq. (3.11), Eq. (3.12) 
provides the operator R II for given t (p) > 0 explicitly; alter
natively, the p matrix elements of Rw as defined by Eq. 
(2.11a), can be obtained as a solution of a set of ordinary 
integral equations free from any operator (except B ~)) and 
also from the symbol JV, by multiplication of both sides of 
Eq. (3.12) to the right with exp( - fA • p) and subsequent use 
of the integral representation 

RII exp( - iA • p) 

= J dp' RII(plp')exp( - iA' p') 

= (217')-2 J dA' exp( - iA'· p)RII(A'IA), (3.13) 
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where the Fourier transform RII(A'IA) is defined by Eq. 
(2.35). Hence, according to the definition of the symbol JV, 
Eq. (3.12) becomes written as 

(217')-2 J: "" dA'[ - inISI(p)' A' - in~SI(p)hl(A') + 11IB~I] 
xexp[it(p)hl(A') - ip' A']RII(A'IA) 

= [inIS)(p)' A - i11~SI(p)hl(A) -11IB~I] 

xexp[ - it (p)hl(A) - ip' A], (3. 14a) 

for given p operator B ~I, where the latter is obtained, in 
terms of the matrix elements B ~I(p I p'), as a solution of an 
integral equation, given by multiplication ofEq. (3.11) to the 
right with exp( - iA • p) and subsequent manipulation simi
lar to Eq. (3.13), as 

J: "" dp' B~I(plp')exp[ - it (p')h2(A) - ip'· A] 

= i112- I [ nIS)(p) • A - n~S)(p)h2(A)] 

Xexp[ - it (P)h2(A) - ip' A]. (3.14b) 

Here, when t is a constant, for example, the substitution of 
B ~)(plp') = B ~I(p - p') yields lJ ~I(A) = - i112- Ih2(A), as it 
should be. Also, it may be remarked that, when B ~) is a given 
constant, the integral equation (3. 14a) for RII agrees exactly 
with the corresponding equation (80) in Ref. 14, derived 
based on a different method. On the other hand, an integral 
equation of R21 is obtained from Eq. (3.6) with known solu
tionRJI ofEq. (3.14), as 

(217')-2 J dA' exp[i;(p)h2(A') - ip' A']R21 (A'IA) 

= (217')-2 J dA' exp[it(p)hl(A') - ip' A']RJI(A'IA) 

+ exp[ - it (p)hl(A) - ip' A]. (3.15) 

By using Eq. (2.24), Eq. (3.12) of R 11 can be rewritten as 
an equation of g w as 

JV [( 111- InISI. :p -111- Int;lihl + B ~I) expINI(ihlt)] gil 

=JV' [( 111-lnISI. :p + B~I) sin(Nl(hlt)h 1-1111 

- n~SlcosINI(hlt)] , (3.16) 

andg21 is given in terms of gIl by Eq. (3.7). So far the particu
lar solution 1{I(J)(z) has been considered, which represents 
waves incident from the kl side of S; however, the same is 
also true of the solution 1{I(2)(Z) for waves incident from the 
opposite side. 

B. Alternative method 

In the previous method, the two wave functions tP'll(z) 
and tP'l)(z) of Eq. (2.23) were continued directly on the real 
boundary, and thereby RII and R21 were obtained through 
B ~I given by Eq. (3.11). There exists an alternative m,ethod 
which enables R21 to be directly obtained and R II to be from 
known R 21 ; in this method, the continuation of the wave 
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functions is performed rather indirectly, with the aid of the 
Green's theorem. 

By applying the Green's theorem to the space enclosed 
bySI andS (Fig. 1), we find, for arbitrary solutions ¢' and ¢" 
of wave equation (2.1), the relation 

[¢',¢"] = r dp1JI- I¢'(x) (a - a)¢t,,(X) (3.17a) 
L=o az az 

= r ds 1JI- I¢'(X) [ a
A 

0 nISI 
Jz= -~ ax 

- nISI ° !] ¢t"(x), (3.17b) 

where ds = dp/n~S) is the two-dimensional element of sur
face S. Here, the relation can be written in a compact form by 
regarding ¢'(x) and ¢"(x) as components of p vectors ¢'(z) 
and ¢"(z) (which, more generally, may be p matrices), respec
tively, as [cf. Eq. (3.9)] 

[¢',¢"] =1JI_t¢/(Z)(a _ a) ¢"(z) I (3.18a) 
az az z=o 

- [ a n(S)] =ff ¢/( -t)-A 0- ff[¢"( -t)] 
ax n~S)1J 

- [n(S) a ] -ff[¢'(-t)]ff -O-A ¢"(-t) . 
n(S)1J ax 

(3. 18b) 
Here, the p integration is involved as a natural consequence 
of the inner product; that is, for any p matrices A and D, 

f dpA (p'lp)B{plp") =AD{p/lp"); 

and the symbol f denotes an ordering operator similar to 
ff; however, the ordering is inverse such that, for example, 

f[exp{iht)] = exp(N){iht) 

00 

= L (n!)-I(ih rt", (3.19) 
n=O 

where all the t variables are understood to be placed to the 
right of all the h andlor a lap if any. 

Here, we set ¢"{z) = ¢ll){z) ofEq. (2.23) and 

¢'(z) = ¢(+)(z) =exp( - ihlz), (3.20) 

hence, the substitution into Eq. (3.18a) simply yields 

[¢(+),tjl0] = _ 1. (3.21) 

For Eq. (3. 1 Sb), on the other hand, we observe that, by virtue 
of boundary condition (2.8), all the factors associated with 
tfN)(z) can be replaced with those of ¢ll)(z) given by Eq. 
(2.17b), and, since, by Eq. (3.1), 

2357 
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(3.22) 

f ¢(+)( -t)-A o_n_ [ a A(S) ] 

ax n~S)1J 
... 

= f [1JI- I exp(N)(ihlt) (~ .~' - ihl)] , (3.23b) - -where we can set a lap = - alap by partial integration. 
Hence, with Eq. (3.21), the result can be written as 

T(+)g21 = 1, 

where 

T(+) = 1Jt-If [exp(N)(ihlt) (~ • ~' + ihl)] 

Xexp(N){ihJ) 

+ 1J2- lexp(N)(ihl;V [( ~/. ~ + ih2) 

X exp(N)(ihJ)] . 

In the same way, replacing ¢(+)(z) with 

¢(-)(z) == exp{ihlz), 

Eq. (3.18a) becomes, on using Eq. (2.23), 

[¢(-),¢(1)] = (2ihj)1JI-IRIl(2ihl)-I1Jj, 

(3.24a) 

(3.24b) 

(3.25) 

(3.26) 

whereas Eq. (3.18b) becomes what would be obtained by re
placing hc--+ - hi in Eqs. (3.23a) and (3.23b). Thus, we ob
tain another equation 

t?) -IRIl g~O) = - T(-)g21' 

where 

t?) = (2ih l )-11J1 , 

(3.27a) 

(3.27b) 

and T(-) is obtained from T(+) with hc-'+ - hI' Here, with 
Eq. (3.24a), 

(1 R \...(0) - ...(O)(T(+) T(-»)g gil = + 11/51 - 51 - 21' (3.28) 

For a specific example of a slightly random boundary to 
be treated in the next section, it is straightforward to directly 
confirm the equivalence of the two methods. The second 
method is particularly convenient for electromagnetic waves 
and other waves of a multicomponent, in view of several 
conditions to be fulfilled on the real boundary for the first 
method. 

C. Case of slightly random boundary 

When the boundary changes in a sufficiently large scale 
compared with the wavelength, a new tangent plane meth
odl4 can be utilized to solve Eqs. (3.14) and (3.15) under es
sentially the same condition of applicability as for the con
ventional,2,6 and, in a separate paper, the solutions will be 
utilized as basic quantities to obtain the scattering cross sec
tions consistent with both power conservation and multiple 
scattering, including shadow effect, as in the case of one-side 
boundary. Also, when the boundary is slightly random such 
that la; lap I < 1 and I hj ; 1< 1 ,j = 1,2 the previous equations 
become considerably simple, as follows. 

To the first order of; (p), nISI = ~/( = a; lap) and n~SJ 
= 1, and Eq. (3.11) is reduced to 
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- 'TI2- I(ih2 + ~h ~ + ~/. ~ )=B~)(I- i~h2)' 
hence, 

B~) = - 'TI2- 1 [ih2 + ~h2 - h~)h2 + ~/. ~ J . (3.29) 

In the same way, from Eq. (3.16), we obtain 

[ihl'TII- I -B~) - 'TIIB~)~B~) 

- 'TII- I (~h i + ~'. ~)] g1l = 1, (3.30) 

and, upon the substitution ofEq. (3.29), can be written in the 
form 

(i(hl'TII- 1 + h2'T12- 1) - b (Ill] gil = 1. (3.31) 
Here, 

b (11) = ('TII- 1_ 'TI2- I)~' • .!...... + ~ (h i'TII- 1_ h i'TI2- I) 
ap 

+ ('TI2 - 'TId'TI'; 2h~h2' (3.32a) 
where 

h i'TII- I - h ~'TI2-1 

k 2 - I k 2 - I + ( - I - I) ( a)2 (3.32b) = I 'TIl - 2'T12 'TIl -'TI2 ap' 

hence, Eq. (3.32a) can be rewritten also as 

b (10 = ('TI2 - 'TI1)'TI2- 2h~h2 

+ ( _I -I) a r a 'TIl -'TI2 -.~ap ap 
+ (k i'TII- 1 - k ~'TI2- I)~, (3.33) 

each term of which is a Hermitian operator, except for the 
first term, which is not exactly Hermitian since h t =;6h in the 
nonoptical range. Thus, from Eq. (3.31), we obtain 

gil = go + gob (lOgo, 

where 

(3.34) 

go=(ihl'TII- 1 +ih2'T1.;I)-I. (3.35) 

On the other hand, Eq. (3.7) for g21 becomes, on putting 
d = 0 and therefore" = - t, 

(1 - ith2)g21 = - 'TIlt + (1 + ithl)gw (3.36) 

which shows that, when t = 0, 

g21 =g1l =g22 =g12 = go' (3.37) 

and therefore that the term of - 'TI It can be replaced with 
- 'TIl~(ihl'T1I-1 + ih2'T12- I)gW in view of Eq. (3.35). Hence, 

on multiplying to the left with ih i'TI2- I, Eq. (3.36) can be 
rewritten, in terms of b2, defined by 

b2 = b i = ('TIl - 'TI2)'TI2- 2h i~h2' 

also as 

(3.38) 

ih i'TI2- I( - gil + g21) = bz g2lf (3.39) 

which provides a basic equation to be used later. Alternative
ly, if h2 were used instead of h I, we would obtain 

ihz'TI2- I( - gil + g21) = b 2 g21' 

where 
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(3.4Oa) 

(3.4Ob) 

and is not Hermitian. 
Thus, to the first order of~, use ofEq. (3.40) leads to 

g21 = go + gob (2I)go, (3.4Ia) 

where 

b(20 (-I -1)[ h rh a raJ = 'TIl -'TI2 - I~ z+-·~-ap ap 
(3.41b) 

Both Eqs. (3.34) and (3.41) are correct to the first order 
of~, but are not consistent with the power conservation; it is 
remarked, however, that the last aspect can be perfectly im
proved by constructing a set of equations for gil and g21 
consistent with the original equations. 

Equation (3.31) can be rewritten, on using Eqs. (3.40), 
also as 

ihl'TIl- IglI + ih2'T1z- Ig21 = 1 + hi gil' (3.42) 

in terms of the Hermitian operator bl defined by 

b ( - I - I) a r a (k 2 - I k 2 - I)r 
I = 'TIl - 'TI2 ap· ~ ap + I 'TIl - 2 'TI2 ~, 

(3.43) 

with the relation 

b (11) = b l - b 2' (3.44) 

Thus, Eqs. (3.39) and (3.42) provide a set of equations for the 
unknowngu andg21, and are consistent with the power con
servation, as will be shown soon; there seems to be no other 
choice in this sense. Here, the following equation formula
tion becomes definitely simple by representing the two equa
tions by one 2 X 2 matrix equation; that is, introducing two 
2 X 2 matrix operators 1r and b, defined by 

we obtain the basic equation 

1rg= i + bg. 

Here, b = b t is Hermitian, hence, 

gt1rt = i + g~. 

~), (3.45) 

(3.46) 

(3.47a) 

(3.47b) 

whereas 1r is not; nevertheless, it has the remarkable proper
ties 

(3.48a) 

-h2/hi) 
t . 

hl'TI2/h 2 'TIl (
1 

-I 
1r =go I (3.48b) 

Note that, in virtue ofEq. (3.48a), the total power integrated 
over SI + S2 is given according to Eq. (2.33) by 

WI = (2zrl[gt(1r _1rt)g + Ig - gtI], 
which becomes exactly zero, in consequence ofEqs. (3.47a) 
and (3.47b). This convinces us that the solution ofEqs. (3.47) 
is significant over all the orders of ~, in the sense of selected 
summation as when treating waves in a turbulent air, where 
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the medium fluctuation is slight but still its accumulated 
effect can be quite large.22-24 We shall return to the present 
case of a slightly random boundary at the end of Sec. VI (and 
Appendix q, where Eq. (3.47) will be utilized as the basic 
equation to obtain statistical equations of the same form as 
those in Sec. IV, and also resulting cross sections therefrom. 

In the special case of'1/l = '1/2 = 1, b2 = 0 by Eq. (3.38), 
hence, it follows that g21 = gil =g22 =g12 and Eq. (3.42) 
becomes 

(3.49) 

and coincides with that by the original equation (3.31). Note 
that Eq. (3.49) remains unchanged against the exchange of k 1 
and k2 with the replacement of t~ - t, showing that 
g22 =gll' 

D. Scattering matrix of a small boss on homogeneous 
boundary 

In Eq. (2.21a), let B be the surface impedance when a 
small boss is placed, say, on S2 at z = - d. Then, if Bo is the 
impedance when the boundary is perfectly homogeneous, 
b = B - Bo differs from zero only over a small area of the 
boss. Therefore, in terms of the Green's function for the ho
mogeneous boundary, say Ko, given by 

Ko = (lb,.-I - Bo)-I, (3.50a) 

Eq. (2.21a) becomes 

g = Ko(1 + bg). (3.50b) 

Here, as d~, all the elements of Ko tend to go [Eq. (3.37)], 
implying that Ko- 1 does not exist and therefore neither does 
Bo, by Eq. (3.50a) (see Sec. III q, while go has been investi
gated in detail in connection with the ground wave propaga
tion over a flat earth. 14 Equation (3.50b) can be rewritten in 
the form 

(3.51) 

in terms of a scattering matrix T b' defined by 

~Ko=~ p.~ 

which, by substitution ofEq. (3.51) into the right-hand side, 
gives a formal expression of T b as 

Tb = (1 - bKo)-lb (3.53a) 

= b + bKob + bKobKob + .... (3.53b) 

particularly when it is a boss of complicated shape, but the 
amplitude may be a good experimental observable. 

In the general case where many small bosses are ran
domly distributed over S2' b is given by 

(3.55) 

where bj denotes the contribution ofthejth boss; the situa
tion therefore becomes the same as when discrete scatterers 
are randomly distributed in space [see also Eqs. (4.13)
(4.15)]. 

IV. STATISTICAL SURFACE GREEN'S FUNCTIONS OF 
FIRST AND SECOND ORDERS 

The procedure of deriving governing equations for the 
statistical surface Green's functions is basically the same as 
for deriving those for a random medium 14; that is, on putting 
B = Bo + b in Eq. (2.21a), we obtain 

[lb,.-I - Bo - b]g = 1, (4.1) 

which has exactly the same form as the equation of the ordi
nary Green's function in a random medium with the random 
part b. 

Here, to find the first-order Green's function G = (g), 
we first introduce an effective 2 X 2 matrix operator M of b 
(mass operator), defined by [see Eqs. (4.12) and (4.13), for 
example] 

(bg) = MG, (4.2) 

or, explicitly, by 

L (bij gjk) = L MijGjk • 
j j 

Hence, averaging Eq. (4.1) yields 

[lb,.-I - Bo - M]G = 1, 

with the formal solution 

G = [lb,.-I - Bo - M]-l. 

In the same way, with B~ = Bo, 

[-lb*1J-l - Bo - M*]G* = 1. 

(4.3) 

(4.4a) 

(4.4b) 

(4.5) 

The second-order Green's function is defined, in matrix 
form, by 

G(I;2) = (g*(I)g(2), (4.6a) 

An explicit coordinate expression of Eq. (3.51) can be or, writing explicitly, by 

written as Gij;k/(PI;P2Ipi ;p;) = (~(pllpi )gj/(P2Ip;). (4.6b) 

g(plp') = Ko(P - p') + f dp"dp"'Ko(P - pH) 

xTb(P" - Pb Ipm - Pb)Ko(P'" - p'), (3.54) 

where Pb are the center coordinates of the boss. Here, as 
Ipl~oo, Ko(P) changes almost with the phase factor 
exp [ - ikj I plJ of either j = 1 or 2; hence, at sufficiently 
large distances from both the points P and p', the factor T b in 
Eq. (3.54) can be replaced by a scattering amplitude, given by 
the Fourier transform of Tb at the values of wave-number 
vectors of the incident and scattered waves, as in the case of a 
discrete scatterer in three-dimensional space. Here, evaluat
ing the scattering amplitude is generally an involved task, 
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Hereinafter, the coordinates having indices 1 and 2 will be 
used exclusively for quantities of the complex-conjugate 
wave function and the original wave function, respectively, 
in the manner of Eq. (4.6). 

Here, to find a governing equation for G(I;2), we intro
duce a quantity A b, defined by 

Ab = b - M, (Abg) = 0, (4.7) 

and exhibit g in terms ofG, on using Eq. (4.1), by 

g = G[1 + Abg], (4.8) 

and, in the same way, 

g* = G*[1 + Ab*g*], (Ab*g*) = O. (4.9) 
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Hence, by substituting expressions (4.8) and (4.9) of g(2) 
and g*(l) in the right-hand side of (4.6a), we obtain, by virtue 
of the condition for .1b set in Eq. (4.7), an equation of the 
form 

G(1;2) = G*(1)G(2)[1 + K(1;2)G(1;2)]. (4.10) 

Here, K(1;2) is defined, like M by Eq. (4.2), according to 

K(1;2)G(1;2) = (.1b*(1).1b(2)g*(1)g(2), (4.11) 

which gives a source term of the incoherent part ofG(1;2). 
Equation (4.10) for the second-order Green's function has a 
form of the Bethe-Salpeter equation, as this is generally true 
independently of the random quantity involved and also of 
its statistical property, e.g., of whether it is Gaussian or 
not.22 

Here, to the first order ofb [cf. Eq. (C8)], 

M = (bGb), (b) = 0, 

K(1;2) = (b*(1)b(2), (b* = b), 

(4. 12a) 

(4.12b) 

which have the same form as the corresponding quantities in 
a turbulent air, for example, in Refs. 22-24 and others. Here, 
when setting d = 0, however, a special consideration is nec
essary, and a modified version of the statistical equations is 
shown in detail in Appendix C. 

In another typical case of randomly distributed bosses, 
the corresponding expressions can be obtained in exactly the 
same way as for random scatterers in space, with the result 14 

M(P2-P2)=n f~oo dpb(T~(P2-Pblpi -Pb)" 

(4.13) 
Here, n is the density of bosses per unit area, and ( ... )' means 
the statistical averaging over all possible characteristics of 
the bosses, e.g., their shapes, sizes, orientations, etc.; T~ is 
the scattering matrix defined by Eq. (3.53) for one boss, with 
the replacement of ~ to the statistical Green's function G 
that depends on M. In matrix form, Eq. (4.13) can be written 
as 

B(1;2) = K(1;2)[1 + G*(1)G(2)S(1;2)], (4.18) 

which provides an equation to obtain the unknown S(1;2); 
hence [Gf. Eq. (3.53)], 

S(1;2) = [1 - K(1;2)G*{1)G{2)]-IK(1;2) 

= K(1;2)[1- G*(1)G(2)K(1;2)]-1 

= K(1;2) + K(1;2)G*(1)G(2)K(1;2) 

(4. 19a) 

(4. 19b) 

+ K{1;2)G*(1)G(2)K(1;2)G*(1)G{2)K(1;2) + "', 
(4.20) 

each term of which gives the matrix of multiple scattering of 
definite number of times. The matrix elements of S will be 
denoted by Sij;kl> Sij;kl{PI;P2Ipi ;pi), and S{PI;P2Ipi ;pi) in the 
same way as forG(1;2); for example, onSI (Fig. 1), Eq. (4.17) 
becomes 

GlI;lI (PI;P21 pi ;pi) 

= GTI (PI - pi )GlI(P2 - pi) 

+ ~ f dpi dpj dPk dpl 

XGTi{PI - Pi)Glj{P2 - Pj)Sij;kl{Pi;Pjlpk;P/) 

XGrdpk - pi)G/I{PI - pi), (4.21) 

which contains the terms of S22;22 and others having index 2, 
implying that GlI;lI is necessarily affected by a multiple (in
coherent) scattering on the back side of S. 

B. Integrated optical relation 

When the medium is not dissipative, M and K are not 
quite independent of one another, subjected to a constraint 
resulting from the Hermitian condition (2.15) for B. 

We first observe, on using Eqs. (4.9) and (4.11), that 

(.1b(2)g*{1)g{2) = G*(1)K{1;2)G{1;2), 

and therefore, by substitution ofEq. (4.7) into the left-hand 
side, that 

(b{2)g*{I)g{2) = [M(2) + G*{I)K(I;2)]G(1;2). (4.22a) 

M(2) = n f dPb (T~{2)', (4.14) In the same way, 

and also provides a means to determine the still unknown M 
self-consistently.25,26 In most cases of not too large density of 
the bosses, however, M involved in T~ may be set equal to 
zero, yielding an explicit expression of M. 

In the same way, 

K{I;2) = n f dpb (T~*{I)T~{2)J. (4.15) 

Here, the M and K given by Eqs. (4.14) and (4.15) strictly 
satisfy optical relation (4.25) to be given later, in spite of the 
fact that M involved in T~ is not Hermitian.25 

A. Incoherent scattering matrix 

We first introduce a scattering matrix S( 1;2), defined by 

K{1;2)G{1;2) = S{1;2)G*{1)G(2), (4.16) 

to write Eq. (4.1O) as 

G{I;2) = G*(I)G{2) + G*{I)G{2)S(I;2)G*{I)G{2). (4.17) 

Here, the substitution into the left-hand side of (4. 16) yields 
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(b*{1)g*{1)g{2) = [M*{l) + G(2)K(1;2)]G(1;2). (4.22b) 

Here, the following equations can be written in a compact 
form, by introduction ofa 2X2 matrix operator 5{1;2), de
fined by the matrix elements 8 (PI - P2)8ij, in such a way 
that, for any A*{l) and B(2), the product 5{1;2)A*{1)B{2) rep
resents 

~ f dpI dP2 8 {PI - P2)8ij A ~(pdpi )Bj/{P2Ipi) 
IJ 

= ~ f dpA !j{pi Ip)Bj/{plpi) 

= (A tB)kl{pi Ipi). (4.23) 

Hence, subtracting Eq. (4.22a) from Eq. (4.22b) and then 
multiplying the result to the left with 5(1;2), the left-hand 
side becomes zero since, by virtue of b t = b, 

5(1;2)[b*(1) - b(2)]g*(1)g(2) = gt(bt - b)g = 0, (4.24) 

showing by the right-hand side, that 

5{1;2)(M*(1) - M(2) + [G(2) - G*(1)]K(1;2)J = 0, (4.25) 
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which gives the constraint inherent between M and K. 
The relation (4.2S) is exactly fulfilled by M and K ofEq. 

(4.12) obtained to the first order, as is directly shown by 

~(1;2)[G(2) - G*(1)]K(1;2) 

= (bt(G - Gt)b) = ~(1;2)[M(2) - M*(l)]. (4.26) 

Also, the BS equation (4.10) is ensured to satisfy the averaged 
version ofEq. (2.33)/4 i.e., 

(W) = ~(1;2){2-1[h*(1) + h(2)]1l-IG(1;2) 

+ (2i)-I[G(2) - G*(l)]] = O. (4.27) 

Here, the meaning of the relation becomes more explicit 
when written in terms of the scattering matrix 8(1;2); this 
can be achieved by substituting the expression 

G*(l) - G(2) = {i[h*(l) + h(2)]1l- 1 + Bo(l) - Bo(2) 

+ M*(l) - M(2)]G*(1)G(2), (4.28) 

derived from Eqs. (4.4b) and (4.S), into Eq. (4.2S), fol
lowed by the multiplication to the right with 
(2i)-1[1- G*(1)G(2)K(1;2)]-I. Whence, 

~(1;2)[(2i)-I[M*(I) - M(2)] 

- (21l)-I[h*(1) + h(2)]G*(1)G(2)8(1;2)] = 0, (4.29) 

in consequence of Eq. (4. 19b). Here, the meaning of Eq. 
(4.29) becomes quite clear by the multiplication to the right 
with G*(1)G(2); hence, the first term means the total coher
ent power absorbed by the entire surface SI + S2 [as may be 
shown by substitution of (r/J(1) from Eq. (2.17) into Eq. 
(2. 14b) and subsequent utilization of definition (4.2) for M], 
whereas the second term means ( - ) times the total incoher
ent power scattered by S 1 + S2' as given by the second term 
in the right-hand side of Eq. (4.17). Note that this is not the 
case ofthe original relation (4.2S), whose meaning is not im
mediately clear. 

There exists also a local optical relation which ensures 
the conservation of the power at every point on S 1 and S2' in 
contrast with the total power integrated over the entire sur
faces, and can be written in terms of8( 1 ;2) in a form of show
ing an obvious meaning of each term, as has been shown in 
detail in Ref. 14 for a one-side boundary. 

Generally, in terms of the scattering matrix 8(1;2), var
ious quantities and equations associated with the incoherent 
waves (including cross sections and optical relations) can be 
written exactly and also in such a way of enabling a straight
forward physical interpretation (Sec. VI). Here, 8(1;2) is ob
tained as a solution of the integral equation (4.18), for which 
a practical version will be given later by Eq. (6.27). 

V. STATISTICAL GREEN'S FUNCTIONS IN SPACE 

So far the Green's functions have been defined only on 
the reference boundaries SI and S2' but the continuation into 
the spaces outside the boundaries is straightforward by re
placing Eqs. (2.17) by a set of equations for the space Green's 
function, say gij(zjz'), according to 
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gl1(ZjZ') = {exp[ - ih1jz - z'j] - exp[ - ihl(z + z')]] 

X(2ihd- I7]1 + exp( - ih1z)g11 exp( - ih1z'), 

z,z';;;.O, (S.la) 

J. Math. Phys., Vol. 26, No.9, September 1985 

g21(ZjZ') = exp[ih2(z + d )]g21 exp[ - ih1z'], 

z.;;; -d, z';;;'O. (S.lb) 

Similar equations for gzz(zjz') and g12(zjZ') are also obtained 
from Eq. (2.19). Here, the g/s are the same operators as 
defined in the previous sections, and therefore gij (ZIZ') results 
as the solution of 

[ -(!r -h 7] gij(zjz') = 7]; lJij lJ (z - z'), (S.2a) 

subjected to boundary condition (2.10) on SI and S2; the 
proof is straightforward by reference to the solu~ion of Eq. 
(2.3) in free space. The full-coordinate expresslOn of Eq. 
(S.2a) is, of course, [ -(~r -k 7] gij(xjx') = 7]; lJij 5(x - x'), (S.2b) 

and ij = 1 or 2 according as the points x and x' are in space 
.I 1 or .I2, respectively. 

Thus, the statistical Green's function of first order in 
space is obtained simply by replacing all the coefficient gij's 
in Eqs. (S.l) with the statistical Gy's ofEq. (4.4). The situa
tion is the same also for the statistical Green's function of 
second order, and most previous equations for the statistical 
surface Green's functions remain unchanged with the rede
finition ofG·(l), G(2), and G(1;2) by those of the space co
ordinates x = (p,z). That is, G( 1;2) now represents the x-co
ordinate matrix having the elements Gij;k/(X1;X2jxi;xi), with 
the possible abbreviations Gif,k/ (z 1;z2jzi ;zi) and 
G(zl;z2jzi ;zi). Here, since K(1;2) and 8(1;2) are p-coordinate 
matrices different from zero only on SI and S2' the x-coordi
nate expression of 8(1;2), for example, can be written, in 
terms of the surface lJj function defined by 

lJj(z) = lJ(z + dj ), (S.3a) 

with d l = 0 andd2 = d, as 

Sij;k/(X1;X2jxi ;xi) 

= 5; (zl)lJj (Z2)Sij;k/(PI;P2 j pi ;pi )lJk(zi )5/(zi), (S.3b) 

where x. = (p.,z.). Hence, expression (4.21) for Gl1 ;11 (1;2) 
given inJterm~ C:f 8(1;2), for example, holds as it is, simply 
with the replacement of all the p coordinates to the x's. 

Here, the equation of the first-order Green's function, 
(S.l) (that is, with the replacement of each gij-Gij)' can be 
written in several useful forms, by the introduction of several 
new 2 X 2 matrices as follows: 

(t~J 0) 
g(O) = (2Ib)-11l = 0 g20) 

= ((2ih
IO
)-I7]1 0) 

(2ih 2 ) -17]2 ' (S.4a) 

where, from Eq. (2.3), gJ0) means the Green's function in a 
homogeneous medium of kj except for the constant factor 7]j 

[but, not to be confused with go defined by Eq. (3.3S) for the 
homogeneous boundary]; also two "attenuation" coefficient 
matrices A and A for the coherent wave, defined by 

G = 2Ag(OJ = 2g(OJA, (S.4b) 

and therefore given by 
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A = iGh1J-l = [h + i1J(Do + M)]-lh, 

X = i1J- 1hG = AT, (5.4c) 

where use has been made of Eq. (4.4b). Hence, from Eq. 
(2.24), the reflection coefficient matrix (R) becomes 

(R) = 2A - 1 = (lb'TI- 1 
- Do - M)-I 

X (lb1J- 1 + Do + M), (5.4d) 

or, alternatively, 

(R) = g(O)T, 

where T is a scattering matrix, defined by 

T = 21b1J- I(R) = TT, 

(5.4e) 

(5.4t) 

which has symmetrical matrix elements, in contrast with 
(R) [cf. Eq. (2.30)]. Finally, we introduce a diagonal 2 X 2 
matrix function g(O)(z - z') defined by the elements 

gJ°)(z - z') = gJ0) exp [ - ihj Iz - z'l ], (5.5a) 

whose boundary value on Sj at z = - dj will be particularly 
denoted by 

gJ°)(Olz) =gJ°)(zIO) gJ0) exp[ - ihjlz + djl]. (5.5b) 

Hence, from Eqs. (2.22) and (5.4e), 

G = (1 + (R»)g(O) = g(O) + g(07g(0), 

and is continued to the ouside spaces as 

G(zlz') = g(O)(z - z') + g(O)(zIO)Tg(O)(Olz'), 

(5.6) 

(5.7) 

which represents the averaged version of the whole set of 
equations (5.1). Note that g(O)(z -z') = 0 when the points z 
and z' are not in the same space of either k I or k2• In the same 
way, the continued versions ofEq. (5.4b) are 

G(Olz) = 2Ag(0)(0Iz), 

G(zIO) = 2g(0)(zI0)X, 

(5.8a) 

(5.8b) 

which, together with G(zlz'), are nondiagonal 2 X 2 matrices 
having the matrix elements also for the points z and z' exist
ing in separate spaces, in contrast with g(O)(Olz), g(O)(zIO), and 
g(O)(z - z'). Here, it may be remarked that, from Eqs. (5.4)
(5.8), all the corresponding equations in Ref. 14 are repro
duced by changing the boldface letter (representing a 2 X 2 
matrix operator) to lightface letter for every quantity in
volved, with 1J = 1. 

The continuation of the second-order Green's function 
into the spaces is also straightforward by use of the expres
sion ofEq (4.17) with Eqs. (5.7) and (5.8). Hence, 

G(zl;z2Iz;;zi) 

= G*(zllz; )G(z2Izi) + g(0)*(zII0)g(0)(Z210) 

X O'vl(1;2)gl°)*(0Iz; )g(O)(Olzi), (5.9) 

where 

a'/)(1;2) = 24X*(1)X(2)S(1;2)A*(1)A(2), (5.10) 

and is a p-matrix version of incoherent scattering cross sec
tion, having the matrix elements o1J,l,(PI;P2Ip; ;pi) indepen
dent ofthez coordinate. Equation (5.9) can be written as an 
x-matrix equation, by 

G(1;2) = G*(I)G(2) + g(0)*(I)g(0)(2)o'(I;2) 

(5.11) 
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and, on using Eq. (5.7), it can be rewritten further in the form 

G(I;2) = g(0)*(I)g(0)(2) + g(0)*(1)g(0)(2)o-<TI(I;2) 

(5.12a) 

in terms of a total scattering matrix a'T I(I;2), defined by 

a'T)(1;2) = T*(I)T(2) + 0-<1)(1;2), (5. 12b) 

on neglect of the interference terms.27 

VI. SCATTERING CROSS SECTIONS 

Equation (5.9) for the second-order Green's function 
becomes simple in an asymptotic region far enough from the 
boundaries S I and S2' with the aid of a representation in 
terms of optical quantities. From Eq. (5.8a), we first observe 
that 

Gij(plx) = 2 f dp' Aij(p - p')gJ0I(p' - x), (6.1a) 

in view of the translational invariance; here, in such a region 
where Ikj(p -x)I>1 and Ip' - pi, d<lp - xl, 

gJ0l(p' _ x) = exp [ - ikjO • (p' - p)] gJ0)(p - x), (6.1 b) 

with 

a=(n,±ilz)=(p-x)/lp-xl, ilz>O. (6.1c) 

Hence, Eq. (6.1a) is asymptotically given in the form 
A 

Gij(plx) = 2Aij(il )gJ0)(p - x). (6.2) 

Here, in terms of the Fourier transformAij given according 
to Eq. (5.4c) by 

- - - I "'" Aij(u) = iGij(u)hj (u)1]j- = Aij(u), (6.3) 

Aij(a) is defined by 
A _ _ A 

Aij(il)=Aij(u)ln =Aj;(il), (6.4) 

where In means to set 

U = kjn, hj(U) = kjilz • (6.5) 

On the other hand, for given a, U is undetermined by the 
factor kJ. and therefore, whenever confusing, the notation 
A A 

il II) will be used for il to mean that U = kjO}l). In Eq. (6.3), 
Gij(u) is the solution of the Fourier transform of Eq. (4.4a), 
i.e., 

L Uh;(u)1];-1 8ij - Do,ij(u) - Mij(u)] Gjk(u) = 8;k' (6.6) 
J 

Hence, for evaluation of the second term in Eq. (5.9), we 
can utilize the asymptotic expression [cf. Eq. (4.17)] 

G ~(p - r/2Ix)Gdj (p + r/2lx) 
A A 

=A ~(!1 )Adj(!1 )exp[ - ikjO. r] 

X 12gJ°)(p - xW, (6.7a) 

on using the relative coordinates p and r defined by 

PI = P - r/2, P2 = P + r/2, dpi dp2 = dp dr. 

(6.7b) 
The same is also true of another factor G/:(xlp - r/2) 
xG1b(xlp + r/2). 

Hence, performing the two r integrations in the second 
term ofEq. (5.9), the result becomes written, when the point 
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XI = X2 = xisin thespaceofki and the point x; = X2 = x' is 
in the space of kj' in the form 

Gii;jj(X;X!X';x') 

= I Gij(x Ix'W + J dp" dp"'lx - p"I-27J; 
A A 

xd;g(fJ Ip" - p"'ll1 ')Igf'(p'" - x'W. (6.8) 
A A 

Here, 11 and 11' are the unit vectors in the directions of 
X - p" and p'" - x', respectively, (Fig. 2) and 

d;g(n Ip" - p"'ln') 

- A _ A A(~ A(J) 

= L 4A :(11 )Alb (11 )Sab;cd(11 'ip" - p"lfJ ') 
abed 

(6.9) 

where, in terms of the matrix elementsSab;cd(PI;P2Ip; ;P2) of 
8(1;2), 

Sab;Cd(n(I)lp" - p"'ln W) 

= (217r 2 J dr" drmexp [i(kin • r" - kjn' • rm)] 

XSab;cd(P" - r" 12;p" + r" 12 I p'" - rill 12;p'" + r'" 12), 
(6.10) 

which is a short-range function of p" - p .. , appreciable only 
within an effective range of multiple scattering [Eq. (4.20)]. 

Here, in view of the translational invariance, the full 
Fourier transform of Sab.,cd can be written in the form 

Sab;cd(AI;A2IA; ;A2) = (21T)28(A - A')Sab;cd(ulu')..t, (6.11) 

upon the change of the variables, according to 

A = A2 - AI' U = (A2 + AI)/2, dA du = dAI dA2, 

where, with Eq. (6.7b), 

- AI • PI + A2 • P2 = A· P + u • r. 
Hence, 

A A 

Sab;cd(fJ (1)1 pll1 IJ),) 

= (217r 4 J dASab;cd(kinlkjn'l..te-iA,·p, 

and therefore 

X' = (P·.z·) 

5
12 
------4 __ -¥--...-+-----'--

(6. 12a) 

(6. 12b) 

(6.13a) 

f' 

FIG. 2. Geometry and notations forEqs. (6.8) and (6.18). am and a (2) refer 
to the directions of specular reflection and transmission. 
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S (n(I)ln W) ab;cd 

= J dpSab;Cd(n(I)lpln W ) 

= (21T)-2Sab;Cd(kin lkj'O')..t 1A,=o' (6.13b) 

Here, in Eq. (6.8), when the point x' is sufficiently far 
from the boundary, the pm integration can be performed by 
regarding the last factor to be constant. Hence, Eq. (6.8) be
comes written, on using Eq. (6.13b), further, in the simple 
form 

G (A AlA' A') ii;jj X;X X;X 

= IGij(xlx'W + J dp"lx - P"I-
27J7 

xd;f1(n In 'lIg}°'(p" - x'W, (6.14) 

in terms of an incoherent scattering cross section per unit 
-..II) A A 

area C7';i;jj(11 111 '), defined by [cf. Eq. (5.10)] 

A A "" /'to.. 

X Sab;cd (11 (1)111 w)A :(11 ')Adj(11 '). (6.15) 

Here, dN;II' for example, contains the terms of S22;22 and 
others of index 2, meaning that it also contains an effect of 
multiple scattering over the back side of S.28 

In the same way, also for the coherent term in Eq. (6.8), 
we obtain an expression of the form (Appendix A) 

IGij(xlx'W = Ig}°'(x -x'W8ij + J dp"lx - p"1- 2 

XI1~)I<Rij(n )1 2 8(n(l) - n W) 

X Ig}°'(p" - x'W. (6.16) 
A A 

Here, 11 (i)r = 11 (I)(n') means the unit vector in the direction 
of wave propagation when the incident wave of given 
u = kjn' is observed in the medium of ki (Fig. 2).27 

Thus, the resultant asymptotic expression of the sec
ond-order Green's function is obtained, on substituting Eq. 
(6.16) into (6.14), in the form 

Gii;jj(x;xlx';x') 

= It;°'(x - x'W 8ij + J dp" Ix - p" 1-2 

A A 

xd;Q(11 II1 'lIg}°'(p" -x'W. (6.17) 

Here, 

d;J.](n In') = 11~)I<Rij(n )1 2 8(n(1) - n W) 
2-..11) A A + 7JiC7';i;jj(11 111 '), (6.18) 

and provides the total scattering cross section per unit area, 
including the coherent one; it can also be regarded as a spe
cific expression of the operator equation (5 . 12b), except for 
the factor 7J:. 

A. Optical relations 

When the medium is nondissipative, as has been as
sumed, the cross section dT)(n In ') of Eq. (6.18) should be 
subjected to an optical relation that ensures the power con
servation in the scattering. It is derived from the Fourier 
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transform of relation (4.29), which can be written, on using 
Eq. (6.11), as 

red(U') = L (21r)-2 i du hj (U)17j-1 
jab lul..;k) 

XG':(U)Gjb(U)Sab;ed(ulu');.IA,=o, 

where 

red(U) = (2z1-1 [M:fe(u) - MeAu)] , 
A _ A 

Yed(n) = Yed(u)ln = r:re(n), 

(6.19) 

(6.20a) 

(6.20b) 

and Gjb is given by the solution ofEq. (6.6).29 A 

Here, changing the variable of integration u to n with 
Eq. (A8), Eq. (6.19) becomes written as 

Yed(/1'j=Lkj17j r dnA.:(n)Ajb(n) 
jab )2" 

A A 

XSab;ed(n In '), (6.21) 
A A 

and, in terms of d;il1(n In ') [given by an obvious generaliza-
tion ofEq. (6.15) with respect to the indices], further as 

4 L Yed(n ')A :;.(.0 ')Addn ') 
ed 

(6.22) 

which provides a fundamental relation inherent between the 
quantities of the coherent wave on the left-hand side and 
those of the incoherent wave on the right-hand side. 

Also, for the coherent wave, there exists a similar rela
tion, as has been given by Eq. (2.34) for the original reflection 
coefficient R. That is, using Eqs. (4.4) and (4.5) leads to the 
relation 

4At(2i)-I(Mt - M)A + (Rt)(21))-I(ht + h)(R) 

- (21))-I(ht + h) + (Rt)(21))-I(ht - h) 

+ (21))-I(h - ht)(R) = 0, (6.23) 

which, by the Fourier transformation, can be written in 
terms of r ij (u) of Eq. (6.20a) as 

L 4rij(u)A : (U)Ajb(U) + L hj(U)17j-I(R ':(u) (Rjb(u) 
ij j 

- -I - ha (U)17a ~ab = 0, (6.24a) 

within the optical region where h: = ha and h: = hb , so 
that no contribution is made from the last two terms in Eq. 
(6.23). Hence, in terms of the .0 variables, it can be written 
further as 

_~ -I Ul. A 
A ~kj17j nz(Rja(n)(Rjb(fl), (6.24b) 

j 

where n ~1 is defined by Eq. (AW). 
Hence, by combining relations (6.22) and (6.24b), the 

total cross section a!T) ofEq. (6.18) is found to be subjected to 
the simple relation 

1 A A A 

L kj17j- 1 dn dIJb(n In ') = ka 17a- 1 fl ~a) ~ab' 
j 2". 

(6.25) 
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In fact, the total power of the scattered waves becomes, on 
using the second term on the right-hand side of Eq. (6.17), as 

J dp" L k l17l- 1 r dn o1Q(n In ')Igf)(p" - x'W 
i J211" 

(6.26) 

in cons~quence of Eq. (6.25) and dp" =n;-llp" 
- xT dn', giving exactly the total power of the incident 

wave. 
Here, it may be remarked that, in both optical relations 

(6.22) and (6.25), then range of integration is limited strictly 
within the half-solid angle 21r, and this is a consequence of 
using Eq. (6.19) or, more originally, Eq. (4.29) that is given in 
terms of the incoherent scattering matrix S(I;2). On the oth
er hand, the range of integration would not be limited within 
the 21r if use was made of the original relation of Eq. (4.25) 
given in terms ofK(I;2), extending over an additional range 
of integration in the complex plane, as in the case of a one
side boundary. 14 

On the other hand, in order to obtain the incoherent 
scattering cross section given by Eq. (6.15), we must find the 
factor Sab;ed(n In ') from S(I;2), and the latter is the solution 
of integral equation (4.18). Here, the former can be directly 
obtained as the solution of an integral equation, given by 
rewriting the original equation as 

Sab;ed(n In ') 

= S~~;ed(n In ') + ~ 17117j J (dn" n;' -I)ij 

XS~~;ij(n In ")A ~(n ")Aj/(n ")Skl;ed(n "1.0 '). 
Here, 

(6.27) 
A __ 

(dn n z-I)ij = du[ h ~(u)hj(u)]-I 

= k.k .-1 dn('1nUl-1 
• J z 

= k.k .- 1 dn li1 n ('1- I, 
i • z (6.28) 

and 

S~O~;ed(n In ') = (21r)-2Kab;ed(ulu't, 1A,=o;n, (6.29) 

where Kab.ed(ulu't, is the Fourier transform of K(I;2), de
fined in th~ same way asSab;ed(ulu')" by Eq. (6.11) for S(I;2). 
The path of integration is again not limited within the half
solid angle 21r, unlike those in Eqs. (6.21) and (6.25). In terms 
of the angles of incident and reflected waves, say e' and e, 
defined by n ; = cos e' and nz = cos e, respectively, it goes 
from 0 to 1r /2 + i 00 via 1r /2. 
_ He!e, the first term S~hed(n In ') and the factor 
A ~Ajl(n ") may be given by using Kab;ed and Gab of appro
priate approximation, but, in ord~ t~ ensure the optical rela
tion (6.21) for the solution Sab;ed(n In '), they should be con
sistent with the condition of Eq. (4.25), as it is exactly so in 
the typical cases of both slightly random surface [Eqs. (4.12)] 
and randomly distributed bosses [Eqs. (4.14) and (4.15)). The 
condition can be rewritten in the present notations also as 

Yed(n ') = L17117j J (dn n z- I)ij [kl17l- Inz 8ij 
/jab 

A _. A A (0) A A, + Yij(n )]A la(n )Ajb(n)S ab;ed(fl In ). 
(6.30) 
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A 

!Iere, it may be remarked that, if~e ~rm rij(n ) is negligible 
1D the integrand of (6.30), S~6;cd(n In ') results in satisfying 
the same relation as Eq. (6.21), implying, therefore, that 
Sab;cd -S~6;cd' It implies also}hat, in Eq. (6.30), the range of 
integration for the term rij(n) is not limited within 21r be
cause of the original definition (6.20), as in Eq. (6.27), in con
trast with the range ofEq. (6.21) limited strictly within 21r. 

So far we have considered a general class of scalar 
waves, subjected to boundary condition (2.8), and therefore, 
for electromagnetic waves, the results are applicable only 
when the waves are scattered within the plane of incidence. 
Briefly shown in Appendix B is a generalized version of sev
eral basic equations to meet the three-dimensional scattering 
of electromagnetic waves. 

B. Case of a Slightly random boundary 

Basic equations in this case were obtained in Sec. III C, 
where what is meant by Eq. (3.37) is that lh1J -I - Bo = Ko- I 
(d = 0) does not exist, so that the basic equation of g cannot 
be given by Eq. (4.1) with a Hermitian b. Nevertheless, this 
does not mean that all the equations of the statistical Green's 
functions obtained in Sec. IV need to be modified to meet the 
special situation; in Appendix C, the modified version ofthe 
equations is shown in detail, including a BS equation consis
tent (exactly) with the power conservation, which has the 
same form as Eq. (4.10), including M and K given by Eq. 
(4.12). Here, since the equations have been obtained to the 
first order of;, they may first be considered not to be signifi
cantly used to obtain a higher-order effect, like multiple scat
tering. But, it may be remarked that, as when treating waves 
in a turbulent air (Sec. III C), the solution of the present BS 
equation ofladdertype [Eq. (C11)] is considered to be signifi
cant over all the orders of; in the sense of selected summa
tion, so that the effect of mUltiple scattering is still demon
strated by the series of Eq. (4.20). 

Here, when only the first term of the series is consid
ered, an operator version of the cross sections is given by 
Eqs. (C19) and (C2010fa fOETI ~milarto Eq. (5.10). Here, by 
definition (6.4), A 11 (n ) and A 21 (n ) are obtained, on setting k J 
= €jk~, j = 1,2, in Eqs. (C17) and (C18) [with go of Eq. 
(3.35)], as 

AII(n) = n z [nz + (7l!h12)(€2/€1 - 0 2)1/2]-1 

=A l1(lh 

A2l(n) =nz [nz + (r12/7h)(€I/€2 - 0 2)1/2] -I, 

(6.31a) 

(6.31b) 

A A A 

wheretheanglen = (O,nz) denotesn (I) andn (2) [Eq. (A 10)] 
in the respective equations. In terms of a "power" spectrum 
density function of; (p), W(A), defined by 

W(A) = 4(21r)-2 J dp exp[iA' (p - p')](;(p);(p'), 

(6.32) 

use ofb (II) and b (12) ofEqs. (3.33) and (3.41b) yields the cross 
section dll l (n In ') of the form [cf. Eq. (6.14)] 
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1/Jdll l (n In ') = k ~ W [ ko(€l/20' - €JI2Ol] 
_ A A A 1 

X l1/j Ajl (n) [fjl (n In ') + €11/i 

- €21/2 I]A l1(n 'W. (6.33) 

Here, 
A A 

111(n In ') = (1/1- I -1/2- I)€I [1/11/2- 1(€2/€1 - 0 2)1/2 

(6. 34a) 

(6.34b) 

Here, for sound waves, 1/ =1= €, while, for electromagnetic 
waves of vertical polarization (scattered within the plane of 
incidence) 1/ = €, so that the last two terms in Eq. (6.33) are 
cancelled exactly. On the other hand, in the case of horizon
tal polarization, 1/ = J.L = 1 and therefore there is entirely no 
contribution from all the terms of h}"). In either case, the 

A A 

backscattering cross sections given by setting n I = - n 
agree with those obtained by previous authors,3,5,30 whereas, 
for the transmitted waves, no cross section has been shown 
so far in the literature. 

.!.n the special case 9.,f 1/2 = 00, Eq. (6.31a) gives 
A II (n ) = 1 independent of n, and this unphysical resule l is 
a consequence of Eq. (C17) using the approximation of 
G = 'IT;. If evaluated exactly by using Eq. (C4), A II tends to 
zeroasJJz-+O[Eq. (C22)].On the other hand, when Ik21- 00 

such that la / ap I < I k21, we observe that h2~k2 and therefore, 
fromEq. (3.11),B~) = - ik21/2-ln~). Hence, by the substitu
tion into Eq. (3.30), the equation of gl1 is obtained again in 
the form of Eq. (3.31), wherein, in the particular case of ei
ther 1/1 = 1/2 = 1 or k 21/2- 1_0, b (II) is exactly the same as 
those given by Eq. (3.33) at the same limits. This means that, 
in spite of the failure offulfilling the condition Ih~ 1<1 nec
essary to derive the perturbative results, the backscattering 
cross sections of electromagnetic waves for a perfectly con
ducting boundary coincide with those given by Eqs. (6.33) 
and (6.34) and also by previous authors, for both polariza
tions. 

VII. SUMMARY AND DISCUSSIONS 

Scattering and transmission of waves through a rough 
boundary were systematically investigated for both coherent 
and incoherent waves, based on the previous method 14 of 
using surface Green's function for a one-side boundary. Ex
cept in Appendix B for electromagnetic waves in the general 
case, the waves were assumed to be subjected to the bound
ary conditions ofEq. (2.8), which meet a wide class of scalar 
waves, including sound waves and electromagnetic waves of 
both horizontal and vertical polarizations in two-dimension
al space. The boundary condition can be transferred onto 
two reference boundary planes, so chosen that the entire 
boundary is completely involved between the two planes 
(Fig. 1); hence, it can be given by Eq. (2.10) in terms of surface 
impedances Bij. The surface Green's function g is a 2X2 
matrix operator having the elements gij defined according to 
Eqs. (2.17) and (2.19), and is governed by Eq. (2.21), which 
has the same form as that of the ordinary Green's function in 
a random medium B. Two operator methods were shown to 
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enable the Green's function to be obtained exactly and in a 
compact form for given boundary change; (p). In one meth
od, the continuation of wave functions on different sides of 
the boundary is performed directly on the real boundary, 
whereas, in the other method, it is done rather indirectly, 
based on the Green's theorem. The equation of the Green's 
function can be converted to a set of integral equations for 
the reflection and transmission coefficients, which is an ordi
nary integral equation entirely free from any operator. The 
Green's function is determined once the surface impedances 
are given, and vice versa. However, the former is a long
range function, whereas the latter is a short-range function 
of the order of correlation distance of; (p), as is clear in either 
case of slightly rough boundary or of random bosses, for 
example; therefore, the latter may be considered to be a fun
damental quantity to describe the entire statistical system. 
Various equations of the statistical Green's functions can be 
obtained unperturbatively in the same way as those in a ran
dom medium, particularly with the Bethe-Salpeter equation 
(4.10) for the coherence function; most of the basic equations 
can be given by the same equations as those for a one-side 
boundary,14 with the replacement of the boldface letter (rep
resenting 2 X 2 matrix operator) to the corresponding light
face letter for each symbol. Examples of the BS equation 
were shown for two typical cases of a slightly random bound
ary and an embossed boundary. The incoherent scattering 
matrix S(I;2) enables various quantities and equations asso
ciated with the incoherent wave to be written exactly, in
cluding scattering cross sections, optical relations, power 
flux density, etc. The scattering cross sections are obtained 
from asymptotic expressions of the second-order Green's 
function in a region sufficiently far from the boundary. The 
mUltiple scattering is necessarily involved [Eq. (4.20)), and 
the power conservation is accomplished only with this effect, 
leading to a constraint [Eq. (4.29)) which eventually leads to 
the optical relations [e.g., Eq' (6.25)]. There exists also a local 
optical relation established at every point on the reference 
boundaries. 14 Approximations were made only when obtain
ing the perturbative results. Here, when applying the con
ventional method of setting d = 0 to a slightly rough bound
ary, a special treatment is necessary primarily because of the 
nonexistence of Bo in Eq. (4.1), resulting from the symmetry 
ofEq. (3.37); the details of basic equations were shown in Sec. 
III C [where Eq. (3.47a) plays the role ofEq. (4.1)), and re
sulting statistical equations therefrom were in Appendix C. 
Here, it may be remarked that the present perturbative equa
tions, including equations of multiple scattering, are consis
tent with the power conservation and are considered to be 
significant over all the orders of;, in the sense of selected 
summations, as when treating a turbulent air. As for the 
cross sections by single scattering, no result has been shown 
for the transmitted waves in the literature, while, for the 
reflected waves, the cross sections obtained by previous 
authors are reproduced. 

Another important aspect of the present theory is that 
the theory can be generalized to such a case where the medi
um in one or both spaces outside the boundary is also ran
dom, and further to the case of a random layer with two 
rough boundaries, to solve boundary value problems in ran-
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dom layer transport. Here, the conventional transport equa
tion may be utilized for each random medium as a natural 
consequence of making an approximation (as has been 
known to be converted from each BS equation to a good 
approximation32,2S). The present theory can directly provide 
an exact version of the conventional boundary condition for 
the transport equation, which has been given so far heuristi
cally. More specifically, in the case of one rough boundary, 
say S12' dividing a random medium q into two parts, say ql 
and q2 of different kind, the BS equation of the mutual coher
ence function in the system of q plus S12' say G(q+ 12'( 1 ;2), can 
be written in the form 

G(q+ 12'(1;2) = G*(I)G(2}[ 1 + (K(12)(1;2) + K(q'(1;2)J 

(7.1) 

similar to Eq. (4.10). In fact, when the medium is homogen
eous, then K(q'(1;2) = 0 and the equation ofG(q+ 12, = G(12), 
say, is reduced to 

G(12)(1;2) = G*(I)G(2)[ 1 + K(12)(1;2)G(12)(1;2)], (7.2) 

which is exactly the spatialy continued version ofEq. (4.10) 
with K(I;2) = K(12)(1;2) (Sec. V). Here, the first-order 
Green's function G is the same as that in Sec. V, being the 
solution ofEq. (S.2) subjected to Eq. (2.10) with IJ.-Bo + M; 
here, when q;t:O, the equations slightly differ from the pre
vious ones by the replacement of kj to k jM, (of complex val
ues), resulting from the medium fluctuation. A great advan
tage of Eq. (7.1) is that it can be rewritten, in terms of 
GU2'(1;2), as 

G(q+ 12'(1;2) = G(12)(1;2}[ I + K(q'(1;2)G(q+ 12'(1;2)]. (7.3) 

Here, the factor G(2)(1;2) can be given by Eq. (S.12a), for 
example, in terms of known a!T'(I;2), which may be a good 
observable even though the original KU2'(1;2) may not be. It 
therefore provides a direct means of solving the boundary
value problem of wave transport in the medium q, in terms of 
I{<q, and M(q, (corresponding to the boundary counterpart 
M(12) = M). An alternative expression ofG(q+ 12'(1;2) corre
sponding to Eq. (S.12a) can be written in the form 

G(q+ 12'(1;2) = G(Oq'(1;2) 

+ G(Oq'(1;2)a!12Iq'(1;2)G(0q'(1;2). (7.4) 

Here, G(Oq, is the solution of Eq. (7.1) when K(2) = 0 and the 
boundary is removed (no reflection), and is, therefore, a diag
onal 2 X 2 matrix function whose elements are the solutions 
in a homogeneous random medium of each space; a!12Iq) is an 
effective total scattering matrix of the boundary when affect
ed by the medium q, and can be written in terms of the unaf
fected a(12) = a!T) [Eq. (S.12b)) and an incoherent scattering 
matrix ofthe medium, say S(Oq'(1;2), which enables G(Oq'(1;2) 
to be written in the form of Eq. (4.17). Also, for a random 
layer with two rough boundaries, the method remains essen
tially the same. Note that, in the BS equation (7.1), the 
boundary and the medium are now involved on exactly the 
same footing. The details will be treated in a different pa
per.33 
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APPENDIX A: DERIVATION OF EQ. (6.16) 

From Eq. (5.7), it is straightforward to obtain 

I Gij(x !X'W 

= liOI(x - x'W oij + f dp" dplll f dr" drill 

X liOI(x - p")12 exp[ik,a· r"] Tt[p" - pili 

- (r" - r'")l2] Tij [p" - pm + (r" - rlll)/2] 

xexp[ - ikja', rill] Ig}°l(plll - x'W, (AI) 

on following the procedure for deriving Eq. (6.7a) and also 
neglecting the interference terms. Here, the integration can 
be effected in the same way as in Eqs. (6.8H6.1O), with the 
replacement of the Fourier transform (6.11) to (A = !) 
Tt(AI)Tij(A2)(21T)4 o(AI - Ai )0(A2 - Ai) 

~ITij(uW(21T)4 o(u - u'lO(A - A'), (A2) 

to the approximation of Tij(u + Al2)~Tij(u) where 
IAI<lul-k, yielding a result of the form 

f dp"lx- p"I-21 2- 11J,Tij(nw 

Xo(k,a - kja')Ig}°I(p" - x'W. (A3) 

Here, 
A A_ 

Tij(fJ) = 1j,(fJ) = Tij(u)ln 
A 

= 2ik,1J,- IfJ ~)(Rij(fJ ), 

where 

(A4) 

(AS) 

A _ A 

(Rij(fJ) = (Rij(u) In # (Rj,(fl) (i#j), (A6) 

in terms of fJ~) to be defined ~ Eq. (A1O). 
Here, since u = k a and fJ = (a, ± fJz ), fJz > 0, we get, 

A 

on changing the variable u to fJ, 

o(u)=o(a) 1:1 =o(n)I:I, (A7) 

with the lacobians 

(A8) 

Hence, 

o(k,a - kja') = (k;fJ ~)) -Io(n (.) - n (/)I), (A9) 

where n (/) = (a(!), ± fJ ~)) is defined by 

u = k,a(') = kj a vl, fJ~) = [1 - (a('))2 ]112, (A 10) 

and means the direction of wave propagation when a plane 
wave of given u = kja(/) is observed in the medium of k,. 

Thus, from Eqs. (AS) and (A9), 
A 

12-11J;Tij(fl W o(k;a - kja') 

= fJ ~)I (Rij(n) 12 o(n (.) - n (/)I), (All) 

which following substitution into Eq. (A3) yields Eq. (6.16). 

APPENDIX B: ELECTROMAGNETIC WAVES IN 
GENERAL CASE 

Even when a depolarization is possible in the scattering, 
basic equations can still be given in the same form with a 
redefinition of the notations, as follows. Let VJih lIz) and r/1ul(z), 
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j = 1,2, be wave functions in space ~j' representing the 
waves of horizontal and vertical polarization, respectively, 
and also the ~h I = J.Lj' whereas ~Ul = Ej' Then, the boundary 
condition of Eq. (2.10) is replaced with 

- [€:l]-Ian~:l= L [B~albl~lbl+B~a:ltP~I], 
b 

(B1) 

- [€;,I] - Ian ~;'I = L [B ~t 1~lb I + B ~2b l~: I], 
b 

in terms of surface impedances B tb I. Nevertheless, Eq. (B 1) 
can be written, on suppressing the superscripts, in the form 
ofEq. (2.10), with the understanding that each Bij now repre
sents a 2 X 2 matrix with respect to the superscripts, having 
the matrix elements B tb I. That is, with this redefinition, the 
equation of g is given by Eq. (2.21), and R is by Eq. (2.24), 
etc., by exactly the same equations as those for the scalar 
waves in Sec. II. 

Here, the r/1al's are orthogonal in the sense that the total 
vertical (outward normally directed) power component inte
grated over ~, say Jfj, is given by 

Jfj = L r dp[2i~al]-I[tP5al*(alt -an)r/1al ], (B2) 
a JSj 

without any cross terms by the components of different su
perscript. Hence, when the medium is not dissipative, the 
condition that WI + W2 be zero imposes the Hermitian con
dition (2.15), i.e., 

Btbl*(plp') =BJl"'I(p'lp), (B3) 

with respect to the subscripts, the superscripts, and the p 
coordinates. The same is also true of the relation (2.29) which 
is presently written as 

irl(p'lp") =g}l"'I(p"lp'). (B4) 

The situation is the same also of the space Green's func
tion continued into the outside spaces, and further of the 
statistical Green's functions; it holds the same equations as 
in Secs. IV and V, upon suppressing the superscripts. Hence, 
for example, the second-order space Green's function de
fined by 

G ~~tdl(XI;X2Ix;;Xl) 

= (ikcl*(X Ilx; )g}';'l I(X2Ixi) (BS) 

satisfies the BS equation ofthe same form as Eq. (4.10), and 
can be given in termsofS(1;2) by Eq. (4.17). The asymptotic 
expression ofEq. (6.14) becomes 

G (ab;cdl(~.~ I ~'. ~') 
i/;jj X,XX,X 

= Gtcl*(xIX')G~bdl(xlx') + f dp"lx - p"I-2 

X ~al~blo1:;Ub;Cdl(n In ')~CI~dI141T{p" - x')I-2, (B6) 

and the same is also true of the optical relations. 
Thus, most of the statistical equations in Secs. IV-VI 

are reproduced with the understanding that each component 
1Jj now represents a diagonal 2 X 2 matrix in a two-dimen
sional polarization space, having the elements ~al Dab' and 
each element gij represents a 2 X 2 matrix operator in the 
same space, having the elements tijb I. Hence, it becomes the 

K. Furutsu 2367 



                                                                                                                                    

same also of bij and other associated statistical quantities, 
e.g., Mij, Yij' Aij' Gij;k/(1;2), etc. The principle of deriving 
B ~b) also remains unchanged, although the actual proce
dure becomes more involved, and we will not go further on 
this point in this paper. 

APPENDIX C: BS EQUATION, SCATTERING CROSS 
SECTIONS, AND RELATED OPTICAL RELATIONS FOR 
THE SLIGHTLY RANDOM BOUNDARY 

Since the basic equation (3.47a) differs from Eq. (4.1) 
only by the replacement of Ibll- I - Do and I to 1T and 1, 
respectively, the procedure of obtaining the statistical 
Green's functions remains almost unchanged. The effective 
impedance M for the coherent wave, G = (g), is defined 
according to 

(bg) = MG, (b) = 0, (CI) 

to write the averaged version ofEq. (3.47a) by 

~-M~=l ~~ 
Hence, 

-+ ... 
G=GI, (C3) 

where G(:;6GT) is a 2X2 first-order Green's function, de
fined by 

(1T - M)G = I, G = (1T - M)-I. (C4) 

Here, to find a specific expression of M, we introduce the 
difference ..1 b defined by 

..1b = b - M, (..1bg) = 0, (C5) 

and rewrite Eq. (3.47a) in terms ofG and..1b as 

g = G[1 + ..1bg], (C6) 

which, by the substitution into the left-hand side ofEq. (CI), 
shows that, to the second order of ~, 

(bG..1bg) = (bGb) (g), (C7) 

in consequence of the condition in Eq. (C5) (and Gaussian 
statistics). Hence, 

M = (bGb). (CS) 

To obtain the second-order Green's function G(I;2) de
fined by 

(g*(I)g(2) = G(I;2)1(1)1(2), (C9) 

so that 

(ClO) 

we utilize Eq. (C6) for both g*( I) and g(2) in Eq. (C9). Hence, 
an equation of G(I;2) is found again in the form of the BS 
equation 

G(I;2) = G*(I)G(2)[1 + K(I;2)G(I;2)], (Cll) 

similar to Eqs. (4.10) and (4.11), with 

K(I;2) = (b*(I)b(2). (CI2) 

Hence, M and K are given formally by the same equation as 
(4.12). 

More precisely, since b is a diagonal operator [Eq. 
(3.45)], the nonvanishing elements ofK(I;2) are 
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To the approximation of G=1T- I [Eq. (C4)], using Eq. 
(3.4Sb) shows that 

M _ (bI gobI) 
(b2 gob l ) 

where b; is defined by Eq. (3.40b) and 

(CI4) 

b~ = (171 -172)17I-I172-lhI~h2 = (hI172Ih I 17.)b2, (CIS) 

with the relation [cf. Eq. (3.4Ib)] 

b (21) = bI + b ~. (CI6) 

The solution of the BS equation (CII) also can be given 
by the same equation as Eq. (4.17) in terms of the incoherent 
scattering matrix S(I;2) [defined by Eq. (4.IS) and given by 
Eqs. (4.19) and (4.20)], and further by Eq. (5.11) in terms of 
0'1/ )(1;2) defined by Eq. (5.10), after the continuation into the 
outside spaces. Here, from Eq. (5.4c), A and A(:;6AT) are 
given, to the approximation OfG=1T- I, by 

A = i (h I17I-
1 

- (h2IhI)h2172-1) (CI7) 
go h l17I- 1 (h2lh I)h l17I- 1 ' 

_ . (h l17I-
1 

- (h2lh I)h l17I-
I
) 

A = Igo -I 
h2172 (h2lh I)hI17I- 1 . 

(CIS) 

To the approximation of S(1;2)=K(I;2), use of Eq. (C13) 
with b ~ and b; ofEqs. (CIS) and (3.40b) leads to the result 

d{I);1l (1;2) = 24ATI (1)A11(2)(b (11)*( I)b (11)(2) 

XA T.(I)AI1(2), (CI9) 

df/Il (1;2) = 24A ~I (1)A21(2)(b (21)*(1)b (21)(2) 

XA TI (1)A1I(2), (C20) 

as may be expected directly from Eq. (3.34) and (3.41), re
spectively. Here, the x-coordinate version ofEq. (ClO) is giv
en by Eq. (6.14) in terms of the incoherent scattering cross 

A A 

section a\f\.(n In ') given by Eq. (6.15). Hence, the cross 
sections ofEq. (6.33) are obtained by using Eqs. (CI7)-(C20). 

The situation remains unchanged also for the optical 
relations resulting from the Hermitian condition of b. 
Hence, Eq. (4.25) holds as it is, and the same is also true of 
Eq. (4.29) given in terms of S(1;2), in consequence of Eq. 
(3.4Sa). Thus, we obtain Eqs. (6.19)-(6.21) as they are, with 
the particular indices c = d = I. Here, to the approximation 
ofEqs. (CI7)-(C20), the optical relation ofEq. (6.22) can be 
shown to be reduced to 

2 i A I) A A, 

= /~I kj 17j J21T dn d.ii;1I (n In ), (C21) 
A A "'-

with Ycd(n ) given byEq. (6.20) with (C14) andd,J1I (n In ')of 
Eq. (6.33). 

Here, it may be remarked that, in the special case of 
172 = 00 (as realized by a perfectly conducting boundary for 
electromagnetic waves of vertical polarization), 1T has the 
only nonvanishing element 1T1I = ih I 17I- I, which also be-
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comes very small for the grazing waves for which hi - O. 
Hence, Eq. (C17) gives All = 1 in that case, whereas, as 
hl-fJ, the exactA ll tends according to Eq. (5.4c) with (C14) 
(where b2 = b 2 = 0), to 

All = - iM Illhl'TII-1-fJ, 'TI2 = 00, (C22) 

sho~ng that effect of the term Mll is not negligible for 
A II(fl ) in the neighborhood of grazing-wave incidence and/ 
or scattering. 
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differs from those given in Refs. 7 and 8 by the factor IA (OW, which is 
lacking in the latter. 
2~e physical dimension of red (a) defined by Eq. (6.2Ob) differs from 1'1a) 

in Ref. 14 [Eq. (183)], by the factor ko. 
30rbe dependence of the cross section on a2

, /ap2 was discussed in some 
detail,14 showing that it becomes independent of a2

, /ap2 when IEI>1 in 
the case of vertical polarization, whereas, for the horizontal polarization, 
the same is true over the entire range of E. 

31In the grazing-wave direction Oz = 0, no scattered wave can survive be-
cause of the dissipation by the multiple scattering. . 

32See, for example, Yu. N. Barabanenkov, Yu. A. Kravtsov, S. M. Rytov, 
and V. I. Tatarskii, Sov. Phys. Usp. 13, 551 (1971). 

33K. Furutsu, 1. Opt. Soc. Am. A 2, to be published (lune, 1985). 
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A method is devised to investigate the existence of magnetic surfaces and magnetohydrodynamic 
(MHO) plasma equilibria in 3-0 toroidal geometry. The key feature ofthis method is the 
utilization of a Hamiltonian formulation of the lines of force. Expanding the contravariant 
components of the magnetic field and scalar pressure in distancep from the magnetic axis, the 1-0 
Hamiltonian for the lines of force is written out explicitly. The Hamiltonian is then transformed to 
action-angle variables. It is shown that the action J corresponds to pressure in the equilibrium 
problem. Specifically, it is shown that if J is an invariant, then constant pressure and hence 
magnetic surfaces exist. A procedure of repeated canonical transformations is formulated and 
carried out to displace the coordinate dependence in the Hamiltonian to successively higher order 
in the expansion parameter, and thus make J an increasingly better adiabatic invariant. Arising in 
each successive canonical transformation is a series of potentially resonant denominators, i.e., 
denominators that may vanish. These potential resonances are identified, their significance 
explicated, and methods of handling them suggested. 

I. INTRODUCTION 

Magnetic field lines of force in three-dimensional space 
may be characterized by one or more of the following prop
erties: (i) the field lines are closed, (ii) the field lines ergodical
ly cover a two-dimensional "flux surface," and (iii) the field 
lines wander ergodically throughout a volume. In the inter
est of confining fusion plasmas magnetically, it is necessary 
to know the conditions for the magnetic field lines to lie on a 
dense set of magnetic flux surfaces. The plasma is governed 
by the magnetohydrodynamic (MHO) equilibrium equa
tions 

V·B = 0, (1.1) 

VXB=J, 

JXB=VP, 

(1.2) 

(1.3) 

where B is the magnetic field, J is the current density, and P 
is the hydrostatic pressure. Eliminating the current density 
using Eq. (1.2), the equilibrium equations reduce to 

V·B = 0, (1.4) 

(VXB)XB = VP. (1.5) 

Equations (1.4) and (1.5) are a set off our coupled, nonlinear, 
partial differential equations, with two real and two imagi
nary characteristics. 1 If a single-valued solution exists to this 
set of equations and if the pressure gradient vanishes almost 
nowhere, then the magnetic field lines lie on a dense set of 
magnetic flux surfaces.2 (The term magnetic flux surfaces is 
synonymous with magnetic surfaces, flux surfaces, and con
stant pressure surfaces; all four expressions are used inter
changeably.) It is well known that single-valued solutions do 
exist in configurations which possess either translational, ro
tational, or helical symmetry. However, in configurations 
which lack symmetry, there is evidence, based largely on the 
KAM theory of Hamiltonian systems, that periodic solu
tions generally do not exist, and therefore, that these config
urations generally do not have a continuous distribution of 
flux surfaces. 3-5 

We propose a method of investigation into the existence 
of both exact and approximate solutions to these equations 
and, thus, the existence of exact and approximate surfaces in 
asymmetric toroidal geometry. The terminology "approxi
mate solutions" is given a precise mathematical definition 
when we seek interpretation of our results in Sec. VI. Fea
tures of our proposed method of investigation include the 
following. First, we display an explicit representation of a 
Hamiltonian formulation of the lines offorce for a magnetic 
field. Second, we formulate and apply a method of repeated 
canonical transformations to the Hamiltonian as a means of 
establishing exact or approximate flux surfaces. Third, we 
show explicitly the appearance of resonances in the magnetic 
field structure of 3-0 toroidal plasma configurations and we 
interpret these resonances. The goal of this research is to 
discern criteria such that these magnetic fields possess mini
mal regions of island structure and stochasticity. 

In this method of investigation, we utilize the analytic 
technique of expanding the quantities B and P in distance p 
from an arbitrary magnetic axis. The magnetic axis is a de
generate surface of zero enclosed volume. This technique 
was pioneered by Mercier,6 and applied by Lortz and Nuh
renberg,7 to study 3-0 MHO equilibria of plasmas. These 
previous studies have inherent limitations in that (i) only a 
restricted domain of solution space is considered, (ii) the so
lutions that are generated are in terms of parameters over 
which there is little or no experimental control, and (iii) a 
prescription to calculate the magnetic surfaces to an arbi
trarily high order is lacking. These limitations may be over
come by casting the problem into a Hamiltonian formula
tion. Since by Eq. (1.1), the magnetic field is divergence-free, 
a one-dimensional nonautonomous Hamiltonian can be con
structed for the lines offorce. By making the proper canoni
cal transformation, the Hamiltonian becomes that of a non
linear oscillator. The problem can now be addressed using 
the Lewis-Leach-Symon Hamiltonian treatment of the time
dependent oscillator.8-13 Following Symon, 11 the Hamilton-
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ian is first transformed to action-angle variables. Then a sys
tematic procedure of repeated canonical transformations, 
similar to a generalized Poincare-Von Zeipel scheme, is for
mulated and carried out. In the nth transformation, an Fl 
generating function is constructed so as to eliminate the co
ordinate dependence in the Hamiltonian to order (n - 1). 
That is, the coordinate dependence in the Hamiltonian is 
displaced to higher and higher order in the expansion. From 
Hamilton's equations, the action J becomes an increasingly 
better adiabatic invariant with each canonical transforma
tion. It is shown that J corresponds to pressure in the equilib
rium problem, and, thus, that constant J surfaces are tanta
mount to constant pressure (and hence magnetic) surfaces in 
physical space. 

Arising in each successive generating function is a series 
of potentially resonant denominators, i.e., denominators 
which may vanish. Vanishing denominators are inherent in 
the method of expansion in powers of p. Mathematically, 
their presence may preclude the convergence of the expan
sion series-this is the motivation for seeking approximate 
(series) solutions although the existence of exact solutions 
may still be considered. Topologically, their presence may 
correspond to the exhibition of new magnetic axes that en
circle the general system of toroidal surfaces. 14 In order to 
design a magnetic confinement scheme possessing a large 
volume of nested surfaces, it is necessary to first identify 
which denominators are indeed resonant, and, second, to 
develop techniques to handle these resonances. 

Before proceeding with the details of this calculation, 
we sketch a brief outline of the remainder of the paper. In 
Sec. II, the series expansions for the magnetic field compo
nents and the pressure are given. These expressions are for
mally substituted into the MHO equilibrium equations, Eqs. 
(1.4) and (1.5), and the lowest-order expansion coefficients 
are solved for explicitly. In addition, the Hamiltonian for
mulation of the field line equations is presented. In Sec. III, 
the lowest-order invariant is constructed. Furthermore, the 
significance of the invariant to the equilibrium problem is 
explained. In Sec. IV, the successive canonical transforma
tion scheme is formulated. The scheme is carried out 
through fourth order (inp), then generalized to nth order. In 
Sec. V, the resonant denominators are identified and dis
cussed. Finally, in Sec. VI, we summarize the results of the 
analysis, discuss the meaning of the solutions, and present 
some conclusions. 

II. THE HAMILTONIAN FORMULATION OF THE FIELD 
LINE EQUATIONS 

A. The power series expansions and equilibrium 
equations 

The plasma confinement configuration under consider
ation is a three-dimensional torus without symmetry. The 
magnetic axis or degenerate surface is assumed to close upon 
itself in one toroidal revolution, but otherwise to have arbi
trary curvature and torsion. The plasma is governed by the 
MHO equilibrium equations, Eqs. (1.4) and (1.5), subject to 
periodic boundary conditions. We work in Mercier coordi
nates, (p,O,s) (see Refs. 6 and 7), where s is the distance mea
sured along the magnetic axis, while p, 0 are polar coordi-
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nates in an s = const plane. The angle 0 is measured from the 
normal to the magnetic axis. The contravariant components 
of the magnetic field and the pressure are now expanded in 
distance p from the magnetic axis: 

BP = D·Vp = alP + alpl + a3p3 +''', (2.1) 

B (J = D·VO = bo + b l p + b1 P2 + ... , (2.2) 

B' = D·Vs = Co + clP + C2p2 +"', (2.3) 

P = 1/0 + 1/2p2 + 1/3p3 + ... . (2.4) 

The coefficients in Eqs. (2.1)-(2.4) are, in general, periodic 
functions of 0 and s. Note that ao = 0, Co = cots), and 1/1 = 0 
because of the respective boundary conditions at the magnet
ic axis: the radial magnetic field is zero, the toroidal field is a 
function only of s, and the pressure is an extremum. Substi
tuting the expressions in Eqs. (2.1H2.4) into Eqs. (1.4) and 
(1.5), the expansion coefficients are solved for order by order. 
The details of this part of the analysis are straightforward 
but quite lengthy to derive. To avoid unnecessary detail, we 
reserve this part of the calculation for another paper,15 and 
display only those results necessary to meet the stated objec
tives of this paper. The solution of the lowest-order coeffi
cients is 

al(O,s) = - !cb(s) + b02c sin 20 - boz. cos 20, (2.5) 

bo(O,s) = !(j - 2'Tco) + b02c cos 20 + boz. sin 20, (2.6) 

Co = cots), (2.7) 

1/0 = const. (2.8) 

In Eqs. (2.5) and (2.6),j is the current density on axis, 'T is the 
torsion of the axis, and bOlc' boz. are arbitrary periodic func
tions of s. The second-order pressure coefficient 1/2 is gov
erned by the following first-order, linear, partial differential 
equation: 

b a1/2 + a",2 + 2a - 0 o ao Co a; 11/2 - . (2.9) 

Using Fourier analysis, it can be shown that the general solu
tion ofEq. (2.9) satisfying periodic boundary conditions is 

1/2(0,s) = 1/20(S) + 1/2c(S) cos 20 + 1/z.(s) sin 20, (2.10) 

where the coefficients 1/20' 1/2c' and 1/2. are governed by 

!!... (1/20) 
ds Co 

(2.11) 

!!... (1/2C) = 2 b02s 1/20 + (2'T _ L) 1/z. , (2.12) 
ds Co Co Co Co Co 

d (1/z.) = _ 2 b02c 1/20 _ (2'T _ L) 1/2C. (2.13) 
ds Co Co Co Co Co 

In Eqs. (2.11 H2.13), the functions b02c ' boz., Co' 'T, and j are 
arbitrary and are not determined until all of the expansion 
coefficients have been solved for. Thus, Eqs. (2.11H2.13) 
should be solved as functionals of bOlc' boz., Co, 'T, andj. Simi
lar, but increasingly larger sets of equations govern 1/3' 1/4' 
etc. The general solution for 1/20' 1/2c' and 1/z. from Eqs. 
(2.11 )-(2.13) is quite unperspicuous. However, by casting the 
problem into a Hamiltonian formulation for the lines of 
force, general periodic solutions are obtainable for these co
efficients. 
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B. The field line equations in Hamiltonian form 

The objective of this section is to construct an explicit 
Hamiltonian for the magnetic field lines offorce. The Hamil
tonian formulation is presented in generalized coordinates 
Xl, x 2

, x 3
• At the end ofthe calculation, the generalized co

ordinates are specified in terms of p, 8, s. 
Any arbitrary magnetic field has the property of being 

divergence-free, and thus is expressible in terms of a vector 
potential through 

B = VXA. (2.14) 

The contravariant components of the magnetic field are 
written as 

(2.15) 

(2.16) 

(2.17) 

wheregis the determinant of the metric tensor. We simplify 
these expressions by choosing a gauge such that A2 = O. 
Then, we introduce functions p and H through the following 
definitions: 

p=-AI , (2.18) 

H=A 3• (2.19) 

With these definitions, Eqs. (2.15) and (2.17) become 

p = f dx2 .JiB 3 + r(XI, x 3
), (2.20) 

H = f dx2.JiB 1+ .5(x l x 3
). (2.21) 

The free functions rand.5, arising in Eqs. (2.20) and (2.21), 
are constrained by Eq. (2.16), that is, 

.JiB 2 + aH + ap = o. (2.22) 
axl ax3 

To complete the Hamiltonian formulation of the magnetic 
lines of force, we introduce the canonical coordinate, and 
show that pin Eq. (2.20) and H in Eq. (2.21) are the conjugate 
momentum and the Hamiltonian, respectively. To this end, 
two more expedients are needed. First, we define a coordi
nate transformation from Xl, x 2

, x 3 to new coordinates q, p, t 
via the following equations: 

(2.23a) 

(2.23b) 

(2.23c) 

Second, the equations for the lines of force are introduced. 
They are 

dx l dx2 dx3 

Jii = Jj2 = Ji3' (2.24) 

Now, using Eqs. (2.23) and (2.24), we complete the calcula
tion by showing that Hamilton's equations of motion are 
satisfied. 
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From Eq. (2.23), 

dp = ap dx
l + ap. dx

2 + ap dx
3 

(2.25) 
dt axl dt ax2 dt ax3 dt . 

We now eliminateaplax2, aplax3
, dx2ldt, anddx31dt from 

Eq. (2.25), using Eq. (2.20), (2.22), (2.24), and (2.23), respec
tively. The result is 

dp ap dx l aH 
dt = axl dt - axl' (2.26) 

Next, regard the Hamiltonian as a function of q, p, t, i.e., 
H = H (q, p,t). Then, 

aH = aH aq + aH ap + aH ~ 
ax2 aq ax2 ap ax2 at ax2' 

which reduces, by Eq. (2.23), to 

aH aH ap 
ax2 = ap ax2 . (2.27) 

Substituting into the left-hand side of Eq. (2.27) from Eq. 
(2.21), and into the right-hand side from Eq. (2.20), we see 
that 

BH 
.JiB I = -.JiB 3. (2.28) 

ap 
TheB I andB 3 are eliminated with Eq. (2.24). Identifying Xl 

and x3 with q and t, respectively, from Eq. (2.23), the first of 
Hamilton's equations is obtained as 

(2.29) 

The second of Hamilton's equations will now be derived. 
Again, regarding H = H (q, p, t), it is evident that 

aH = aH ~ + aH ap + aH .!!...-
axl aq axl ap axl at axl ' 

which reduces, by Eq. (2.23), to 

aH = aH + aH ap (2.30) 
axl aq ap axl . 

Substituting Eq. (2.30) into Eq. (2.26), and using Eq. (2.29), 
we have the second of Hamilton's equations, 

(2.31) 

In summary, the canonical coordinate, conjugate momen
tum, and Hamiltonian, for the magnetic field lines of force, 
are 

p = f dx2 .JiB 3 + r(x l, x 3
), 

H = f dx2 .JiB I + .5(XI, x 3
), 

where rand l) are constrained by 

.JiB 2 + aH + ap = o. 
axl ax3 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

We now apply this Hamiltonian formulation to the ex
panded fields in Sec. II A. Choosing xl, x2, x 3 to be 8, p, s, 
Eqs. (2.32)-(2.35) reduce to 
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q = 0, (2.36) 

p = !Copz + !(C I - cok cos O!o3 

+ ... + (l/n)(cn_ Z - Cn_3k cos o !on + "', (2.37) 

H = !bopz + j(b l - bok cos O!o3 

+ ... + (l/n)(bn _ Z - bn _ 3 k COS o !on + ... . (2.38) 

To write the Hamiltonian as a function of q, p, t, it is neces
sary to invert Eq. (2.37) to write p = p(q, p, t ). Carrying this 
out, the Hamiltonian becomes 

bo 2.,fi (b CI b }3/Z H(q,p,t)= -p+ -- 1- - 0 
Co 3c0

3/Z Co 

1 { CI - icok cos q + 2" bz - ~ b l 
Co Co 

+ [ 4c1(C I - cok cos q) 
3c~ 

Cz - clk cos q]b } Z + - 0 p .... 
Co 

(2.39) 

Hence, we have displayed an explicit representation of a Ha
miltonian formulation of the lines of force. An exact invar
iant to the lowest-order Hamiltonian is now sought. It will be 
shown that this lowest-order invariant corresponds to the 
existence of approximate surfaces in the immediate vicinity 
of the magnetic axis. 

III. CONSTRUCTION OF THE LOWEST-ORDER 
INVARIANT 

The Hamiltonian in Eq. (2.39) can be transformed into a 
Hamiltonian descriptive of a nonlinear oscillator. The trans
formation, which takes the canonical coordinates (q, p, t) to 
new coordinates (x, p, t), is accomplished through the fol
lowing Fz generating function: 

F( - ) 1-2 
2 q,p,t ="2P tanq. (3.1) 

The relationship between the old and new coordinates is es
tablished using Eq. (3.1): 

p = aFz = 1. (p sec q)2, 
aq 2 

(3.2) 

aF2 -X= - =ptanq. 
ap 

(3.3) 

With Eqs. (3.2) and (3.3), the new Hamiltonian can be written 
in the form 

H (x, p, t) = Hz(x, p, t) + H 3(x, p, t) + H 4(x, p, t) + .... 
(3.4) 

In Eq. (3.4), H2 is a quadratic polynomial in x and p, H3 is a 
cubic polynomial, H4 a quartic polynomial, etc. The explicit 
expressions for Hz, H 3, andH4 are contained in Appendix A. 
In order to construct the lowest-order invariant, we write 
out the quadratic part of the Hamiltonian H2 explicitly as 

H 2(x, p, t) = ![(t /ft2 + g(t /ftx + !h (t )x2. (3.5) 

The functions/, g, and h are obtained from Eqs. (AI) and 
(A2). This lowest-order Hamiltonian is precisely the lowest
order Hamiltonian treated by Symon. II He showed that this 
Hamiltonian (H2 ) has the exact invariant 
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J= 1.~ + 1. [wp- (W_gw)~]2 
2w2 2 [' 

(3.6) 

where w is any solution of 

w - [w + (fh - g2 - g + [g)w = L. 
f f w3 

(3.7) 

For our purposes, w is chosen to be a periodic solution ofEq. 
(3.7) (see Ref. 16). To be complete, we express this exact in
variant first in canonical coordinates q, p, t, and second, in 
Mercier coordinatesp, 0, s. In the canonical coordinates, J is 
written as 

J(q,p, t) = [( ~2 + (w j;W)2) sin2 q 

- 2 w(w f gw) cos q sin q + w2 cos2 q ¥, 
while in Mercier coordinates, J to lowest order in p, is 

J(p, O,s) = ; [( w2 + ~2 + (w j;Wf) 
+ (w2 __ 1_ _ (w - gw)2) cos 20 

w2 [2 

2w(w - gw) . 20] 2 - [ sm p. (3.8) 

It can be verified from Eq. (3.8) that if w is real, then 
J = const surfaces are ellipses in physical space. 

Before concluding this section, we elucidate the signifi
cance of the quantity J to the equilibrium problem. Specifi
cally, we show that the invariance of J is correlated with the 
existence of constant pressure or, equivalently, magnetic 
surfaces. 

The equation governing constant pressure surfaces is 
obtained by taking the scalar product ofB with Eq. (1.5) as 

B·VP = O. (3.9) 

If a single-valued solution exists to this equation, then the 
magnetic field lines lie on a dense set of constant pressure 
surfaces. If J is an invariant for the field line Hamiltonian, 
then 

dJ = O. (3.10) 
dt 

In terms of physical space coordinates, the total time deriva
tive d /dt is 

!!..- = d p ~ + dO ~ + ds ~ . 
dt dt ap dt ao dt as 

(3.11) 

From the field line equations, Eq. (2.24), we have 

d p = B P dO .!!.!!... , ds = 1. 
dt BS dt B S dt 

Using these results in Eq. (3.11), it is evident that 
d 1 
- = - B·V. (3.12) 
dt B S 

Thus, from Eqs. (3.10) and (3.12), we see that the invariance 
ofJ,dJ /dt = 0, implies that B·VJ = O. By comparison toEq. 
(3.9), and noting that J is periodic in 0 and s, it has been 
established that the invariant for the field line Hamiltonian 
corresponds to constant pressure surfaces in the equilibrium 
problem. 
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We note in passing that since J(p, 0, s) and PIp, 0, s) 
both satisfy the same equation (B·VJ = B·VP = 0) the ex
pansion coefficients of the pressure, 7]i' can be obtained by 
setting P = J and matching terms in equal powers of p. 
Hence, by comparing Eq. (2.4) to Eq. (3.8), we see that 7]2 is 
given by 

112(0, s) = ~ [ ( u? + ~2 + (UI f~)2) 

+ (W2 __ 1 __ (UI - gw)2) cos 20 
w2 f2 

_ 2w(UI ;gw) sin 20 ]. (3.13) 

Here in Sec. III, we have shown the existence of the 
invariant J, for the lowest-order field line Hamiltonian, and 
thus have demonstrated the existence of approximate sur
faces located in the immediate vicinity of the magnetic axis. 
Mathematically speaking, we have established the existence 
of magnetic surfaces in the limit as fJ-O. As a first step to
ward our goal of establishing the existence of a large set of 
approximate flux surfaces, we seek to show that Eq. (3.9) is 
solvable order by order in the expansion. To accomplish this, 
the objective is to show that Eq. (3.10) is solvable order by 
order, and thus that J is an invariant to any desired order. 

IV.INVARIANCE TO HIGHER ORDER 

The purpose of this section is to construct an invariant 
ofthe expanded field line Hamiltonian, to any desired order 
in the expansion parameter. To this end, a method of repeat
ed canonical transformations is formulated in order to dis
place the coordinate dependence in the Hamiltonian to high
er and higher order. This procedure is similar to the 
Poincare-Von Zeipel scheme, although this latter procedure 
is restricted to time-independent Hamiltonians. 17 The result 
of implementing the transformations scheme is that the mo
mentum (in our case, it will be the action) becomes an in
creasingly better adiabatic invariant. The canonical trans
formation procedure is carried out explicitly through fourth 
order in p. A formal extension of the method to nth order is 
then made. 

A. Invarlance to third order In p 

To find the invariant to third order inp, three successive 
canonical transformations are made. The purpose of the first 
two transformations is to produce the Hamiltonian in ac
tion-angle variables. The third transformation gives the 
third-order invariant. 

We choose the first transformation so as to modify the 
quadratic portion of the expanded Hamiltonian from one 
corresponding to elliptic contours in phase space, to one cor
responding to circular contours. In Appendix B, we show 
that the Hamiltonian 

H 2(x, p, t) = !f(t )fi2 + g(t)fix + ! h (t )x2 

is transformed to 

K2(X, P, t) = (1/2tJ2)(X2 + p 2) 

by the following canonical transformation: 
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[X] [ 1/#0' 
P = (u/2#)(2g - i If - 2ulu) 

o ][~]. (4.1) 
#0' p 

In Eq. (4.1), 0' is governed by 

.. (fh ,.2 • 1 j 3 i2 i) 1 
0' + ~ - /) - g + 1: j - "4 j2 + jg 0' = a3' 

Let [J be defined to be 

[J= 1/ul. 

(4.2) 

Then a generating function that yields this transformation is 

F2(x, P, t) = - ~ (~ g - ) + ~)X2 + (~r/2xp. 
Carrying out this canonical transformation, the Hamilton
ian of Eq. (3.4) becomes 

K(X,P, t) =K2(X,P, I) +K3(X,P, I) +K4(X,P, t) + "', 
(4.3) 

where K 2, the quadratic component of the new Hamiltonian, 
is 

In Eq. (4.3), K3 is a cubic polynomial in X and P, K4 is a 
quartic polynomial, etc. We note in passing that Eq. (4.2) can 
be put in the form ofEq. (3.7) by setting 0' =f- 1

/
2W; solu

tions of this equation are discussed in Ref. 16. 
We now introduce a canonical transformation to action

angle variables through 

X = (2 J)I/2 sin r, 
P = (2 J)I12 cos r. 

(4.4a) 

(4.4b) 

The generating function for this transformation is 

F2(X, J) = (X 12)(2J _X2)1/2 + Jsin-1(X 1~2J). 

Noting that F2 does not contain I explicitly, the new Hamil
tonian is 

K(r,J, I) =K2(J, t) +K3(r,J, I) +K4(r,J, I) +"', 
(4.5) 

where 

K 2(J, t) =fl(/)J, 

K3(r,J, t) = [K33(/)e3iY +K31(/)eiY + c.c.](2J)3I2, 

K4(r, J, I) = [K44(t)e4iY + Kd/)e2iY + K40(/) + c.c.](2J)2, 

Kn(r,J, I) = I [Knl(t)eily + C.c. ](2 Jt12. 
I 

In the nth-order expression, the sum is over all integers I less 
than or equal to n and having the same parity (even or odd) as 
n. The c.c. stands for complex conjugate. The explicit ex
pressions for Knl' n < 5, are written out in Appendix A. 

We restate the objective of this section. In view of the 
form of the Hamiltonian, Eq. (4.5), the objective is to elimi
nate the coordinate dependence r in each successive order of 
the expanded Hamiltonian. This coordinate displacement is 
accomplished through suitably chosen successive canonical 
transformations. It follows from one of Hamilton's equa
tions, 
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dJ aK 
Tt= - ay' 

that J then becomes an "invariant" to successively higher 
order. 

To eliminate the coordinate dependence in K 3(y, J, t ), 
we introduce a generating function which is the sum of two 
parts: the first part gives the identity transformation, while 
the second part contains the same harmonic content as K3• 

Thus, the generating function W is written as 
- - 3iy iy - 3/2 W(y, J, t) = yJ + [W3(t)e + WI(t)e + c.c.](2J) '(4.6) 

The relationship between the old and new coordinates is 

aw - 3' . - /2 J = - = J + [3iW3e 'y + iWle'Y + c.c.](2J f, (4.7) ay 
- aw 3" - /2 Y = -=- = y + 3[ W3e 'Y + Wle'Y + c.C.](2J)I, (4.8) 

aJ 
while the new Hamiltonian is found through 

K(y,J, t) =K(y,J, t)l y,] + aW(~,J, t) 1 __ . (4.9) 
t y,J 

The tedious part of this calculation is inverting Eq. (4.8) to 
obtain 

y = ny, J, t). (4.10) 

This exercise is carried out in Appendix C. Substituting from 
Eqs. (4.7) and (4.10) into Eq. (4.9), the new Hamiltonian be
comes 

K(y, J,t) = nJ + 2(ul + nU2 + Ptl(U)3/2 + ... , 
where Uk and P k are defined by 

Uk = Re [(311k - I W3e
31y + ik - I WleiY ], 

Pk = Re[(311k-IK33e3iy + jk-IK3IeiY]. 

(4.11) 

(4.12) 

(4.13) 

In the above expressions, Re denotes the real part of the 
bracketed quantity. 

Now, in order to eliminate the coordinate in the Hamil
toryan at the order J3/2, the as yet unspecified functions WI 
and W3 in the generating function must be chosen appropri
ately. In effect, we average the J 3/2 term over the coordinate 
y. The coefficient of the J 3/2 term is 

K3(y, t) = 2 Re{ [W3(t) + 3W (t )W3(t) + K33(t )]e3iY 

+ [WI(t) +W(t)WI(t) +K31(t)]eiY j. (4.14) 

It is obvious from Eq. (4.14) thatthe average ofK3(y, t ) over y 
is zero. We choose W3(t} and WI(t) such that 

W3(t) + 3W (t ) W3(t ) + K33(t ) = 0, (4.15) 

(4.16) 

In Eqs. (4.15) and (4.16), n, K33, and K31 are to be looked 
upon as known periodic functions of t. Equations (4.15) and 
(4.16) are special cases of the general equation 

W/(t) + iln (t)W/(t) + Kn/(t) = O. (4.17) 

Equation (4.17) arises in fourth- and higher-order calcula
tions as well. Therefore, we develop periodic solutions for 
WI and specialize the results to particular values of I as need
ed. 

The first step is to decompose n into an average part 
plus a fluctuation part 
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n =Ii +ii, (4.18) 

where Ii is defined to be 

n= - dtil(t), 1 iT 
T 0 

(4.19) 

and ii is the difference between n and Ii. In Eq. (4.19), Tis 
"'-

the total arc length of the magnetic axis. We define n to be 

n(t)= dt'ii(t'). "'- J' 
With these definitions, Eq. (4.17) becomes _ "'-

W/(t) = exp[ -il(nt+n)] 

X {Cll - I'dt' Kn/(t ')exp[il (lit' + n (t '))] }. 

(4.20) 

Here, Cll is a constant of integration while Knl and eiln are 
periodic functions of t with period T. Since the product of 
periodic functions is itself periodic, the product K"leiln may 
be expanded in a Fourier series, We have 

Kn/(t )exp[iln (t)] = ~Almexp[i 2~m t ], (4.21) 

where Aim is 

Aim = ~ LTdtKn/(t)eXP[iln(t)]exp[ _i2~m t]' 
The summation in Eq. (4.21) is from negative to positive 
infinity. With Eq. (4.21), Eq. (4.20) becomes 

"'-
W/(t) = exp[ - iln (t)] 

X {clle- iilil - LmAlm exp[i(217mITlt l}. (4.22) 
i(1n + 21TmIT) 

We require that WI be periodic, i.e., W/(t + T) = W/(t).ltis 
evident from Eq. (4.22) that periodicity requires that 

Cll(eilliT - 1) = O. (4.23) 

If lliT #2n1Tfor all integers n, then Cll = 0 and the periodic 
solution for WI is 

W/(t) = i exp[ - ilfl (t)] LA 1m exp[i(21TmIT)t] 
m In + 21Tm1T 

(4. 24a) 
"'-

If In T = 2n1T for some integer n, then a periodic solution for 
WI exists if and only if AI_ n is zero. The periodic solution is 
then 

W/(t)=iexp[ -iln(t)]L'Alm exp[i(21TmIT)t] 
m In + 21Tm1T 

(4.24b) 

where the primed summation excludes m = - n. For sim
plicity, Cll has been set equal to zero in Eq. (4.24b). 

The solution for the generating functions W3 and WI are 
obtained from either Eq. (4.24a) or (4.24b) (depending on the 
value of the quantity Iii T), with I set equal to 3 and 1, respec
tively. We note in passing that although Eq. (4.24a) is a valid 
solution for fliT #2n1T, there may exist terms in the summa
tion that are arbitrarily large. This point will be examined 
more closely in Sec. V. 
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To complete the transformation from r, J, t to y, J, t, 
K (y, J, t) is to be computed. With the solutions for W3 and 
WI from Eq. (4.24), Eq. (4.11) becomes 

K (y, I, t) = nJ + 2(6{3IO'2 + Xl + K40)(U)2 + .... 
(4.25) 

In Eq. (4.25), 0'2 and PI are obtained from Eqs. (4.12) and 
(4.13), respectively, while Xl is obtained from Eq. (4.26) by 
setting k equal to unity: 

Xk = Re[(2i)k-IK44e
4ir + l-IK42e2iY]. (4.26) 

It is apparent from Eq. (4.25) that 

dJ = 0 + &,(J2). 
dt 

Since I is proportional to p2, I is invariant through third 
order inp. I can be written in terms of r, J, and t by inverting 
Eq. (4.7). The inversion, which is carried out in Appendix C, 
yields the result 

I =J - 20-2(2J)3/2 + 12~(2J)2 - 8~(2J)S/2 +"', 
(4.27) 

where 0-2 is defined to be 

0-2 = Re(3iW3e
3iy + iWleiy). 

B. Invarlance to fourth order In p 

To identify the fourth-order invariant, a canonical 
transformation will be constructed in order to displace the 
coordinate dependence in the Hamiltonian to the next high· 
er order in the expansion. The first step is to rewrite Eq. 
(4.25) so as to reveal the harmonic constituency in the coor
dinate. The result is 

K (y, I, t) = nJ + [K46e6iY + K44e4ir + K42e2iy 

- - 2 -512 + K40 + c.c.](2J) + &'( J), (4.28) 

where the functions Knl(t) are written out explicitly in Ap
pendix A. The canonical transformation to be constructed 
will take the old variables y, I, t into the new variables y, J, t. 
The appropriate generating function should contain the sec
ond, fourth, and sixth harmonics in the coordinate to elimi
nate the coordinate dependence in theJ 2 term. Therefore, we 
write 

Wry, J, t) = yJ + (W6e6iY + W4e4iy + W2e
2iY + c.c.)(Uf. 

(4.29) 

The old variables are related to the new ones via the follow
ing equations: 

I = a~ = J + (6iW6e
6iY + 4iW4e

4iY 
ar 

The new Hamiltonian K is computed from 

- - - - - - aWry, J, t) I K(r,J,t) =K(r,J, t)l y ] + . 
, at :y,] 

(4.31) 

(4.32) 

To evaluate the right-hand side ofEq. (4.32), y and I must be 
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written in terms of the new variables from Eqs. (4.30) and 
(4.31). The inversion procedure is similar to that used in Sec. 
IV A. Substituting these results into Eq. (4.32), we find 

K(y,J, t) = nJ + 2 Re{(W6 + 6i11W6 +K46)e6iY 

+ (W4 + 4i11 W4 + K 44 )e4iY 

+ (W2 + 2i11W2 +Kd 

(4.33) 

The coordinate dependence is eliminated from theJ 2 term in 
Eq. (4.33) if 

W6(t) + 6i11 (t ) W6(t ) + K 46(t ) = 0, 

W4(t) + 4i11 (t ) W4(t ) + K44(t ) = 0, 

W2(t) + 2i11 (t ) W2(t ) + K 42(t ) = 0. 

(4.34) 

(4.35) 

(4.36) 

The solution of Eqs. (4.34)-(4.36) are obtained from Eq. 
(4.24) with I set equal to 6, 4, and 2, respectively. To complete 
the transformation from y, J,t to y, J, t, K (y, J, t) is to be 
computed. Using Eq. (4.24), Eq. (4.33) becomes 

- - - - - - 2 - 5/2 K(r,J, t) = nJ + 2K40(t)(2J) + &'( J). (4.37) 

The action J is a fourth-order invariant since 

dJ = _ ai! =0+ &'(J5/2) 
dt ar 

andJ - p2. Finally, J is written in terms of y, I, and t from Eq. 
(4.30) as 

J = I - 442(U)2 + 644~(U)3 +"', 
where t2 is defined to be 

t2=Re[3iW6e6iY + 2iW4e
4ir + iW2e

2iY ]. 

c. Generalization of Invarlance to nth order 

(4.38) 

The method for preceeding to the fifth and higher orders 
is now apparent. Let K (n) denote the nth new Hamiltonian, 
where n;;;. 1. In this notation, K (1) = K (r, J, t ) as given in Eq. 

m --- " rn (4.5), K = K (r, J, t) as gIVen m Eq. (4.11), and K 
= K (y, J, t) as given in Eq. (4.33). Let the corresponding 

canonical variables be denoted J (n) and r (n). Now, suppose 
that we have succeeded in transforming away the r depen
dence in all terms through the nl2 power of J (n - I). The 
Hamiltonian then has the form 

Kin-I) = nJ(n-l) + L K~o-I)(t)[2Jln-I)]m/2 
m=4 

+ L [ K ~~ - 2)(t ) exp(ily.n - I)) + C.c. ] 
/ 

X [2J(n - I)](n + 1)/2 + &' [( J(n - I))(n + 2)12]. 

(4.39) 

The first sum in Eq. (4.39) is over all even integers m less than 
or equal to n, while the second sum is over all integers I less 
than or equal to n and having the same parity (even or odd) as 
n. A transformation to nth-order variables is made by means 
of the generating function 

W = J (n)r (n - I) + L [ Wn/(t) exp(ilr In - I)) + c.c.] 
/ 

(4.40) 
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Solving for the new coordinates from Eq. (4.40), and substi
tuting into Eq. (4.39), the new Hamiltonian becomes 

K (n) = lJJ (n) + L K ~~ (t)(2 J (n)t/2 

m=4 

+ L[ Wn1 + illJWnl 
I 

+ K~-I) + C.c. ](2J(n))(n+ 1)/2 

+ t7 [( J (n))(n + 2)/2] • (4.41) 

If I is not equal to zero, the corresponding term can be eli
minated from the sum in Eq. (4.41) by requiring that Wn1 
satisfy the differential equation 

Wnl +illJWnl +K~-I)=O. 

Elimination of the I = 0 terms would result in secular terms 
in the transformation that increase linearly with time. II 
Since I and n have the same parity, it is evident that the 
transformation given in Eq. (4.40) eliminates all terms of 
order n when n is odd, and eliminates all terms except that 
with I = 0 when n is even. 

At this point, two primary objectives of this document 
have been met. An explicit representation of a Hamiltonian 
formulation of the lines offorce has been displayed. In addi
tion, a method of repeated canonical transformations to the 
Hamiltonian has been formulated and applied as a means of 
establishing approximate flux surfaces. Theoretically, the 
transformation procedure may be carried out to any desired 
order; however, in practice, its implementation may require 
computer assistance through an algebraic manipulator. To 
examine the existence of approximate flux surfaces, it is nec
essary to briefly discuss the generating functions and asso
ciated small denominators. 

V. RESONANT DENOMINATORS 

In the canonical transformations, each generating func
tion contains potentially resonant denominators. The action 
is written in terms of these generating functions, and thus 
will also contain potentially resonant terms. In the generat
ing function W = W(y, J, t) written out in Eq. (4.6), reson
ances occur when the quantity flTsatisfies either of the fol
lowing conditions: 

flT=m21T, 

flT=m21T13. 

(5.1a) 

(5.1b) 

In Eqs. (5.1a) and (5.1b), m is any integer. In the generating 
function W = W(y, j, t) written in Eq. (4.29), resonances oc
cur if 

flT=m1T, 

flT=m1T12, 

flT=m1T13. 

(5.2a) 

(5.2b) 

(5.2c) 

We can predict that the next-order generating function will 
have a vanishing denominator if 

flT=m21TII, (5.3) 

where 1= 1, 3, 5, 7. Generalization to higher order is now 
apparent. 
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Vanishing denominators is inherent in the method of 
expanding in powers of p, but does not preclude the existence 
of toroidal surfaces. It is possible to have a configuration 
which exhibits several new magnetic axes that encircle the 
general system of toroidal surfaces. The appearance of the 
small denominators found in Eqs. (5.1) and (5.2) is associated 
with the fact that the lower-order term in the expansion of 
the pressure in powers of p has been taken to be quadratic; in 
the general case, the expansion can start with terms of still 
higher order. To achieve minimal regions of islands and sto
chastic field lines in a plasma confinement configuration, the 
eqUilibrium fields should be constructed such that the nu
merators corresponding to arbitrarily small denominators in 
the generating function vanish. In effect, such fields lead to 
optimal confinement configurations. The ability to attain 
these fields computationally and experimentally are matters 
yet to be investigated. 

We briefly mention developments of expansion proce
dures to at least stave off the singularity to higher order in 
the expansion. The methods are part of the concept of renor
malization. The resonances we find can be put off to higher 
order by renormalizing the pressure such that the expansion 
procedure begins at a higher power of p. This method has 
been applied to magnetic fields in a vacuum 14 (where a flux 
function was renormalized as opposed to the pressure). An
other type of renormalization is that of accelerated conver
gence. 18 In this procedure, the expansions are developed in 
terms of special functions, instead of a single parameter, 
which permit more rapid convergence. In Hamiltonian sys
tems, renormalization techniques yield solutions that con
verge in certain regions of phase space to actual solutions for 
motion taken over finite but long periods of time. 19 Further
more, the solutions can in some cases closely approximate 
the motion within a prescribed course graining of the phase 
space for arbitrarily long times. This latter result is due to the 
actual convergence of certain so-called KAM series solu
tions. In summary, renormalization techniques may be ap
plicable for treating the potential resonances appearing in 
the series solutions. 

VI. DISCUSSION AND CONCLUSIONS 

A method has been devised to investigate the existence 
of magnetic surfaces and MHO plasma equilibria in 3-0 
toroidal geometry. Expanding the contravariant compo
nents of the magnetic field and scalar pressure in distance p 
from the magnetic axis, a 1-0 Hamiltonian for the lines of 
force was written out explicitly. A method of repeated ca
nonical transformation was then formulated and applied to 
displace the coordinate dependence in the Hamiltonian to 
higher order in the expansion parameter. The result of this 
procedure was the identification of an adiabatic invariant, 
which was shown to correspond to pressure in the equilibri
um problem. The invariant, contained in part in Eq. (4.38), is 
valid through fourth order in p. Arising in each successive 
canonical transformation was found a series of potentially 
resonant denominators. These potential resonances were 
identified, and their meaning discussed. 

With the procedure outlined in Sec. IV C, an invariant 
to the Hamiltonian could in principle be obtained through 
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any desired order inp. Each canonical transformation effec
tively determines the solution of another coefficient '1] i in the 
pressure series expansion. An exact solution to the equilibri
umequations [Eqs. (1.4) and (1.5)] using the expansion series 
[Eqs. (2.1 H2.4)] entails, first, finding iterated solutions for 
a,., b,., c,., and '1],., and, second, showing that each series 
converges. Establishing an exact solution appears to be a 
very arduous task. In principle, arriving at iterated solutions 
is possible although the complexity of their representations 
grows rapidly as n increases. 7

•
15 The existence of small de

nominators in the expansion coefficients however, places se
ries convergence injeopardy. Resonances will eventually oc
cur in the series expansions if the quantity liT /21T is a 
rational number [see Eq. (5.3)]. Only ifliT /21T is sufficiently 
irrational is there hope for series convergence.4

•
20 From Sec. 

III A, we recall that liTis defined to be 

liT= LTdtlJ(t), 

where IJ (t) = ott )-2, and q is governed by Eq. (4.2). An in
vestigation into the evaluation of liT /21T is currently under 
way, and the results will be reported in a later publication. 

With series convergence in doubt, it behooves us to seek 
an alternative interpretation of these solutions. One possible 
interpretation is to classify them as asymptotic solutions. 
However, by the very definition of asymptotic solution, it is 
necessary to have already established the existence of exact 
solutions.21 A more practical use of the results of our analy
sis would be in defining a concept of approximate solution. 
Some justification for this statement is that the static, ideal 
MHD equilibrium model, described by Eqs. (1.1 H 1.3), is, at 
best, a crude approximation of the experimental plasma. We 
define an approximate solution to be a solution for which 
given some fixed number M, each series, truncated at order 
N, has the property that the ratio of the sum of the N + 1 
through N + M terms to the N th term vanish in the limit as 
p-o. Investigation of approximate solutions using the re
sults of this analysis are also currently under study. The uti
lity of this approximate-solution concept must be evaluated 
by how well an experimental plasma, near MHD equilibri
um, conforms to this approximate state. 

What has been accomplished in a global sense by this 
analysis is an explicit identification of criteria (via the reso
nant denominators) necessary to construct approximate flux 
surfaces. Freedom to satisfy these criteria, and freedom to 
create optimal configurations possessing minimal regions of 
islands and stochasticity, lies in the specification offree func
tions contained in the expressions for the pressure and mag
netic field components. [The explicit appearance of free 
functions is contained, for example, in Eqs. (2.5)-(2.7).] The 
specification of these free functions will ultimately deter
mine idealized pressure profiles, as well as idealized outer 
boundaries. To determine these relationships, the canonical 
transformation procedure must be carried out to such an 
order that the addition of one more order has negligible ef
fect on the equilibrium configuration. With each transfor
mation, there exists an increasing amount of algebra. Appli
cation of an algebraic manipulator will be necessary. An 
alternative transformation procedure, utilizing Lie trans-
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forms, may serve to reduce the complexity of the transfor
mation equations. 
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APPENDIX A: EXPLICIT REPRESENTATIONS OF THE 
HAMILTONIANS 

In this appendix, we list the Hamiltonians that appear in 
the text. Explicit representations are made for the quadratic, 
cubic, and quartic parts. 

The constituents of the first Hamitonian are the expan
sion coefficients of the mangetic field components [see Eq. 
(2.39)]. From the governing equilibrium equations, the ex
pansion coefficients b,. and Cn have the following structurel5

: 

n+2 
bn (O,s) = L bnle (s)cos /0 + bnls(s)sin 10, 

1= 10 

n 

cn(O,s) = L cnle(s)cos /0 + cnis(s)sin 10. 
1=/0 

In the summations, 10 = 0 (1) if n is even (odd). For the zeroth 
harmonic 10 = 0, we drop the SUbscript c. Thus bolO,s) is writ
ten as 

bo(O,s) = boots) + b02e(s)cos 20 + bo2s (s)sin 20. 

The bnn + 2e and bnn + 2s coefficients are arbitrary periodic 
functions of s; they may be evaluated by specifying the shape 
of the outer boundary. The coefficients C nle and C nls are func
tions of bnle , bnls T, k,j, and Co. 

TheHamiltonianH(x,p, t )appearsinEq. (3.4). It can be 
written as 

H(x,p, t) =H2(x,p, t) +H3(x,p, t) +H4(x,p, t) + "', 
where 

H ( -) 1 -n/2~h ( 1';;1 n-I n X, p, t = - Co ~ nl t IY X • 
n 1=0 

The functions hnl are 

h20 = boo - b02e ' 

h21 = 2b02s ' 

h22 = boo + b02e ' 

h30 = blls - b13s ' 

h31 = - 3b13e + bile + 2k (b02c - boo), 

h32 = 3b13s + bl1s - 4kbo2s , 

h33 = b13e + bl1e - 2k(boo + b02e )' 

(AI) 

(A2a) 

(A2b) 

(A2c) 

h40 = b24c - b22e + b20 + (l/co)(bo2c - bOO)(c20 - C22e ), 

h41 = - 4b24s + 2b22s + ~ kb 13s - j kb l1s 

+ (2/c0l[ C22s(b02e - boo) + b02s(C22e - C20)] , 

h42 = - 3b24e + 2b20 + 7kb 13e - j kb l1e 
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+ lj k 2(boo - b02e ) + (2lco)(C22eb02e 

- 2c22sbo2s - c2oboo), 

h43 = 4b24s + 2b22s - 7kb 13s - j kblls + 1f k 2bo2s 

- (2lco)[ C22s (b02c + boo) + b02s (C20 + C22c )l, 

h44 = b24e + b22e + b20 - j k (b l3e + bile) 

- (llco)(c20 + C22c )(boo + b02e ) + lj k 2(boo + b02e ). 

The Hamiltonian K (X, P, t) appears in Eq. (4.3). It is 
written as 

where the constants a nlm have the following values: 

a 300 = - i4, 
a 310 = 1, 
a 320 = -!, 
a 330 =!, 
a4oo=~, 
a 410 = -i, 
a 420 = j, 
a 430 = -!, 
a 440 = 1· 

a 30l = 1, 
a311 = - 1, 
a 32l = 1, 

a302 = -!, 
a312 = 1, 

a 401 - i, 
a 411 =i, 
a 421 = -i, 
a 4 31 = 1, 

a402 = j, 
a 41 2 = -~, 

a422 =~, 

The Hamiltonian K (y, J, t) appears in Eq. (4.5). It is 
written as 

K (y, J, t) = K2(J, t) + K3(y, J, t) + K4(y, J, t) + ... , 
(A4) 

where 

K2(J, t) = nJ, (A5a) 

K3(y, J, t) = {i4 [k33 - 3k31 + i(k30 - 3k32)]e3ir 

+ i [k33 + k31 - i(k30 + kdkr 

+ c.c. }(2J)3/2, (A5b) 

K4(y, J, t) = {[~ (k44 - 6k42 + k40) + (i/16) 

X(k41 - k43)]e4ir 

+ [i (k44 - k40) - (i/8)(k43 + k41)]e2ir 

+ i4 (k44 + 2k42 + k40) + c.c.} (2J)2. 

(A5c) 

In Eqs. (A5b) and (AS c), c.c. stands for the complex conju
gate of all preceding terms. 

The Hamiltonian K (y, I, t) appears in Eq. (4.28). It is 
written as 

K(y, I, t) = nl + [K46(t)e6iY + K44(t)e4iY + K42(t)~iY 
+K40(t) + c.C.](U)2 + ... , (A6) 

where 

2379 

K46 = 3 [Re K33 Re 3iW3 - 1m K33 1m 3iW3 

+ i(ReK33 1m 3iW3 + Re 3iW3 ImKd], 

K44 = 3 [Re K33 Re iWl + Re K31 Re 3iW3 

- 1m K33 1m iWl - 1m K31 1m 3iW3 
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K (X, P, t) = K2(X, P, t) + K3(X, P, t) + K4(X, P, t) + ... , 
where 

K" = iknl(t)plxn-l. 
1=0 

The functions kIll are 

k20 = n /2, k21 = 0, k22 = n /2, 
II-I 

k n l-II/2 "" h h m - n12 
nl = ~ allim nn-m 22 

m=O 

a 403 = -!, 
a413 = 1, 

a 404 = 1, 

+ i(Re K33 1m iWI + Re K31 1m 3iW3 

(A3) 

+ Re 3iW3 1m K31 + Re iWl 1m K 33)] + K44, 

K42 = 3 [Re K33 Re iWl + Re K31 Re 3iW3 

+ Re K31 Re iWl + 1m K33 1m iWl 

+ 1m K31 1m 3iW3 - 1m K31 1m iWl 

- i(Re K33 1m iWl + Re 3iW3 1m K31 

- Re K31 1m 3iW3 - Re iWl 1m K33 

- Re K31 1m iWl - Re iWl 1m K 31 )] + K42, 

/(40 = 3 [Re K33 Re 3iW3 + 1m K33 1m 3iW3 

+ Re K31 Re iWl + 1m K31 1m iW1] + K40. 

In the above expressions, Kill contains the terms in 
Kn(Y, J, t) multiplying eilr. Here, Re and 1m denote the real 
and imaginary part, respectively. 

Finally, K (y, J, t) is the Hamiltonian appearing in Eq. 
(4.37). It is written as 

K(y,J, t) = nJ +K40(t)(21)2 + .... (A7) 

APPENDIX B: TRANSFORMATION OF A QUADRATIC 
HAMILTONIAN 

The objective of this appendix is to find a canonical 
transformation which takes the Hamiltonian 

H(x,p, t) = !f(t)p2 + g(t)px +!h (t)x2 (Bl) 

into 

K(X,P, t) = (l/2<r)(X2 +p 2
). (B2) 

In Eq. (B2), qis a function of time. Hamilton's equations, for 
the respective Hamiltonians, read 
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(B3) 

(B4) 

The transformation equation from (x, p, t ) to (X, P, t ) is writ
ten as 

(BS) 

Taking the time derivative ofEq. (BS), and substituting from 
Eqs. (B3) and (B4), the governing equations for the transfor
mation functions Yi are obtained. They are 

[;: ;:] = - [~: ~:][! h !/] 
[ 

0 1/o2][YI Y2]. 
+ - 1/02 0 Y3 Y4 (B6) 

A solution of this set of equations is 

[ ] [ 
/-1/2 -I ][ 0 ] 

~: ~: = (T/-1/2(g -J /2/ - 17) J1 (T , 
(B7) 

where (1 satisfies 

.. (fh 2 . I j 3 i2 i) 1 
(T + ~ - g - g + 2: j - "4 p + jg (1 = ff3' 

(B8) 

Solutions to Eq. (B8) are discussed in Ref. 16. The transfor
mation defined by Eqs. (BS) and (B7) is canonical as the Pois
son bracket of X, P is unity. 

APPENDIX C: INVERSION OF CANONICAL 
COORDINATES 

In this appendix, we invert Eqs. (4.7) and (4.8) to obtain 
J = J(r, J, t) and r = rly, J, t). Equation (4.7), which reads 

J = J + [3iW3(t )e3ir + iW1eir + c.C.](V)3/2, (CI) 

is inverted as follows. First, J is expanded in half-powers of J 
beginning with the first power of J: 

J = J +AI(2J)3/2 +,12(2J)2 +,13(2J)5/2 +.... (C2) 

Then substituting Eq. (C2) into Eq. (CI) and collecting terms 
in equal powers of J, we have 

J(r, J, t) = J - 20-2(2J)3/2 + 120-/(2J)2 

- 840-/(2J)5/2 + "', 
where 0-2 is defined to be 

0-2 = Re(3iW3e3ir + iW1eiY). 
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(C3) 

(C4) 

Thus, the inversion of Eq. (4.7) has been completed. The 
inversion ofEq. (4.8) is somewhat more involved. 

Equation (4.8) is written 

y = r + 3 [ W3(t )e
3ir + W1eir + c.c.] (V )1/2. (CS) 

Now r is expanded formally in powers of(V)I/2: 
- - 1/2 - - 3/2 r = r + tPl(2J) + tP2(2J) + tP3(2J) + .... (C6) 

In Eq. (C6) the tPi 's are functions of y and t. Equation (C6) is 
substituted into Eq. (CS), with each of the exponentials ex
panded in a power series. Terms are then gathered in equal 
powers ofJ. The results through order J3/2 are 

tPl= -001, 

tP2 = - 3001(12, 

tP3 = 108(11(T3 + 21OO1ui, 
where(1k = Re[(3i)k-IW3e3iy + jk-IWleiY]. 
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The plane rotations allowed for d-dimensional discrete lattices and their 
application to the Bravais lattices in three dimensions 
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It is shown that the plane rotations allowed for d-dimensional discrete lattices are independent of 
the dimension d and given by the n-fold rotations en with n = 2,3,4, and 6. The formalism is then 
applied to formulate the general analytical expressions of the Bravais lattices for three 
dimensions. 

I. INTRODUCTION 

Let V(d) be a d-dimensional vector space. Then it has 
been shown by the author! that a plane rotation in V(d) can 
be described by an infinitesimal plane rotation liJ in a form 
which is free from the dimension d. Using this form, we shall 
first show that the allowed plane rotations for a discrete la
tice L (d) (or a group of vectors) in V(d) are limited to the n
fold rotations with n = 2, 3, 4, and 6. This is a well-known 
result for d = 2 or 3. The proof is based on the eigenvalue 
problem of a projective symmetry operator which defines a 
lattice vector on the plane of rotation from an arbitrary lat
tice vector in L (d). We shall then show that the eigenvalue 
problem plays the essential role in providing the general ana
lytical expressions for the well-known 14 Bravais lattices in 
V(3) in a straightforward manner. There exist many methods 
of constructing the Bravais lattices; however, the geometri
cal methods discussed by many workers2 and the matrix al
gebraic method introduced by Seitz3 are far more involved 
than the simple nature of the concept warrants. 

II. THE ALLOWED PLANE ROTATIONS FOR L(ef) 

A plane rotation in a d-dimensional vector space Vld) is 
described by an infinitesimal plane rotation liJ through an 
angle a as follows I: 

R (aliJ) = exp(aliJ) 

= E + liJ sin a + liJ2(1 - cos a) , (1) 
where E is the unit tensor and liJ is a skew-symmetric tensor 
which satisfies 

(2) 

This is the reduced characteristic equation of liJ with three 
distinct roots, so that one can introduce three projection op
erators.! For the present purpose we need only two projec
tion operators defined by 

(3) 

which are mutually orthogonal. Let x be an arbitrary vector 
in V(d). Then the projections of x onto and normal to the liJ 
plane are given by 

XII = -liJ2.x, x.l=(I+liJ2).x, (4) 

respectively. If one can express these projection operators in 
terms of the symmetry operations of a given lattice, one can 
find the lattice vectors lying on the liJ plane or perpendicular 
to the liJ plane from an arbitrary lattice vector. 

LetL (d) be a discrete lattice in V(d l, and let us write for a 
plane rotation which leaves LId) invariant as follows: 

en = exp(21TliJ/n) , (5) 

where n is simply a parameter to be determined. On account 
of the periodicity, however, one may assume n > 1, excluding 
the trivial case of n = 1. Then from (2) the symmetry oper
ation of L Id) which is linear in the projection operator - liJ2 
is given by 

P==(2E - en - en -I) = - PnliJ2, 

Pn = 2[ 1 - Cos(21T/n)] . 

It satisfies a projective eigenvalue problem 

(6) 

p2=PnP' (7) 

where Pn is the nonzero eigenvalue of P and plays the essen
tial role in the present argument. Let t be an arbitrary vector 
belonging to L (dl. Then there exists another lattice vector 
given by til = Pt which is on the liJ plane and satisfies 

Ptll = Pntll . (8) 

Since there exists a minimum lattice vector on the liJ plane for 
a discrete lattice one concludes that the eigenvalue Pn is an 
integer. By definition ofPn given in (6), its values are limited 
to 

P6 = 1, P4 = 2, P3 = 3, P2 = 4 , (9) 

corresponding to n = 6, 4, 3, and 2. Q.E.D. 
Now according to Wulff's theorem4

•
5 any proper or im

proper rotation in Vld 1 is given by a product of an even or odd 
number (;;;;d) of reflections in Vld I. Since a product of two 
reflections defines a plane rotation one can state that any 
proper rotation in V(d) can be given by a product of a number 
( ;;;;d /2) of plane rotations. The above result provides a certain 
limitation on the proper rotations allowed for L (d I as well as 
on the angle between two allowed hyperplanes of reflections 
in L (dl. In the next section we shall show that the above 
formalism is also very effective in providing the general ana
lytical expressions for the Bravais lattices in three dimen
sions. 

III. THE ANALYTICAL EXPRESSIONS FOR THE 
BRAVAIS LATTICES IN V(3) 

Using the general formalism introduced in the previous 
section we shall now determine the possible symmetries and 
the lattice types allowed for L (3). For this purpose we intro-

2381 J. Math. Phys. 26 (9). September 1985 0022-2488/85/092381-02$02.50 © 1985 American Institute of Physics 2381 



                                                                                                                                    

duce a coordinate system on L (3). Let C
II 

E L (3); then by the 
projective symmetry operation P given in (6) we can intro
duce two linearly independent lattice vectors bl , bl on the tV 

plane. A lattice vector b3 normal to the plane is brought out 
by another projective symmetry operation H 

H-E + Cn + ... + cnn-I = n(1 + tVl
), (10) 

which satisfies H 1 = nH. We may choose b l , bl , b3 to be the 
shortest in each direction and express a lattice vector teL (3) 

by 

t = xbl + ybl + zb3 = (x, y, z) (Mod integers). (11) 

The parallelepiped defined by bi' bl , b3 may be simply called 
the Bravais parallelepiped (BP). Then the lattice L (3) is com
pletely characterized by additional lattice points, if any, on 
the faces or inside of the BP. 

When n > 2, we may choose bl to be one of the shortest 
on the tV plane and let b2 = Cn bl • Then the face (b l , b2) be
comes primitive since both bl and b2 are the shortest on the 
plane. In this coordinate system, the rotation Cn (n > 2) is 
represented by 

C,,(x,y,z) = (- y,x + (2 - PnlY,z). (12) 

Then, from the requirement that t - Cn t is also a lattice 
vector for any teL (3) we obtain a general expression for t 
whenn>2, 

t = ( - mlp" , mlp" , z) (Mod integers), (13) 

where m is an integer bounded by 0..:;; 1m I <Pn and z will be 
specified shortly. The symmetry of the x, y components in 
(13) combined with the inherent inversion symmetry i of any 
latticeL (3) show that there exists a binary axis of rotation C2' 

about the lattice vector b l + b2 and hence about b l and b2 as 
well. When n = 2, the above argument fails so that there may 
or may not exist C2' perpendicular to Cl (lIb3 ). Thus, we ar
rive at the well-known conclusion that the point symmetry 
of L (3) is classified by 

C;oC2;oD"i=Dn XCi (n=2,3,4,6), 0i=OXCi . (14) 

The cubic system follows by augmenting the D2i system with 
a C3 axis of rotation. The notations for the improper point 
groups are introduced by the author for convenience in de
scribing the extensions of the proper point groups. 6 

We shall next construct the lattice types belonging to 
Dni(n > 2) based on (13). By definition, the third basis vector 
8 3 which forms a primitive unit cell with b l and b2 is given by 
the lattice vector t with the smallest z component in (13). 
Thus, for m = 0 we have 

(ISa) 

i.e., the BP is primitive. When m =/:- 0, the z component can
not be zero since the face (b l , b2 ) is primitive. Thus, 

83 = (- mlPn' mlp", lip,,), 0< Iml <p" , (ISb) 

Pn being a prime for n > 2. This means that all extra lattice 
points are inside of the BP and given by 183, where 1 is an 
integer bounded by 0 < 1 <p". Thus, the hexagonal lattice 
belonging to D6i has only a primitive BP since P6 = 1, while 
the tetragonal lattice belonging to D4i has a body-centered 
BP with m = 1,P4 = 2 in addition to the primitive BP. In the 
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case of the lattice belonging to D3i we have a double-centered 
hexagonal BP which contains two extra lattice points given 
by 

(16) 

corresponding to m = 1 and P3 = 3. The lattice with m = 2 
is equivalent to the above under the C3 rotation about b3 • The 
primitive rhombohedral lattice is defined by 8 3, C383, C3

283. 
For the Dz; system we choose all three basis vectors in 

the directions of the three orthogonal C2 axes. Then the pos-
sible lattice vectors are given by . 

t = (m l /2, m 2/2, m3/2) (Mod integers), (17) 

where mi = 0 or ± 1 with the condition that 
Imll + Im21 + Im31 =/:-1, since each basis vector is the shor
test in its own direction. Obviously, the condition should 
apply for the sums and differences of the coexisting t's for 
anyone type of the BP. Thus, the only allowed lattice types 
are (i) primitive, (ii) single-face centered, (iii) all-face cen
tered, and (iv) body centered. In the special case when the 
three basis vectors become equivalent, the D2i system be
comes the cubic system and thus we have only three types of 
the BP: primitive, all-face centered, and body centered. Now 
for the Cz; system the face (b l , b2) perpendicular to the C2 

axis can always be chosen to be primitive such that there 
remain only two lattice types: primitive and single-face cen
tered. Finally, for the Ci system, the BP is always chosen to 
be primitive. 

It should be noted here that anyone of the lattice types 
given above cannot be obtained from the other belonging to 
the same symmetry system by means of a continuous defor
mation without going through the modification of the sym
metry of the system during the process. Thus, we have con
structed all the 14 Bravais lattices. 

IV. CONCLUDING REMARKS 

Based on the plane rotation expressed in a form (1) 
which is independent of the dimension d of the space we have 
shown that the allowed plane rotations for discrete lattices 
L (d) are given by the n-fold rotation Cn 's limited to n = 2, 3, 
4, and 6. The formalism is then used to construct the general 
analytical expression (15) for the Bravais lattices belonging 
to theD3i' D4i , and D6i systems and (17) for theD2i system. 
The present method of constructing the Bravais lattices is 
straightforward and much simpler than any other existing 
methods, geometrical2 or matrix algebraic.3 The construc
tion of the general Bravais lattices for L (d) based on the pres
ent approach requires further investigation.7 

IS. K. Kim, J. Math. Phys. 21, 1299 (1980). 
2See, for example, H. Hilton, Mathematical Crystallography and the Theory 
of Groups of Movements (Dover, New York, 1963). 

3p. Seitz, Z. Kristallogr. 90, 289 (l93S). 
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5E. Caetan, The TheoryofSpinors(MIT. Cambridge, MA, 1966). 
~. K. Kim, J. Math. Phys. 24. 414, 419 (1983). 
'Porthe existing theories for L (d). seeR. L. E. Schwarzenberger. UN-dimen
sional crystallography," in Putnam Research Notes in Math #41 (Pitman, 
San Prancisco. 1980). 
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Dislocation continuity is derived from the Bilby-Kondo theory of dislocations using exterior 
calculus. Dislocation density is represented by the torsion vector-valued two-form. Burgers 
vectors are associated with the vector part of the torsion while dislocation lines are associated with 
the two-form part. The exterior derivative of the torsion is shown to vanish when the crystal 
curvature vanishes. This implies two simultaneous continuity conditions: Burgers vector 
c?nservation and continuity of dislocation lines. On the other hand, dislocation continuity is 
VIolated when the curvature does not vanish. Since this can occur on grain boundaries it is inferred 
that grain boundaries are regions where crystal curvature is concentrated. 

I. INTRODUCTION 

Continuity is a well-established feature of dislocations. 
It involves both the dislocation line and the Burgers vector. 
That is, dislocation lines can never end in the crystal. They 
either form closed loops or end at the crystal boundary or 
grain boundaries. At the same time, Burgers vectors are con
served inside the crystal so that at a node the sum of ingoing 
Burgers vectors equals the sum of outgoing Burgers vectors. 

Any viable theory of dislocations should account for 
continuity. Bilbyl and, independently, Kond02 developed a 
theory for dislocations which associates dislocation density 
with the geometry of the crystal. According to their theory, a 
continuous distribution of dislocations can be represented by 
a geometric object, torsion. (Torsion can be related to a clo
sure failure of a parallelogram constructed from basis vec
tors.) Expressing torsion as a tensor, Bilby and Smith3 were 
able to account for conservation of Burgers vectors by ma
nipulation of tensor indices. 

In this paper both aspects of dislocation continuity are 
deduced from the Bilby-Kondo theory by using exterior cal
culus. Torsion is expressed as a vector-valued two-form. 
Burgers vectors are associated with the vector part of the 
torsion while dislocation lines are linked to the two-form 
part. It is shown that the exterior derivative of the torsion 
vector-valued two-form vanishes provided the total curva
ture of the crystal vanishes. Consequently, two simultaneous 
continuities are induced: the vector part of the torsion, i.e., 
Burgers vector, is conserved, and the two-form part is a con
tinuous structure so that dislocation lines never end in the 
crystal. 

Furthermore, at grain boundaries continuity can be vio
lated, i.e., dislocation lines can end within the crystal at grain 
boundaries. In this case the exterior derivative of torsion 
should not vanish. This generates a geometrical interpreta
tion of grain boundaries which is discussed further. 

II. DEFINITIONS AND FRAMEWORK 

This section follows the treatment on exterior calculus 
presented by Misner, Wheeler, and Thorne.4 It is not intend
ed as a complete account, but rather as a brief summary of 

some of the pertinent concepts used in the analysis. 
The conventions used in this paper are such that all in

dices, upper and lower, run from one to three. Repeated 
indices are summed over. A comma denotes differentiation. 
Indices surrounded by square brackets indicate antisymme
tric components. 

At each point in the crystal we assume linearly indepen
dent basis vectors ea and corresponding basis one-forms 
dxa 

• A general one-form C has components with respect to 
the basis one-form, i.e., C = x dx. A one-form can be visua
lized as a pattern of surfaces which do not necessarily mesh 
together.4 The net number of these surfaces passing through 
a closed loop, then, will not be zero. This implies that da =1= 0, 
where d represents the exterior derivative, discussed below. 
This can be linked to the Stokes theorem.4 Conversely, if the 
net number of one-form surfaces passing through a closed 
loop is zero, then da = 0. 

The tensor product between basis vectors or basis one
forms or both can be constructed and used as a basis from 
which to build general tensors, e.g., 

S = saP yll = ea ®ep ®dxY ®dxll
• (1) 

The wedge product between p one-forms, called a p
form, is constructed from the antisymmetrized tensor pro
duct of one-forms. A basis p-form is defined as 

dxl /\ dx2 /\ ••• /\ dxP 

= (lIp!){) 1 2· . . p dxa , ® dxa , ® ... ® dxap 
a.a2···a p , (2) 

where {) ~~/.ap is the alternating tensor. 
The highest value p can assume is equal to the dimension 

of the space under consideration; so that in three dimensions 
p = 0, 1,2,3. (A zero-form is a function.) A generalp-form 
can be expressed in terms of its components along a basis p 
form; for example, a general two-form p can be written as 

p=pafJdx a /\~. (3) 

A p-form can be envisioned as the intersection of p fam
ilies of surfaces which form cells, each with a given orienta
tion. For example, a two-form can be thought of as a tubular 
honeycomblike structure.4 The cells of a general p-form do 
not necessarily mesh together. Consequently the net number 
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of cells emerging from a closed p-surface encompassing the 
p-form is nonzero. Cells have been created or destroyed 
within the p-surface. In this case the exterior derivative of 
the p-form is nonvanishing. On the other hand, a vanishing 
exterior derivative implies that the cells of the p-form blend 
smoothly into one another. No cells are created or destroyed 
within an encompassingp-surface. 

Tensor-valued p-forms can be defined. They are p-forms 
which have a tensor associated with each cell. For example, 
torsion can be described as a vector-valued two-form. In this 
case a vector is attached to each of the tubes of the honey
comblike two-form structure. 

The exterior derivative d operates on a p-form to create a 
(p + I)-form. For example, if/represents a zero-form, i.e., a 
function, then d/ is the gradient one-form of the function 

(4) 

Acting on a p form a, where a = aaPY . .. dxa 1\ dxP 1\ . .. , d 
produces the (p + 1 I-form da such that 

da = daapy . .. dxa 1\ dxP 1\ .•• 

= aaPY ... ,A dx" 1\ dxa 1\ cJxP 1\ • ... (5) 

The exterior derivative acting twice on a p-form pro
duces a vanishing form. For example, d(dxa

) = O. 
Acting on a basis vector ea , d produces the vector-val

ued one-form connection 

dea = epwP a' 

where 

(6) 

w P a = If1 aA dx". (7) 

The components of roP a' namely r py, depend on the 
torsion components C' pyas well as on the metric gaP; i.e., 

and 

C'pr =rpy -r yp 

r py = ~ (gAP.y + gAy.P - gpy.A) 

+ !(C' Pr + Cpya + Cypa). 

III. CONDITION FOR WHICH THE EXTERIOR 
DERIVATIVE OF TORSION VANISHES 

(8) 

(9) 

The density of a continuous distribution of dislocations 
can be represented by the torsion vector-valued two-form C, 
where 

C = C' e dxP I\dxY py a (10) 

and 

C' py = r py - r yp. (8) 

The vector part of C is associated with Burgers vectors. The 
two-form part of C is associated with dislocation lines which 
run parallel to the tubes of this honeycomblike structure. 

We now deduce the condition for which dC = 0: 

~=C'~~dx"l\cJxPl\~+C'~~l\cJxPl\~. 
(11) 

Inserting (6) into (11) gives 

dC = (C' py,A + cr pyr aA)ea dx" I\cJxP I\dxY. (12) 
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The components of dC, namely C' [py,). 1 + cr [pyr la/A l' 

vanish if the crystal has the property of absolute parallelism 
so that the total curvature Ra py6 vanishes. (The slashes 
around the subscript (T mean that this subscript is not includ
ed in the antisymmetrization.) This is because 

C' [Py,A 1 + cr [pyr la/A 1 = - Ra [PyA l' 

where 

(13) 

Ra pyA = r PA,y - r py,}. + r ayI'" PA - r uAI'" py' 

(14) 

The identity (13) can be obtained by considering the vectorial 
torsion two-form 91' , where 

91' = ot' " 1\ dx" = -!O' ap dxa 1\ cJxP. (15) 

As pointed out by Trautman5 

d9l' = W'y 1\ dxY - ot' y 1\ oy . (16) 

Here, W y is the tensorial curvature two-form 

RJL y = dot' y + ot' A 1\ w A y = !RJL yap dxa 1\ cJxP. ( 17) 

Then from (15)-(17) 

- !O' ap,y dxY 1\ dxa 1\ cJxP 

= !RJL aPy dxa 1\ cJxP 1\ dxY 

+ !cr aPr' ay dxY 1\ dxa 1\ cJxP , 

which reduces to (13). 

IV. DISCUSSION 

When the curvature Ra py6 vanishes, 

dC=O. 

(18) 

(19) 

Since a vector and a two-form are associated with C, the 
vanishing of its exterior derivative implies simultaneous con
servation for both these elements. Therefore the Burgers vec
tor is conserved so that at a node the ingoing Burgers vector 
is equal to the sum of outgoing Burgers vectors. Further
more, the tubes of the two-form part of C must merge 
smoothly into one another so that the net number of tubes 
that pass through an arbitrary closed two-surface (e.g., the 
edges of a box) is zero. Since dislocation lines run along the 
tubes of the two-form, this implies that they must either end 
at the boundary of the crystal or form closed loops. 

Continuity in other areas of physics can also be repre
sented as the vanishing of the exterior derivative of a geomet
ric object. For example, in electromagnetism, in any refer
ence frame, magnetic field lines never end. This can be 
expressed as dF = 0, where 

(20) 

is the Faraday two-form and Aa are the components of the 
electromagnetic potential one-form. (Latin indices run from 
0,1,2,3.) 

On the other hand, electric lines can end on charges. 
This can be expressed as 

d*F = 41T*J, (21) 

where *F is the Maxwell two-form dual to F and *J is the 
charge three-form. 

Similarly, in hydrodynamics, vortex lines cannot end in 
the fluid. They either end at the boundary or form closed 
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loops. This can be expressed as 

dco = 0, (22) 

where co represents the vorticity two-form 

co = wp,,, cJxI' J\ dx" = vp,." cJxI' J\ dx" (23) 

and vp, represents the components of the velocity one-form. 
Dislocation continuity can be violated when the crystal 

contains grains, i.e., dislocation lines can end on grain boun
daries within the crystal. Accordingly, the exterior deriva
tive of torsion should not vanish. The general equation 

dC = - Ra 
fJr6ea d,xfJ J\ dx r J\ dx6 (24) 

implies that grain boundaries can be represented by Ra 
!fJr6 J' 

Correspondingly, we can treat the crystal as divided into 
grains which are curvature-free except on their boundaries. 

Regge calculus may prove useful in considerations in
volving grain boundaries. Regge calculus replaces an n-di
mensional continuously curved, Riemannian manifold with 
n-dimensional blocks. All the curvature is concentrated on 
the skeletal (n-2)-dimensional hinges ofthese blocks.4 
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We derive the exact solution of a single-band time-dependent Schrodinger equation for an 
electron in an idealized one-dimensional periodic solid in the presence of a constant uniform 
electric field. We show that all wave functions are necessarily periodic in time. This result is the 
fully quantum-mechanical analog of the well-known Bloch oscillations predicted by 
quasiclassical dynamics. Our method of solution consists of mapping the electron Schrooinger 
equation to the exactly solvable problem of a quantum planar rotor in the eikonallimit subject to 
an arbitrary angular and time-dependent external potential. The time periodicity of the electron 
wave functions is due to the fact that all of the rotor wave functions have the form of solitary wave 
packets. 

I. INTRODUCTION 

One of the remarkable results in Bloch's seminal article I 
of 1928 on the quantum theory of electrons in solids is that a 
weak static, uniform electric field can give rise to periodic 
electron oscillations, frequently referred to as "Bloch oscil
lations." The simplest system to consider is that of an ideal
ized one-dimensional solid oflattice spacing a. The period of 
the oscillations is given by 

T = h I(elfa) , (1) 

where h is Planck's constant, - e is the charge of the elec
tron, and If is the magnitude of the electric field. A simple 
qualitative explanation of this seemingly enigmatic pheno
menon is given in most textbooks on solid-state physics. 2 

The effect of the one-dimensional periodic electron-lattice 
potential is to replace the parabolic energy spectrum of a free 
electron by an infinite sequence of nondegenerate energy 
bands E/(k), labeled by the band index I ( = 1,2,3, ... ), where 
each function E/(k) is periodic in the wave vector k with 
period 21Tla. Because of the energy gap separating successive 
bands, an electron initially occupying a given band I can be 
expected to remain in that band if one introduces a suffi
ciently weak/ static uniform field If = Ifx. In the formal
ism of "quasi classical dynamics,,,2 the equation of motion of 
the electron is given byd (11k )ldt = - elf. The energy of the 
electron at time t is then given by E/ [ko - (elft Iii)] and its 
velocity by v(t) = (l/Ii)E ;[ko - (elft Iii)], where ko is the 
initial wave vector. These are periodic functions oftime with 
period T given by (1). In addition, v(t) is alternately positive 
and negative, suggesting a periodic spatial motion of the 
electron. In recent years with the advent of semiconductor 
superlattices, which provide a controlled one-dimensional 
periodic environment, the subject of Bloch oscillations has 
been transformed to one of great theoretical and technologi
cal importance in semiconductor physics. A specific theo
retical proposal for the experimental observation of Bloch 
oscillations in semiconductor superlattices was made by 
Esaki and Tsu,4 whereby the oscillations would give rise to a 
negative differential conductance. Confirming experimental 
observations were reported several years later by Esaki and 
Chang.s 

In this article we provide the exact solution of the single
band time-dependent Schrodinger equation for an electron 
subject to an arbitrary spatially periodic one-dimensional 
potential in the presence of a uniform electric field. The basic 
picture of quasiclassical dynamics is corroborated in that all 
wave functions are indeed found to be periodic in time with 
period T. Our method of solution consists of mapping this 
problem, formulated in Sec. II, to another exactly solvable 
problem, which is treated in Sec. III, that of a time-depen
dent Schrodinger equation 

iii al/l = [ - iwo ~ + V(t/J,t)] 1/1 , (2) 
at at/J 

where Wo = 21T!T. This equation describes a planar "pseu
dorotor" subject to an arbitrary angular and time-dependent 
external potential. 6 The appellation pseudorotor is appropri
ate because the Hamiltonian includes a term which is only 
linearinLz = - ilialat/J, the component of the angular mo
mentum operator normal to the plane of the rotor. Now the 
key property of the solutions of (2) is that they satisfy the 
identity 

/1/1 (t/J,t W = /1/1 (t/J - wot,oW . (3) 

That is, 1/1 describes a solitary wave packet, one which pre
serves its shape given any7 initial shape, and rotates with 
uniform angular velocity Wo' This is the quantum analog of 
the result that the angular velocity of the classical pseudoro
tor is a constant of the motion with value Wo (see Sec. III 
below). The absence of any spatial spreading for all solutions 
of (2) is tied to the fact that, as discussed in Sec. III, Eq. (2) 
can be viewed as the Schrooinger equation for a bona fide 
rotor in the eikonallimit, that is, a rotor with an infinitely 
large moment of inertia and thus a constant angular velocity. 
The classical and quantum versions of the pseudorotor share 
the property that there is only one possible outcome for a 
position measurement which follows an earlier such mea
surement. The notion of the eikonallimit for a single nonre
lativistic particle is discussed in some detail in Sec. IV. 

In Sec. V A we apply the results derived for the pseudo
rotor to the problem of the single-band Schrooinger equa
tion for an electron in an arbitrary, spatially periodic poten-
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tial with an external electric field. The time periodicity of all 
electron wave functions is a direct consequence of the peri
odic solitary wave character of the pseudorotor wave func
tions. A number of special cases are considered in detail. For 
any nonzero value of ffi', interband transitions which are 
strictly excluded in the single-band treatment are in princi
ple open and have the potentiality of modifying the Bloch 
oscillations in some as yet unknown fashion. That is, the 
phenomenon of Bloch oscillations should be regarded then 
as an idealized phenomenon, valid only in an asymptotic 
sense for ffi' -0 and which will require ammendment in some 
form for any nonzero value of ffi'. (Analogous remarks have 
been made by Avron and Zak8 concerning the related con
troversial problem of the existence of Stark ladders9

•
10 for 

the one-dimensional solid in a uniform ffi' field.) An exact 
formulation of the problem, involving all bands, is given in 
Sec. V B in terms of an infinite system of coupled linear par
tial differential equations of first order. This formulation, 
which utilizes a complete set ofWannier functions as basis 
states, may provide a potentially useful alternative to the 
traditional formulation based on the crystal momentum rep
resentation. 11 The subject of interband transitions has 
proved to be one of the most difficult yet intriguing questions 
of traditional solid-state physics. 

Finally, in the Appendix we provide an alternate meth
od for solving the single-band Schrodinger equation for the 
special case of nearest-neighbor overlap. The mathematical 
problem consists of solving an infinite system of first-order 
differential equations of tridiagonal form. The method em
ployed in the Appendix consists of converting the set of dif
ferential equations to a system of coupled algebraic equa
tions a,nd solving the latter using a generating function 
method. 

II. FORMULATION 

We shall adopt as our one-electron Hamiltonian 

H (x,t) = Ho(x,t) + effi'x , (4) 

where we require that Ho be a Hermitian operator and spa
tially periodic with period a, Ho(x + a,t ) = Ho(x,t ). For any 
problem of physical relevance Ho can be taken to be time 
independent, oftheformHo = - (1f/2M)(£12/ax2) + Vdx), 
where VL (x) = VL (x + a) is the static electron-lattice inter
action and M is the electron mass, but the more general form 
(4) can be treated with no additional difficulty. Now the solu
tions of the time-dependent Schrodinger equation ift a",/ 
at = H", can be expanded in terms of a complete set of ortho
normal functions termed W annier functions. Associated 
with each value of the band index lone defines a function 
~/(X). A doubly infinite set off unctions { In,1 )=~/(X - na) J 
is called a set of Wannier functions if 

(n,/ln',I') = f: "" dx ~ r(x - na)~/'(x - n'a) = till' tinn' . 

(5) 

The single-band approximation consists of replacing the 
Hamiltonian (4) by a new operator HI defined as 

"" L (m,/IH In,/) Im,/) (n,/1 , (6) 
m,n = - 00 
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i.e., HI consists of that portion of the spectral representation 
of H corresponding to a single band I. In the following we 
suppose that all wave functions of the system for an initial 
time t = 0 are expandable exclusively in terms of the Wan
nier functions for the single band I. Then the Schrodinger 
equation 

ift a", = HI'" (7) 
at 

insures that the wave functions for any later time can also be 
so expanded, that is, 

"" 
",(x,t) = L In(t~/(X - na). (8) 

n= - 00 

Henceforth we shall suppress the band index. Because of the 
spatial periodicity of Ho its matrix elements formed with the 
Wannier functions are of the Toeplitz form 

(nIHolm) = (n - miHoIO) = (OIHolm - n) . (9) 

Furthermore, the matrix elements of the operator x can be 
expressed as 

(nlxlm) = na tim•n + (n - mlxlO) 

= na tim •n + (Olxlm - n) . (10) 

Alternately, we may rewrite (9) and (10) as 

(niH 1m) = neffi'a tin.m + (OIH 1m - n) . (11) 

The time-dependent Schrodinger equation (7) is then easily 
shown to be equivalent to the infinite system of coupled ho
mogeneous equations 

iftdln -neffi'aln = ~ (OIHln' )/,+ . (12) 
dt .;:- n n 

These equations serve as the starting point for the remainder 
of this work. 

To solve these equations we define the generating func
tion 

QO 

.p(~,t) = (21T)-1/2 L /,,(t)ein~ (0<~<21T). (13) 
n= - 00 

Multiplying (12) by ein~ and summing over all integers none 
obtains 

ift a.p (~,t) = [woLz + V (~,t )] .p (~,t ) , 
at 

where L z = - ift a/a~, 

"" V(~,t)= L e-in~(OIHln), 
n= - 00 

(2') 

(14) 

and wo = 21T/T with 1" defined by (1). Note carefully that 
V(~,t) is a real periodic function of ~ with period 21T. The 
time dependence of Voriginates in any time dependence as
sumed for Ho. 

The generating function (13) is thus seen to satisfy the 
time-dependent SchrOdinger equation describing the pseu-; 
dorotor defined in Sec. I. Now the key point is that (2) can be 
solved in closed form [see Eq. (24)], giving .p (~,t) in terms of 
.p (~,O), because V (~,t) is a local potential. The details are 
provided in the following section. Specifying initial values 
In (0) provides .p (~,O), whereas the inverse relations 
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In (t) = (217r 1/2 f" dt/J e - int/>I/I (t/J,t) 

yield the values off" (t ) for any later time. 

III. PLANAR PSEUDOROTOR 

(15) 

In this section we first examine the classical planar pseu
dorotor. This is followed by the derivation of the solution of 
the time-dependent Schrodinger equation (2) of the quantum 
pseudorotor. 

Consider the time-dependent classical Hamiltonian 

H(t/J.Lz,t) = woLz + V(t/J,t) , (16) 

where Wo is an arbitrary constant, Vis an arbitrary real func
tion of its variables subject only to the requirement that 
V(t/J + 21T,t) = V(t/J,t ),andt/JandLz are standard canonically 
conjugate variables. To appreciate the specialized character 
of ( 16) note that the angular velocity of the classical system is 
a constant of. the motion Wo; one of the pair of Hamilton 
equations is t/J = aH laLz = Wo' However, because of the 
term V (t/J,t ) the angular momentum L z is not a conserved 
quantity. Now the term woLz of (16) can be expressed as 
(Lz + Iwof /(21) - Iwo 2/2, when 1--+ 00, enabling us to inter
pret (16) as the Hamiltonian for a bonafide rotor but with 
arbitrarily la~ge moment of inertia, having a constant angu
lar velocity t/J = Wo + (L z / I )--+{J)o in this limit. One might 
expect then that there will be a close connection between the 
properties of the classical and quantum versions of this 
anomalous rotor. 

A formal hint of this is provided by the following. The 
Hamilton-Jacobi equation for the system (16) is given by 

as as at + Wo at/J + V(t/J,t) = 0, (17) 

where S (t/J,t ) is Hamilton's principal function. Introducing 
the function 

S (t/J,t ) = - ililn 1/1 (t/J,t ) (18) 

and using (2), one finds that S also satisfies the classical equa
tion of (17). This anomalous circumstance is, of course, due 
to the fact that the Hamiltonian (16) is linear in L z • The 
physical consequences of this mathematical equivalence will 
become clear in the next paragraph. 

To solve (17) we use Lagrange's methodY The subsi
diary equations are 

dt = (l/wo)dt/J = - dS I V (t/J,t ) 

with independent solutions 

U 1 = t/J - wot = C) , 

U2 =S+ I' dt' VIC) +wot',t') = C2 , 

(19) 

(20) 

(21) 

where C1 and C2 are arbitrary integration constants. The 
general solution of (17) can then be written as 

~ (t/J,t) = F(t/J - wot) - I'dt' V(t/J - wot + wot ',t' ) , (22) 

where F (y) is any periodic complex function of the variable y 
with period 21T. Alternately we may rewrite (22) as 

S (t/J,t) = S (t/J - wot,O) - I'dt' V(t/J - wot ',t - t' ) , (23) 
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and the wave function as 

1/1 (t/J,t ) = 1/1 (t/J - Wol,O) 

xexp[ - ~ I'dt' V(t/J-wot',t-t')]' (24) 

Recalling that V is real, it follows that 

I 1/1 (t/J,t W = II/I(t/J - wot,oW , (3) 

and in particular 11/112 is independent of V. This confirms the 
statement made in the Introduction that 1/1 describes a soli
tary wave packet, one which preserves any given initial 
shape, rotating with uniform angular velocity wo' 

To emphasize the similarity between the classical and 
quantum versions of the pseudorotor, suppose in particular 
that a measurement performed at the instant t = 0 revealed 
that the quantum pseudorotor was at some angle t/Jo. Then 
we have 11/1 (t/J,t W = ~(t/J - wot - t/Jo) for all t> O. In this in
stance the angular momentum as calculated for both the 
classical and quantum versions of (16) is given by 

r a 
Lz(t) = Lz(O) - Jo dt at/Jo V(t/Jo + WoT,T) . (25) 

Before closing this section we examine the question of 
whether 1/1 (t/J,t) can be periodic in time with period T. The 
quantity 11/1 (t/J,t ) 1 does in fact exhibit this property, as is easily 
seen using (3) and the fact that I/I(t/J,O) is periodic in t/J with 
period 21T. In general this is not the case for the phase of 1/1, 
denoted by S, where 1/1 = I 1/1 leis. Referring to (24) we have 

1 r s (t/J,t) = s (t/J - wot,O) - "i Jo dt' V(t/J - wot ',t - t' ) . 

(26) 

Considering the times t and t + T one finds that 

1 r S(t/J,t+T)-S(t/J,t) = -"i Jo dt' V{t/J+wot',t+t'). 

(27) 

The right-hand side (rhs) of(27) will in general vary with t so 
that S, and therefore 1/1, will not be periodic in time with 
period T. An obvious exception 13 is the set of all time-inde
pendent potentials V(t/J). For such potentials the rhs of (27) 
will vanish if we impose the single constraint l4 

(2" 
Jo d8V(8)=0. (28) 

IV. EIKONAL LIMIT 

The material of this section, albeit of peripheral interest 
to the problem of Bloch oscillations, is presented in order to 
provide a deeper understanding of the conditions for the ex
istence of only solitary wave-packet solutions of the Schro
dinger equation. 

We consider the one-particle nonrelativistic Schro
dinger equation 

iii at/! = _ ~ V2•I, + w' 
at 2m '/' '/', (29) 

with V being an arbitrary real function ofr and t. For our 
purposes it will be convenient to express t/! as 

t/J(r,t) = F(r;t )exp[(illJ)S(r;t)] , (30) 
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where F and S are real functions of their arguments. Defin
ing the quantity 

p=F 2
, (31) 

the Schrodinger equation is equivalent to the pair of equa
tions 

ap +v,(p~VS)=O, 
at m 

(32) 

as +_1_(VS)2+ V-£~V2F=0. 
at 2m 2m F 

(33) 

Writing the phase S ofthe wave function as 

S(r,t) = mvo' r - Eot + S(r,t) , (34) 

where Vo is a constant vector and Eo = !mv~, these equations 
become 

ap +vo'Vp+v,(p~VS)=O, (35) 
at m 

as + Vo' VS + v + (2m)-I[(VS)2 - If V2F] = O. (36) 
at F 

Suppose now that in the large mass limit (m-+ r$J, whereas Ii 
and Vo remain constant) 

lim (lIm)VS= o. (37) 
m-oo 

Equations (35) and (36) reduce to 

ap ap 
-+vo-=O, 
at az 

(38) 

as as 
-+vo-+ V=O, 
at az 

(39) 

where we have chosen the direction of Vo as defining the z 
axis. We shall refer to this particular limit as the eikonal 
limit, for in essence Eq. (39) is the primary equation of the 
eikonal approximationl5 of scattering theory. The term in
volving If in (36) no longer appears in (39). Nevertheless, the 
eikonallimit is quite distinct from the classical limit (/i---.O). 
The pair of equations (35) and (36), with Ii set equal to zero, 
are quite distinct from (38) and (39). Inspecting (17) and (23) it 
is evident that the general solutions of (38) and (39) are given 
by 

S (x, y,z;t) = S (x, y, z - vot;O) 

-f dt' V(x,y, z - vot';t - t'), (40) 

and 

pIx, y, z;t ) = pIx, y,z - vot;O) . (41) 

Thus in the eikonallimit the probability density behaves as a 
solitary wave and does not disperse in space with the passage 
of time. In particular, if the particle is found to be at a point 
r 0 at t = 0 then a later position measurement will necessarily 
show that the particle is located at the point ro + vot. In 
summary, in the eikonal limit all solutions of the Schro
dinger equation (29) behave as solitary waves. For certain 
selected potentials V it is possible to find solitary wave solu
tions of(29), but these constitute an extremely small subclass 
of all possible solutions for that potential. 7 
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V. ELECTRON WAVE FUNCTIONS 

A. Solution of the single-band problem 
The amplitude In (t) has been found in preceding sec

tions to be given by Eqs. (15) and (24). In the present section 
we shall suppose, first, that the one-electron Hamiltonian 
(4), and thus also Vin (24), is time independent and, second, 
that (OIH 10) = 0 so that (28) is satisfied. 14 These assump
tions result in IJI (</>,t), and henceln (t) and the wave function 
f/;{x,t) of (8), being periodic in t with period T. An explicit 
expression forln (t) in terms of the set of initial values [In (0)1 
is obtained upon combining (13), (15), and (24), the result 
being given by 

In (t) = (217')-1 I =~ 00 };(O)e - i/"Joi f'" d</> 

XexP-i[(n-l)</>+! fdt' V(</>-wot')]' 

(42) 
In the remainder of this section we shall consider a case of 
special interest, wherein (0) = 5n,o' so that (42) reduces to 

In (t) = (217')-1 i2

". d</> 

xexP-i[n</>+ ! fdt' V(</>-wot')], (43) 

If the electric field is turned off, i.e., wo-+O, Eq. (43) 
reduces to 

I,,(t) = (217')-1 f'" d</> exp - i[n</> + ! V(</»t ], (44) 

and, by contrast to (43),/" is no longer a periodic function of 
t. Of particular interest is the behavior of (44) forlarge times. 
Suppose that the matrix elements (OIH In) (n;fO) are pure 
imaginary. The potential function V(</» of(14) is then a real, 
odd function of </>. Suppose further that V(</» has a single 
extremum within (0,17') for an angle </>0 and that V"(</>o) is 
nonzero. Using the method of stationary phase one finds that 

In(t)- [(2/17')(lilt I V"(</>olll] 1/2 

x cos [n</>o + (lIli)V(</>o)t + (17'/4)sgn V"(</>ol1. (45) 

Thus, in the absence of an electric field, In (t) exhibits 
damped oscillatory behavior for large t with an amplitude 
which decreases to zero as t -1/2. This result for the single
band Schrodinger equation is the analog ofthe usual disper
sion of a quantum wave packet for a free particle. 

Returning to the result, Eq. (43), in the presence of an 
electric field, we specialize to the choice 

V(</» = 2VI sin</> (vT = VI)' 

which corresponds to the selection 

(OIH In) = iVMn,1 -5n, _ I) 

(46) 

(47) 

in (14), i.e., only nearest-neighbor overlap ofWannier func
tions. Equation (43) can then be rewritten as 

I,,(t) = (217')-le-(1I2)i'%t 

1
2". 

X 0 d</> exp - ;[n</> + aft )sin </> ] , (48) 

where a(t) = (4 Villiwo)sin(!wot). Now the factor exp( - ia 
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X sin t/J ) will be recognized as a generating function of Bessel 
functions of integral order 

'" exp( - ia sin t/J) = L (- 1teim~Jm(a). (49) 
m= - 00 

We thus arrive at the final result 

/,,(t) = (- l)"e-(I12)i""'otJ" ((4Vl/wo)sin !liV). (50) 

Noting that J _" (x) = ( - 1 tJ" (x) = J,,! - x) one verifies at 
once that 1-" = ( - 1 )"/,, and that I" is periodic in t with 
period r. In particular.!" (pr) = ~".o for any integer value of 
P. 

If the electric field is reduced to zero, (50) becomes 

(51) 

an expression valid for all t. For an arbitrary fixed value of t 
considered in the limit n-oo, Eq. (51) reduces to 

In(t)-( -1)"(l/n!)Wltlli)n (n-oo). (52) 

Another limiting case is that offixed nand t-oo for which 
Eq. (51) adopts the asymptotic form 

In!t)-(17"Vlt lli)-1{2 cos[t(2V1lli) + !n1T - ~17'). (53) 

This result of course agrees with (45) for the present choice 
(46) for V(¢). 

B. Formulation of the exact problem 

In this subsection we drop the single-band restriction of 
Sec. II and consider the exact time-dependent Schrodinger 
equation based on the HamiltonianH ofEq. (4). Employing 
the complete set of Wannier functions, the wave function 
can be expanded as 

'" '" 
,p(x,t) = L L /".,(t )In,l) . 

'=In=-oo 
(54) 

Using the orthonormality property, Eq. (5), of the Wannier 
functions, one can immediately generalize (11) to read 

(n,/IHln',I' > =ne'1la~II' ~nn' + (O,IIHln' -n,I' >. 

For each band I we define a generating function 

WM),t) = (217') -1/2 f /"., (t )einif/ . 
n = - 00 

(55) 

(56) 

It is then a simple exercise to verify that the exact time
dependent Schrodinger equation based on the Hamiltonian 
(4) is equivalent to the following system of coupled partial 
differential equations: 

aWL 1 aWL 1 '" -----=- L VIl'(¢)WI,(t/J,t), (57) 
a¢ liJo at Wo I' = I 

where 

'" 
VIl'(¢) = L e- inif/ (O,IIH In,I' ) . (58) 

n = - 00 

As imposing as this system of equations may appear, it may 
prove to be a useful starting point for the treatment of the 
exact problem. In particular, it is likely that progress can be 
made by adopting an approximation such as retaining non
zero choices only for Vr/(t/J) and Vr.I± I (t/J). We will pursue 
this matter in a later publication. The conventional ap-
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proach to interband transitions, based on the crystal mo
mentum representation, II has a long and venerable history, 
yet some of the underlying issues (e.g., Stark ladders) remain 
a topic of considerable controversy. S-IO A new approach, 
based on Eq. (57), is worth careful study, and hopefully it 
may provide new insights. 

By including interband coupling terms, the notion of 
strictly periodic oscillations (i.e., without damping) must 
break down. This is also suggested by the above formalism. 
In particular, WI can no longer have the form of a solitary 
wave. To support this statement, note that if WI were a soli
tary wave then f~1T d¢ 1'1',1 2 would be time independent, 
whereas only the weaker normalization condition 

,tl ffT d¢ 1'1'112 = 1 (59) 

is in effect. 

VI. SUMMARY 

In this article we have derived the exact solution of the 
single-band time-dependent Schrodinger equation for an 
electron in a spatially periodic one-dimensional potential in 
the presence of a uniform electric field. All solutions of this 
restricted Schrodinger equation are periodic in time with 
period given by (1). Our result provides a fully quantum
mechanical derivation of the phenomenon of Bloch oscilla
tions which is traditionally derived using the formalism of 
quasiclassical dynamics. What makes this problem solvable 
is the fact that the restricted SchrOdinger equation, in es
sence the infinite system of coupled equations (12), can be 
mapped to the exact problem of a quantum planar rotor con
sidered in the eikonallimit. In this particular limit all eigen
functions of the rotor have the form of solitary wave packets. 
An immediate consequence of this unique form is that all of 
the electron wave functions for the original problem are peri
odic in time. Once one removes the restriction to a single 
band, the electron wave functions are no longer strictly peri
odic in time. The mapping procedure gives rise to the impos
ing system of coupled partial differential equations (57). A 
fully quantum-mechanical treatment of the resulting modifi
cations of Bloch oscillations remains as an interesting open 
problem in mathematical physics. 
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APPENDIX: LAPLACE TRANSFORM METHOD 

The general result fori" (t), Eq. (42), was derived by ex
ploiting a mapping ofthe system of coupled equations (12), 
which are equivalent to the single-band Schrooinger equa
tion, to the problem of a pseudorotor in an external poten
tial. For the special case where one includes only nearest
neighbor overlap of Wannier functions, i.e., the matrix 
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elements (OIB In) are given by (47), we can obtain the closed
form solution, Eq. (SO), using an alternate method based on 
Laplace transforms. 

Our starting point is the reduced version of the system of 
equations of(12) 

dl" . f, ~f, f,) Tt= -lnwo ,,+~ ,,+1 - ,,-I , 

In (0) = 8".0 . 

(AI) 

(A2) 

Multiplying (AI) by e- st and integrating over all positive 
times and employing (A2), one obtains 

sF" = 8".0 - inwoF" - (VI/Ii)(F" + I - F" _ I ) , (A3) 

where F" (s) denotes the Laplace transform of I" (t). To ex
tract an explicit expression for F" from (A3) we define the 
generating function 

co 

G(y;S) = L F,,(slY". (A4) 
n= - 00 

More specifically, we show that the function G satisfies a 
simple, solvable first-order differential equation in the inde
pendent variable y. Once G is determined, the coefficient of 
y" of its Laurent expansion is the desired quantity F" (s). Fin
ally, calculation of the inverse Laplace transform of F" 
yields the site amplitude/" (t). 

Multiplying (A3) by y" and summing over all integer 
values of n, one obtains the inhomogeneous differential 
equation 

_ iwoY dG = _ 1 + [s + -.!:1.. (y - y-I)]G. (AS) 
dy Ii 

The solution of (AS) is given by 

(A6) 

where 

GH = lS/OJo) exp[i(VJ/wo)(Y + y-I)] (A7) 

is the homogeneous solution of (AS). Now the exponential 
term in (A 7) is precisely a generating function of Bessel func
tions of integer order, namely 

co 

expWz(y + y-I)l = L (iy)"J,,(z). (A8) 
n = - 00 

Combining (A6HA8), one obtains the final result for G 
co 

G (y;S) = L (iy)" 

where 

n= - 00 

x L~ 00 (s - imwo)-IJm(P)J" + m(f;1)} , 

(A9) 

P = 2 VI/(WO) . (AlO) 

Comparison of (A4) and (A9) provides an explicit formula 
for F" (s), namely 
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00 

F,,(s) = i" L (s - imwO)-IJm ( P)Jn + m( P) . (All) 
m= - 00 

Because of the very simple s dependence in (A 11), the inverse 
transform I" (t ) is immediate with the result 

co 

I,,(t) = i" L Jm( P)J" + m( p)eimOJot . (AI2) 
m= - 00 

The imposing-looking series (Al3) can be written in closed 
form using Grars addition formula 16 

00 

L J m (a)J" + m (P )eimr = ei"u J" (1') , (Al3) 
m= - 00 

where the quantities a, P, y, CT, l' are any complex numbers 
subject to the single relation 

P = ae - ir + reiu 
• (AI4) 

The final result is identical to (50). 

IF. Bloch, Z. Phys. 52. 555 (1928). 
2See, for example, J. Ziman. Principles o/the Theory o/Solids (Cambridge 
U. P., Cambridge. England. 1972), 2nd ed., Chap. 6; N. W. Ashcroft and 
N. D. Mermin, Solid State Physics (Saunders College. Philadelphia, 1976). 
Chap. 12. 

3In principle any nonzero static electric field ~ gives rise to interband tran
sitions (Zener breakdown); however, the numerical value of the transition 
probability plummets to zero for ft' -...0 (see Ref. 2). 

4L. Esaki and R. Tsu, IBM J. Res. Dev. 14.61 (1970). 
sL. Esald and L. L. Chang, Phys. Rev. Lett. 33, 495 (1974). 
'We remark that a planar pseudorotor subject to time-periodic impulsive 
forces serves as the basis of an exactly solvable model of a one-dimensional 
systern of electrons subject to a sum of potentials which are separately 
periodic but with incommensurate periods. See D. R. Grempel, S. Fish
man, and R. E. Prange, Phys. Rev. Lett. 49. 833 (1982). 

7 A linear harmonic oscillator is well known to support solitary wave pack
ets. but only for very special initial shapes. See E. Schrodinger, Naturwis
senschaften 14, 664 (1926); E. H. Kennard, Z. Phys. 44,326 (1927); I. R. 
Senitzky. Phys. Rev. 95,1115 (1954); J. Plebanski, Phys. Rev. 101,1825 
(1956). The special case treated by SchrOdinger is reproduced in L. I. 
Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968). 3rd ed .• p. 
74-76. Also see S. M. Roy and V. Singh, J. Phys. A 14. 2927 (1981) and 
references cited therein. 

8J. AvronandJ. Zak, Phys. Rev. B9. 658 (1974); J. Avron, Phys. Rev. Lett. 
37, 1568 (1976). 

9G. H. Wannier, Phys. Rev. 117. 432 (1960); Rev. Mod. Phys. 34, 645 
(1962); Phys. Rev. 181, 1364 (1969). 

10J. Zak. Phys. Rev. Lett. 20,1477(1968); Phys. Rev. 181, 1366(1969); Phys. 
Lett. A 76,287 (1980). 

lIThe following articles continue to provide an excellent exposition of the 
subject: E. N. Adams, Phys. Rev. 107.698 (1957); E. O. Kane. J. Phys. 
Chern. Solids 12. 181 (1959). 

12See, for example. E. T. Copson. Partial Differential Equations (Cambridge 
U. P., Cambridge, England, 1975), Chap. 1. 

13More generally. the rhs of (24) will vanish for all potentials V(t,6,t) which 
are periodic in t,6 and t with periods 211" and T, respectively. and for which 
f~ dt f~" dt,6 e'·I .. - "'or, V (t,6,t ) = o. 

14In essence the constraint (28) is superfluous. It is trivial to show that if one 
waives this constraint for any time-independent potential V(t,6 ). the quanti
ties/.(t + r) and/. (t) differ only by a constant phase factor which is inde
pendent of n. Thus all physical properties derived from the electron wave 
functions (8) are left unaffected. 

ISSee, for example, pp. 339-342 of Schitrs textbook cited in Ref. 7. 
16G. N. Watson. A Treatise on the Theory 0/ Bessel Functions (Cambridge U. 

P., Cambridge, England, 1944), 2nd ed., Sec. 11.3. 

Marshall Luban 2391 



                                                                                                                                    

The adsorption of simple particles on a 2 X N lattice space 
J. L. Hock 
Department of Electrical Engineering and Computer Science. Marquette University. Milwaukee. Wisconsin 
53223 

R. B. McQuistan 
Department of Physics and Laboratory for Surface Science. University of Wisconsin-Milwaukee. 
Milwaukee. Wisconsin 53201 

(Received 30 January 1985; accepted for publication 31 May 1985) 

Utilizing a 15-term recursion relation that describes exactly the composite nearest neighbor 
degeneracy for simple indistinguishable particles on a 2XN lattice, the adsorption isotherm is 
calculated and it is shown analytically that coverage as a function of the gas phase pressure 
exhibits no discontinuity, i.e., that no phase transition can occur. 

I. INTRODUCTION 

In a recent article, I we uitlized a set theoretic argument 
to develop a recursion that yields exactly the composite near
est neighbor degeneracy for simple, indistinguishable parti
cles distributed on a rectangular 2 X N lattice space (see Fig. 
I). Specifically, we have shown that A [N,q,nwnoo], thenum
ber of unique ways q indistinguishable particles can be ar
ranged on a rectangular 2XN lattice to form nll occupied 
nearest neighbor pairs and noo vacant nearest neighbor pairs 
(as well as nol, the number of mixed nearest neighbor pairs), 
satisfies the recursion 

A [N + 3,q + 3,n ll + 4,noo + 4] 

=A [N + 2,q + 3,nll + 4,noo + I] 

+A [N + 2,q + 2,n ll + 4,noo + 4] 

+A [N + 2,q + 2,n ll + 3,noo + 3] 

+A [N + I,q + 2,n ll + 4,noo + I] 

- A [N + I,q + 2,n ll + 3,noo ] 

+A [N + 2,q + I,n ll + I,noo + 4] 

+A [N + I,q + I,n ll + 3,noo + 3] 

-A [N + I,q + I,n ll + I,noo + I] 

+A [N + I,q,n ll + I,noo + 4] 

- A [N + I,q,nwnoo + 3] 

-A [N,q,n ll + 3,noo + 3] 

+ (3)A [N,q,nll + 2,noo + 2] 

- (3)A [N,q,nll + I,noo + I] 
+A [N,q,nll,noo] , (I) 

where the nonzero, initial values for A are shown in Table I. 
The purpose of the present paper is to exploit this rela

tionship to calculate the exact adsorption isotherm and to 
determine if a phase transition in the coverage is possible for 
such a system. The present calculation is concerned with a 
system in which each site has three nearest neighbors as op
posed to a one-dimensional system where there are two near
est neighbors per site. 

II. CALCULATION OF THE VARIOUS PARTITION 
FUNCTIONS 

We first form the polynomials 

(2) 

where the sum is over all permissible values of n II and noo, 
and where 

x=exp[ - Vll/kT], y=exp[ - VooIkT] , 

in which VII and V 00 are the interaction potentials for occu
pied and vacant nearest neighbor pairs, respectively. Substi
tuting Eq. (I) into Eq. (2) yields the canonical partition func
tion (generating function) 

IN+ 3,q+ 3 (x, y) 

=y3IN+2,q+3(X,y) + [I + xy] IN+2,q+2(X,y) 

+XYN+2,q+ I (x,y) + y3[1 - Xy]IN+ l,q+2(X,y) 

+xy[l-x2y2]IN+ I,q+ dx,y) 

+x3 [1 -Xy]IN+ I,q(x,y) - xy[1 - XY]YN,q(X,y) 

(3) 

with the initial conditions 

IN,O = YYN _ 1,0' N>2, 

IN,I =y3/N_I,1 + 2IN-I,O' N>3, 

IN,2 =YYN-I,2 + [I +Xy]IN_I,1 

+ y3[I-xy]IN_2,1 +XyIN-2,O' N>3, 

iI,o = y, Al = 4y2 , (4) 

A2 =2[1 +2xy], h,l =2y4[1 +2y], 

h3 = 2 [I + 2xy2 + 2xy + 3x2y2 + 2x2y] , 

h4 = 4x3 + 4x2 + 2yx4 + 4yx3 + yx2 , 

hs=2x4[1+2x], h6=X7. 

In Eqs. (3) and (4) we adopt the convention thatlN,q (x, y) 
= 0 ifq<O orifq>2N. 

The grand canonical partition (bivariate generating) 
function is now written 
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0 0 0 

0 0 0 0 
FIG. I. An arrangement of seven particles on a 2 X 8 lattice, giving rise to 
three occupied nearest neighbors, 13 mixed neighbors, and six vacant near
est neighbors. 

2N 
gN(X,y,Z)= L fN,q(X,y)z'l, (5) 

q=O 
where 

z=m exp[ pJkT] , 

in whichJl is the chemical potential, m is the adsorbed parti
cle partition function 

m = m(x)m(y)m(z)exp[ - VoIkT] , 

and Vo is the interaction potential between the particle and 
the surface. It should be mentioned that in the Langmuir 
model for adsorption, mIx), m(y), and m(z) are single-parti
cle harmonic oscillator partition functions. 

Now gN(X, y, z) can be found by substituting Eq. (3) into 
Eq.(5): 

gN(X,y, z) = [y3 +z(l +xy) +x3r]gN_1 (x,y, z) 

+ [y3(1 - xy)z + xy(l _ x2y2jz2 

+x3~(1-xy)]gN_2(x,y,z) 

- [xy(l -xy)3~]gN_3(X,y, z), (6) 

where the initial conditions are 

gl(x,y,z)=y+2z+xr, (7a) 

g2(X, y, z) = y4 + 4y2z + 2z2( 1 + 2xy) + 4X2~ + X4Z4 , (7b) 

g3(X,y,Z) =y7 + 2y4[1 + 2y]z 

+ [4y + 4y2 + 2xy4 + 4xy +xy2]r 

+ 2 [ 1 + 2xy2 + 2xy + 3x2y2 + 2x2Y]Z3 

+ [4X3 + 4X2 + 2x4y + 4x3y + x2Y]Z4 

+ 2x4[1 + 2x]r +X7Z6 . (7c) 

To obtain an explicit relation for gN(X, y, z), the grand 
canonical partition function, we first form the polynomials 

00 

h (x, y, z, 11)== L gN(X, y, Z)11N 
N+I 

in which 

(8) 

ao =y + 2z +xr, (9a) 

a l = z[ y2(4 - x) - y(l + 2y2)] + r[ y(2x _ X3) _ xy3] 

+r[x2(4 - y) - x(l + 2x2
)] , (9b) 

a3 = ~ [ 4xy2 + 4x2y + 2x2y2 - 4x2y - 4x3y2 - 4xy _ X3y 

(9c) 
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TABLE I. The initial conditions for the recursion expressed in Eq. (I). 

N q nil noo A 

I 0 0 I 1 
1 1 0 0 2 
1 2 1 0 1 
2 0 0 4 1 
2 1 0 2 4 
2 2 0 0 2 
2 2 1 1 4 
2 3 2 0 4 
2 4 4 0 I 
3 0 0 7 I 
3 1 0 4 2 
3 I 0 5 4 
3 2 0 2 4 
3 2 0 3 4 
3 2 1 2 1 
3 2 1 3 4 
3 2 1 4 2 
3 3 0 0 2 
3 3 1 1 4 
3 3 I 2 4 
3 3 2 1 4 
3 3 2 2 6 
3 4 2 0 4 
3 4 2 I 1 
3 4 3 0 4 
3 4 3 1 4 
3 4 4 1 2 
3 5 4 0 2 
3 5 5 0 4 
3 6 7 0 1 

and 

bo = 1, (lOa) 

bl = - [y3 +z(l +xy) +rx3] , (lOb) 

b2 = - [z(l - xy)][ y3 + xyz(l + xy) + rx3] , (lOc) 

b3 = xy~(l - xy)3 , (lOd) 

and r(11) is a quadratic function of 11, while s(11) is a cubic 
function of 11. From 

1 ~h I (11) gN(X, y, z) = "'jjI a N 
. 11 "1=0 

and using a partial fraction expansion of h (x, y, z, 11) we ob-
tain 

3 

gN(X, y, z) = L kjR J" ' (12) 
j=1 

where the kj's are given by 

kj = r(Rj)/s'(Rj ) (13) 

and the Rj's are the reciprocals of the roots of the cubic [see 
Eq. (8)] 

(14) 

If111 is the smallest root ofs(11), then, asN-+oo, Eq. (12) 
becomes 

(15) 

where R 1=11I- I. 
This explicit expression for the grand canonical parti

tion function can now be used to treat adsorption and the 
question of whether or not a phase transition occurs. 
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III. ADSORPTION 

We first determine the expectation of (}, the coverage, i.e., 

«(})N = (q)N/2N, 

where 

(q)N=L~o q{N,q(X,Y)z'1} + L~ofN,q(X'Y)z'1} , 
so that 

2N 

I q{N,q (x, y)z'1 = 2N «(} ) NgN (x, y, z) . 
q=O 

Utilizing Eqs. (6), (7), and (15) and assuming thaty=l and that, as N-oo, 

«(}) N = «(}) N - 1 = «(}) N - 2 = ... = «(}) , 

we find that 

«(}) = 3 - [3 + 2z(1 + x) + x 3z2]1!J - z(l - x)[2 + xz(l + x)]1Jt . 

4-2[1 + (1 +x)z+x3z2]1JI-2x(1-x)3r1Ji 

(16) 

(17) 

(18) 

(19) 

TofacilitatethegraphicalrepresentationofEq. (19), we first show that «(}) =! whenz = x-3/2. To do so we set «(}) =!in 
Eq. (19), utilize Eq. (14) for 1J1> and obtain 

(1 - x3z2)1J1 [1 + z(l - x)1Jd = 0 . (20) 

Thus, either 

1-x3z2 = 0 
and/or 

1J1 =0 

and/or 

[1 + z( 1 - X)1JI] = 0 . 

But 1J1 = 0 cannot satisfy Eq. (14). Furthermore, it can be shown that 

1J1 = lIz(x - 1) 

(21a) 

(21b) 

(2Ic) 

cannotbearootofEq. (14). It follows that «(}) = ! atz = x-3/2, i.e., at u ZlC3/2 = 1. The exponent B) indicates a coordination 
number of 3 for a 2XN lattice space (see Ref. 2). In Fig. 2, we plot «(}) vs In u for selected values of x. 

If we define 

r=«(})-! 
and express r in terms of u and x, we obtain 

1 - [2 + x-3/2(1 + X)U]1J1 - x- 3/2(1 - x)[2 + x- 1I2(l + x)]u1Ji + (1 - X)3X-7/2U31Ji 
~u~)---------------------~~~--------~~~---------- 4 - 2[ 1 + (1 + X)x-3/2U + U2]1J1 - 2(1 - x)x-7I2IJ31J3 

Using Eq. (10) and Eq. (14) one can show that 

1J(lIu) = U21J(u) . (23) 

Combining Eqs. (22), (23), and (14), it follows that 

~u~) = - ~lIu~) (24a) 

or equivalently that 

r[1o u~] = - r[ -10 u~] . (24b) 

Thus we see that r is an antisymmetric function of In u. 
An examination of Eq. (22) shows that for all x> 0, r has a 
nonzero first derivative and thus exhibits an inflection point 
at In u = 0 (i.e., u = 1). This implies that the maximum slope 
of r (and hence «(}») vs u occurs at u = 1. 

·4 ·3 ·2 ·1 o 
Log (u) 

(22) 

2 3 4 
The question of whether the system under discussion 

can exhibit a phase transition of coverage versus gas phase 
pressure resolves itself into a determination of (d «(} ) / 
du)u = I' the slope of the curve «(}) vs u at u = 1, i.e., at 
«(}) =!. 

FIG. 2. The coverage as a function of In u==ln(zx3/2
), for various values of 

x. 
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We now show that there can be no singularity in (d (e ) / 
du)u = 1 and that it can never be negative. 

First, we determine (d7]j/du)lu= 1 by considering Eq. 
(14) with u = ZX3/2 in the coefficients, we obtain 

d7]j I - = -7]j. 
du 1<=1 

(25) 

It follows from Eq. (19) that 

d (f) I 7]1 + x- 3/2(1 - x)7]f 
~ 1<= 1 = 3 - 2[2 +X- 1/2 +x-3/2 17JI -x-2(1 -x)(l +XI/2)27]1 . 

(26) 

As x-~ ± 00, for u = ZX
3/2 = 1, Eq. (14) becomes 

(7]- W =0, (27) 

i.e., 7]-1. Thus, we can assume 7] to be expressed as a power 
series inx- I

. When this is done, it is seen that the numerator 
and denominator cannot be negative and that the denomina
tor cannot vanish. 

IV. CONCLUSION 

On the basis of a recursion that yields exactly the com
posite nearest neighbor degeneracy for a 2 X N lattice space, 
we have determined the canonical, grand-canonical, and su
per-grand-canonical partition functions. Utilizing these par
tition functions we have determined the ensemble average 
coverage as a function of the interaction potentials and the 
gas phase pressure. In addition we have shown that this sys-
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I 
tem does not exhibit a first-order phase transition in the cov
erage as a function of the gas phase pressure. 
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A sequence of Fibonacci graphs is defined. A special case of Fibonacci graphs, i.e., those with 
identical matching polynomials, is discussed and conditions under which they appear are given. 
The appearance of Fibonacci graphs with identical matching polynomials may have some 
implications in statistical physics. 

I. INTRODUCTION 

The matching polynomial of a graph G,a( G), is a com
binatorial mathematical structure defined by' 

IN12] 

a(G)=a(G;x)= I (_1)kp(G;k)xN-2k, (1) 
k=O 

where N is the number of vertices in G and p(G,k) is the 
number of ways in which one can select k nonadjacent edges 
in G. By definitionp(G,O) = 1 for all G. 

Recently, the matching polynomial has found many ap
plications in diverse branches of science; viz., statistical 
physics,2-5 thermodynamics,6 pure mathematics, 1,7-9 molec
ular physics, and chemistry. 10--14 This warrants further stud
ies on the structure of the matching polynomial. 

In this paper we wish to present a sequence offamilies of 
graphs, all of which contain cycles and also possess the fol
lowing properties: (1) each family has identical matching po
lynomial, and (2) each sequence of graphs consisting of one 
graph from each family represents what we will call a se
quence of Fibonacci graphs. 

II. FIBONACCI GRAPHS WITH IDENTICAL MATCHING 
POLYNOMIALS 

Let L j denote the matching polynomial of a linear chain 
of i vertices (or its characteristic polynomial since both poly
nomials are identical for chains). The recurrence relation 15 

Lj=xLj_I-Lj_2 (2) 

can be used to calculate the matching polynomials of linear 
chains starting with Lo = 1 and L I = X. 

Let Hbe a graph with IH I vertices, and let v be a fixed 
vertexofH. Then Gnj(H,v) denotes a graph with n + j + IH I 
vertices obtained in the following way: Take a graph H and a 
cycle of n + j vertices and connect any n vertices out of these 
n + jwith the vertex v. The graphs Gnj(H,v) have a particu
larly interesting feature: The matching polynomial for fixed 
n andjis always the same regardless of the positions of the n 
vertices which we choose to connect with v. 

Definition: Let GI, G2 , ... ,Gn be a sequence of graphs. If, 
for the k matchings,p(G;.k )'s, the recursion 

p(Gj>k) +p(Gj+"k) =p(Gj+2,k+ 1) (3) 

holds, we call the sequence G1, G2 , ... ,G" a sequence of Fibon
acci graphs. Hosoya 16 seems to be among the first who stud
ied such sequences. He discussed the graphical aspects of the 
Fibonacci numbers in terms of his topological index. 

Proposition 1: LetHbe a graph, veV(H ) and GeG"j(H,v). 
Then 

a(G) = a(H). (Ln+i - L n+i - 2 ) - n· a(B)Ln+i_l, (4) 

where B is a graph obtained from Hby omitting vertex v and 
adjacent edges. 

Proof We will make use of Heilbronner's formula17 

a(G) = a(G - e) - a(G - (e)), (5) 

where G - e is a graph G without an edge e and G - (e) is a 
graph G without an edge e and all edges adjacent to it. By 
means of this formula we can perform a simple and straight
forward calculation of a(G ). By removing an edge e, connect
ing the vertex v to the perimeter of G, we obtain 

a(G) = a(GI) - L n+i - I . a(B) , 

where GleGn_I,i+ I (H,v). 
Repeating this calculation (n - 1) times we obtain 

a(G)=a(Gn_d-(n-l)Ln+i _ , ·a(B), (6) 

where Gn _ leG I,n + i-I (H,v). 
Finally, 

a(Gn_ d =a(H). a(Cn+i ) -Ln+i - I . a(B) , (7) 
where the symbol C stands for a cycle. After using the for
mulal5.17 a(Cj ) = L j - L j _ 2 , Eq. (7) transforms into 

a(Gn_d=a(H)·(Ln+i -Ln+i-2)-Ln+i-1 .a(B) 
Q.E.D. 

Corollary: Let Gn.i belong to Gn,i(H,v) for H = v. Then 

a(Gn)=Ln+i +1 -nLn+i _ 1 -Ln+i - 3 • (8) 

Proof If H = v, then a(H) = x and we have 

a(Gn,j)=x.(Ln+i-Ln+i_2)-nLn+i_l· 

On substituting xLj_ , = L j + L j _ 2 [see Eq. (2)] into 
(8) we obtain the required relationship 

a(Gnj ) =Ln+i + I +Ln+i - I 

-Ln+i - I -Ln+i - 3 -nLn+i _ l · 
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Example: We will calculate the first several matching 
polynomials for H = v, n = 3: 

a(G 3,o) = X4 - 6x2 + 3, 

a(G 3,tl =x5 -7x3 + 8x, 

a(G 3,2) = x6 
- 8x4 + I4x2 

- 3, 

a(G 3,3) =x7 
- 9x5 + 2Ix3 

- IIx, 

a(G 3,4) = x 8 
- IOx6 + 29x4 

- 25x2 + 3, 

a(G 3,5) =x9 
- llx7 + 38x5 

- 46x3 + 14x, 

a(G 3,6) = x lO 
- 12x8 + 48x6 

- 75x4 + 39x2 
- 3. 

From the above we see that the coefficients fulfill the 
Fibonacci recursion (3), i.e., these graphs form a sequence of 
Fibonacci graphs. 

The following is again generally true. 
Proposition 2: Let GIbe a graph, and v I and V2 two isolat

ed vertices. Let e = {i,i + I} be an edge of G I , let G2 be a 
graph obtained by removing the edge e from G I and inserting 
edges {i,vtl, {vl,i + l}, and let G3 be a graph obtained by 
removing the edge e from Gland inserting a triplet of edges 
{i,vd, {V I,V2}, {v2,i + I}. Then the graphs GI, G2, G3 form a 
sequence of Fibonacci graphs. 

Proof: Let MI be the set of all (unordered) k-tuples of 
nonadjacent edges in GI [the cardinality of MI isp(GI,k)], let 
M2 be the set of all (k + 1 )-tuples of nonadjacent edges in G2 
[the cardinality of M2 is p(G2,k )], and let M3 be the set of all 
(k + I)-tuples of nonadjacent edges in G3 [the cardinality of 
M3 is p(G3,k)]. Let us split the set M3 into five subsets: M31 
(with those elements of M3 which contain edges {i,v l } and 
{ v2,i + I}), M32 (with those elements of M3 which contain 
edge {V I,V2 }), M33 (with those elements of M3 which contain 
edge {i,v l } and not edge {v2,i + I}), M34 (with those ele
ments of M3 which contain edge {v2 ,i + I} and not edge 
{i,v l }), and finally M35 (with the remaining elements of M3)' 

Let us take a (k + I)-tuple fromM31 • This does not con
tain any edge adjacent to i or i + 1 other than edges {i,v l } 

and {v2,i + I}, so that by removing edges {i,v l } and 
{ v2,i + I}, and adding edge {i,i + I} we obtain an element of 
MI' Conversely, let us take an element from MI which con
tains the edge {i,i + I}. By removing it and adding edges 
{i,vd and { v2,i + 1}, we produce an element of M 31 . Similar
ly, by removing edge {V I,V2} from an element of M32, we 
obtain an element of MI which does not contain edge 
{i,i + I} and vice versa, so that there is a 1-1 correspon
dence betweenM3luM32 and MI' By an analogous procedure 
it is easy to show that there is also a 1-1 correspondence 
between M33UM34UM35 and M2. Q.E.D. 

From Propositions 1 and 2 the following corollary fol
lows by computation. 

Corollary: Let Hbe a graph, vEV(H) and GIEGn,i(H,v); 
i = I, ... ,k, where k 23 and n are arbitrary integers. Then the 
graphs Gi form a sequence of Fibonacci graphs. 

III.REMARK OF THE FIBONACCI GRAPHS WITHOUT 
IDENTICAL MATCHING POLYNOMIALS 

We now ask what will happen if we consider linear 
chains instead of centered cycles? The family of graphs thus 
obtained does not have the same matching polynomial (see 
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the example below), but again forms a sequence of Fibonacci 
graphs (see Proposition 3). 

Example: Two graphs GI and G2 obtained by connect
ing a vertex with four vertices of L5 have different matching 
polynomials: 

= a ( 'V ) - ( L4 - x
2 

) , 

Proposition 3: Let H be a graph, VE V (H), and VI and V2 
two isolated vertices. Let GI = H,G2 be obtained from H 
adding an edge {v,v l }, and let G3 be obtained from H by 
adding edges {v,vd and {VI,V2}' Then the graphs GI, G2, G3 

form a sequence of Fibonacci graphs. 
Proof: Let us take a (k + 1 )-tuple of nonadjacent edges 

from G3 containing the edge {V I,V2 } = e. By removing the 
edge e we obtain a k-tuple of nonadjacent edges, none of 
which is adjacent to VI' i.e., a k-tuple of nonadjacent edges 
from GI [conversely taking a k-tuple of nonadjacent edges 
from GI and adding e to it, we obtain a (k + I)-tuple from 
G3]· 

Let us now take a (k + I)-tuple of nonadjacent edges 
from G3 that does not contain e. But this is also a (k + 1)
tuple of nonadjacent edges from G2• Thus, the set of all 
(k + I)-tuples of nonadjacent edges from G3 is of the same 
cardinality as the union of the set of all k-tuples of nonadja
cent edges from GI and (k + I)-tuples of nonadjacent edges 
fromG2• 

IV. CONCLUSION 

Ifwe define in a certain intuitive sense the subtraction of 
a subgraph from a graph, we can sum up Proposition 2, its 
Corollary, and Proposition 3 in the following way: When
ever we have a sequence of graphs GI, G2, ... ,Gn such that 
there exists for any three graphs Gi, Gi + I , Gi + 2 a common 
subgraph (it can be Gi ), whereby subtraction of the subgraph 
leads to a 3-tuple of either centered cycles (their lengths dif
fering by 1) or linear chains (their lengths also differing by 1), 
then the sequence GI, G2, ... ,Gn is a sequence of Fibonacci 
graphs. 

We also point out that the recursion formula for the 
Fibonacci numbers is related to a recursion formula recently 
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introduced18 for a topological function oiG), defined as the 
cardinality of the graph topology of G, and equal to the num
ber of stable sets of G. In addition, the function q( G) is quite 
sensitive to the details of graph structure, particularly to the 
extents of branching and cyclization. In this respect it is sim
ilar to Hosoya's topological index,6 which is equal to the 
number of stable edge sets of G; i.e., it is 0' of the line graphs 
ofG. 
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